首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously demonstrated that tumor necrosis factor-α (TNF-α) induces rapid human neutrophil apoptosis. In this paper, we examined which of the TNF receptors, p55 kDa TNF receptor (55-R) or p75 kDa TNF receptor (75-R), or both are involved in this process using specific rabbit antisera. Antibodies to 55-R (anti55-R) or 75-R (anti75-R) alone did not induce neutrophil apoptosis. Further addition of cycloheximide and anti-rabbit immunoglobulin to anti55-R but not to anti75-R accelerated apoptosis, although anti75-R augmented the capacity of anti55-R to do so. These results suggest that 55-R is a prerequisite for TNF-α induced neutrophil apoptosis.  相似文献   

2.
Ultraviolet B (UVB) irradiation causes cell death by apoptosis in murine fibroblast cells. Tumor necrosis factor-α (TNF-α) is also a well known inducer of apoptosis, although the physiological significance of this activity is poorly understood. We investigated the effects of pretreatment with UVB (312 nm) on TNF-α-induced apoptosis in murine fibroblast cells. UVB enhanced susceptibility to cell death by TNF-α in a dose-dependent manner. UVB but not TNF-α induced the expression of TNF receptor type-1 (TNFR-1) and type-2 (TNFR-2) in a dose-dependent manner. Expression of Fas (CD95) and Fas-ligand (Fas-L), and significant DNA fragmentation were observed in the cells that died. These results suggest that UVB irradiation modulates susceptibility to TNF-α-induced apoptosis through the induction of TNFRs, Fas, and Fas-L in murine fibroblasts.  相似文献   

3.
Muscle damage with a lack of regeneration, manifests itself in several life-threatening diseases, including cancer cachexia, congestive heart failure, AIDS and sepsis. Often misdiagnosed as a condition simply of weight loss, cachexia is actually a highly complex metabolic disorder involving features of anorexia, anaemia, lipolysis and insulin resistance. A significant loss of lean body mass arises from such conditions, resulting in wasting of skeletal muscle. Unlike starvation, the weight loss seen in chronic illnesses arises equally from loss of muscle and of fat. The cachectic state is particularly problematic in cancer, typifying poor prognosis and often lowering responses to chemotherapy and radiation treatment. More than half of cancer patients suffer from cachexia, and strikingly, nearly one-third of cancer deaths are related to cachexia rather than the tumour burden. In considering this disorder, we are faced with a conundrum; how is it possible for uncontrolled growth to prevail in the tumour, in the face of unrestrained tissue loss in our muscles? Consistently, the catabolic state has been associated with a shift in the homeostatic balance between muscle synthesis and degradation mediated by the actions of growth factors and cytokines. Indeed, tumour necrosis factor-alpha (TNF-alpha) levels are raised in several animal models of cachectic muscle wasting, whereas the insulin-like growth factor (IGF) system acts potently to regulate muscle development, hypertrophy and maintenance. This concept of skeletal muscle homeostasis, often viewed as the net balance between two separate processes of protein synthesis and degradation has however changed. More recently, the view is that these two biochemical processes are not occurring independently of each other but in fact are finely co-ordinated by a web of intricate signalling networks. This review, therefore, aims to discuss data currently available regarding the mechanisms of degeneration and regeneration with specific emphasis on the potential and controversial cross-talk which may exist between anabolic growth factors (e.g. IGF-I) and catabolic cytokines (e.g. TNF-alpha). Also importantly, the potential impact at a cellular level of exercise, diet and age will be addressed. Finally, the ability to 'hi-jack' signalling pathways traditionally believed to be for growth and survival or death will be reviewed. It is anticipated that such a review will highlight significant gaps in our knowledge of the cachectic state as well as provide caution with regards to therapeutics suggesting total block on inflammatory processes such as that associated with TNF-alpha action.  相似文献   

4.
Excitotoxic neuronal death mediated by N-methyl-D -aspartate (NMDA) glutamate receptors can contribute to the extended brain damage that often accompanies trauma or disease. Both the inflammatory cytokine tumor necrosis factor-α (TNF-α) and nicotine have been identified as possible neuroprotective agents to NMDA assault. We find that TNF-α protection of a subpopulation of cultured cortical neurons to chronic NMDA-mediated excitotoxic death requires both the activation of the p55/TNFRI, but not p75/TNFRII, and the release of endogenous TNF-α. Nicotine protection to NMDA was mediated through an α-bungarotoxin-sensitive receptor. When coapplied, neuroprotection to NMDA by either TNF-α or nicotine was abolished but could be recovered with α-bungarotoxin. These results suggest that the cytokine TNF-α and α-bungarotoxin-sensitive nicotinic neurotransmitter receptors confer neuroprotection through potentially antagonistic pathways. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 29–36, 1998  相似文献   

5.
In the previous paper (Takeda et al, Int. Immunol., 5, 691-694, 1993), we demonstrated that tumor necrosis factor-α (TNF-α) promptly accelerates apoptosis of human neutrophils in vitro. In order to determine the role of neutrophil apoptosis in defending against bacterial infection, we studied the effect of bacterial lipopolysaccharide (LPS) on this process. LPS inhibited spontaneous and TNF-α-induced human neutrophil apoptosis in vitro, as determined by 1) light and electron microscopy, 2) flow cytometry, and 3) agarose gel electrophoresis of DNA. Low concentrations of cycloheximide, a protein synthesis inhibitor, which alone did not affect neutrophil apoptosis, were able to reduce spontaneous apoptosis inhibition by LPS, suggesting the involvement of newly synthesized protein in this phenomenon.  相似文献   

6.
7.
TNF-alpha, generated during the systemic inflammatory response, triggers a wide range of biological activities that mediate the neurologic manifestations associated with cancer and infection. Since this cytokine regulates ion channels in vitro (especially Kv1.3 and Kir2.1), we aimed to study Kv1.3 and Kir2.1 expression in brain in response to in vivo systemic inflammation. Cancer-induced cachexia and LPS administration increased plasma TNF-alpha. Kv1.3 and Kir2.1 expression was impaired in brain during cancer cachexia. However, LPS treatment induced Kv1.3 and downregulated Kir2.1 expression, and TNF-alpha administration mimicked these results. Experiments using TNF-alpha double receptor knockout mice demonstrated that the systemic inflammatory response mediates K(+) channel regulation in brain via TNF-alpha-dependent and -independent redundant pathways. In summary, distinct neurological alterations associated with systemic inflammation may result from the interaction of various cytokine pathways tuning ion channel expression in response to neurophysiological and neuroimmunological processes.  相似文献   

8.
9.
10.
During the immune response, striking the right balance between positive and negative regulation is critical to effectively mount an anti-microbial defense while preventing detrimental effects from exacerbated immune activation. Intra-cellular immune signaling is tightly regulated by various post-translational modifications, which allow for this dynamic response. One of the post-translational modifiers critical for immune control is ubiquitin, which can be covalently conjugated to lysines in target molecules, thereby altering their functional properties. This is achieved in a process involving E3 ligases which determine ubiquitination target specificity.One of the most prominent E3 ligase families is that of the tripartite motif (TRIM) proteins, which counts over 70 members in humans. Over the last years, various studies have contributed to the notion that many members of this protein family are important immune regulators. Recent studies into the mechanisms by which some of the TRIMs regulate the innate immune system have uncovered important immune regulatory roles of both covalently attached, as well as unanchored poly-ubiquitin chains. This review highlights TRIM evolution, recent findings in TRIM-mediated immune regulation, and provides an outlook to current research hurdles and future directions.  相似文献   

11.
The activation of interleukin receptor associated kinases (IRAK) is an important event in several inflammatory processes. However, exposing monocytes to a nitric oxide (NO) donor inhibits the activity of IRAK-1 and its molecular interaction with TNF receptor associated factor-6 (TRAF6). Despite the fact that NO is known to regulate many events in the immune and vascular system, the mechanism that underlies this inhibition remains unknown. We have recently demonstrated that IRAK-M inhibits the TLR/IRAK pathway during endotoxin tolerance and thus, we hypothesized that IRAK-M may be involved in the inhibition of IRAK-1 activity in the presence of NO. Hence, we have analyzed the expression of IRAK-M in human monocytes following exposure to a NO donor (GSNO) and we have observed that GSNO was capable of inducing IRAK-M mRNA and protein expression 8 and 20 h after stimulation, respectively. It is known that NO induces the expression of TNF-alpha in monocytes and we found that exposure to TNF-alpha induced IRAK-M mRNA expression in human monocytes within 2 h of stimulation. Furthermore, the expression of IRAK-M induced by GSNO was inhibited by the presence of a blocking antibody raised against TNF-alpha. Thus, our data indicate that stimulation of human monocytes with a NO donor results in a clear induction of IRAK-M and this is dependent on the release of TNF-alpha by this kind of cells.  相似文献   

12.
13.
We investigated the role of wild-type p53 and c-myc activity in apoptosis induced by a combination of natural human tumor necrosis factor alpha (TNF-α) and natural human interferon alpha (IFN-α). Studies were performed with two human non–small-cell lung cancer cell lines, H226b, which has wild-type p53, and H226br, which has a mutant p53. The combination of IFN-α and TNF-α significantly inhibited cell growth and induced apoptotic cell death of both H226b and H226br, compared with IFN-α or TNF-α alone. Treatment with one or both cytokines did not affect the expression level of p53 in both cell lines. These results suggest that the combination of IFN-α/TNF-α induces apoptotic cell death through a p53- independent pathway. The c-myc oncogene is known to be involved in apoptosis induced by TNF. Antisense c-myc oligonucleotides have been reported to modulate cell growth or apoptosis in several cell lines. Antisense oligodeoxynucleotides were added to the culture of H226br cells before the addition of IFN-α/TNF-α. Antisense c-myc inhibited IFN-α/TNF-α cytotoxicity and apoptotic cell death. In conclusion, this study provides support for the speculation that TNF-α/IFN-α induce apoptosis through a c-myc–dependent pathway rather than a p53-dependent pathway.  相似文献   

14.
15.
The aim of this study is to determine if there is an antagonistic effect between tumour necrosis factor (TNF)-α and the immunoregulatory interleukin (IL)-10 on chondrocytes survival. Serum-starved primary human articular chondrocytes were stimulated with either 10 ng/ml recombinant TNF-α, IL-10 or a combination of both (at 10 ng/ml each). Chondrocyte apoptosis was determined by measuring caspase-3/7, -8 and -9 activities using caspase assays. Mitochondrial apoptotic inducer bax, and the suppressor bcl-2 were evaluated using western blotting at 48 h. Results indicated that TNF-α increased caspase activities and resulted in a significant (p = 0.001) increase in bax/bcl-2 ratio. Stimulation with IL-10 did not alter caspase activities, while co-treatment with IL-10 and TNF-α inhibited TNF-α induced caspase activities and significantly (p > 0.004) impaired bax/bcl-2 ratio. At 24 h, mRNA levels for collagen type II, TNF-α and IL-10 were determined using real-time RT-PCR. Stimulation with TNF-α or TNF-α and IL-10 significantly inhibited collagen type II and increased IL-10 and TNF-α mRNA expression. IL-10 modulated the pro-apoptotic capacity of TNF-α in chondrocytes as shown by the decrease in caspase activities and bax/bcl-2 ratio compared to TNF-α stimulated chondrocytes, suggesting a mostly antagonistic interplay of IL-10 and TNF-α on mitochondrial apoptotic pathways.  相似文献   

16.
    
Tumour necrosis factor α (TNF-α) and interleukin 4 (IL-4) selectively synergise in inducing expression of the mononuclear cell adhesion receptor VCAM-1 (vascular cell adhesion molecule-1) on human umbilical vein endothelialcells (HUVEC), which results in increased adhesiveness of HUVEC for T lymphocytes. This process may be crucial for adherence of circulating lymphocytes prior to their passage from the blood into inflammatory tissues. IL-4 also amplifies production of interleukin 6 (IL-6) and monocyte chemotactic protein-(MCP-1) from TNF-α-activated HUVEC. In the present study we demonstrate that IL-4 enhances production of granulocyte-macrophage colon-stimulating factor (GM-CSF) from TNF-α-stimulated HUVEC. Moreover, using cultured adult saphenous vein and umbilical artery endothelial cells, we show identical effects of IL-4 on TNF-α-induced responses to those observed with endothelial cells of foetal origin. Additionaly, we report here that TNF-α and interferon γ (IFN-γ) synergise in the induction of both the lymphocyte adhesion receptor VCAM-1, and the TNF-α-inducible neutrophil adhesion receptor intercellular adhesion molecule-1, on all three endothelial cell types studied. In contrast, we found that GM-CSF secretion by endothelial cells treated with IFN-γ plus TNF-α was markedly decreased when compared to the response by TNF-α alone. These results suggest that the combined actions of several cytokines, acting sequentially or in concert, may exert differential effects on activation and accumulation of circulating lymphocytes at sites of inflammation.  相似文献   

17.
18.
Integrins belong to a large family of heterodimeric membrane glycoproteins which mediate cell-cell or cell-extracellular matrix interactions. These interactions could play a major role during the migration of tumor cells across the extracellular matrix and vascular endothelium and would thus appear to be requisite for the metastatic process. Pretreatment of the Foss human melanoma cell line with HILDA/LIF or OSM, two cytokines involved in acute-phase response, increased the expression of membrane αvβ1 1.5–2-fold. The same phenomenon was observed on the SK-N-SH human neuroblastoma cell line. αvβ1 upmodulation was concomitant with improved tumor cells attachment to the fibronectin matrix. This greater adhesion of tumor cells to fibronectin was inhibited by specific monoclonal antibodies against αv or β1 integrin subunits. Similar results were obtained after TNF-α treatment. Our findings demonstrate the ability of HILDA/LIF and OSM to modulate tumor cell capacity to adhere to the matrix component, suggesting a potential role for these cytokines in modulation of tumoral progression.  相似文献   

19.
20.
To clarify the mechanism by which curdlan sulfate (CRDS) inhibits human immunodeficiency virus (HIV)-1 infection, we examined its influence on the binding of gp120 to CD4 molecules on T cells and macrophages, as well as on the production of TNF-α by gp120-stimulated macrophages (which promotes HIV-1 replication). CRDS treatment of cells not only inhibited the binding of HIV-1 gp120 to CD4+ cells, but also inhibited TNF-α production induced by gp120. Inhibition of HIV-1 infection by CRDS may be related to these two actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号