首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ca2+-transport system of human erythrocyte membranes was solubilized by deoxycholate in the presence of the nonionic detergent Tween 20 and was purified by calmodulin affinity chromatography. The method yields a functional enzyme, which as compared with the erythrocyte membrane was purified 207-fold based on specific activity, and about 330-fold based on protein content. The activity of the isolated enzyme can be increased about 9-fold by the addition of calmodulin, resulting in a specific activity of 10.1 mumoles/mg . min at 37 degrees C. Triton X-100 and deoxycholate stimulate the calmodulin-deficient Ca2+-ATPase in a concentration dependent manner, which results in a loss of the calmodulin-sensitivity. The Ca2+-transport ATPase could be reconstituted after solubilization of the ATPase by deoxycholate and controlled dialysis near room temperature. The system was reconstituted to form membraneous vesicles capable of energized Ca2+ accumulation. The membrane vesicles showed a protein to lipid ratio (approx. 60% protein and 40% lipid) similar to that of the original erythrocyte membrane. The stimulation by calmodulin of the calmodulin-depleted membrane-bound and partially purified Ca2+-ATPase is strongly time dependent. At a Ca2+-concentration of 40 microM and low calmodulin concentrations, approx. 120 min are required to regain full activity. This time period is decreased to about 15 min in the presence of a high excess of calmodulin. Vice versa, at fixed concentrations of calmodulin, the time necessary for regain of full activity is decreased as the Ca2+ concentrations is increased. The dependence of the Ca2+-ATPase activity on the calmodulin concentration shows strong deviation from Michaelis-Menten kinetics at Ca2+ concentrations below (4--10 microM) and above (200 microM) the optimum concentration of 40 microM. Mathematical analysis of the results at 200 microM Ca2+ leads to the assumption that 4 calmodulin molecules interact with one oligomer of Ca2+-ATPase consisting of 4 identical subunits.  相似文献   

2.
(CaMg)ATPase [(Ca2+ + Mg2+)-dependent ATPase] was partially purified from a microsomal fraction of the smooth muscle of the pig stomach (antrum). Membranes were solubilized with deoxycholate, followed by removal of the detergent by dialysis. The purified (CaMg)ATPase has a specific activity (at 37 degrees C) of 157 +/- 12.1 (7)nmol.min-1.mg-1 of protein, and it is stimulated by calmodulin to 255 +/- 20.9 (7)nmol.min.mg-1. This purification of the (CaMg)ATPase resulted in an increase of the specific activity by approx. 18-fold and in a recovery of the total enzyme activity of 55% compared with the microsomal fraction. The partially purified (CaMg)ATPase still contains some Mg2+-and (Na+ + K+)-dependent ATPase activities, but their specific activities are increased relatively less than that of the (CaMg)ATPase. The ratios of the (CaMg)ATPase to Mg2+- and (Na+ + K+)-dependent ATPase activities increase from respectively 0.14 and 0.81 in the crude microsomal fraction to 1.39 and 9.07 in the purified preparation. During removal of the deoxycholate by dialysis, vesicles were reconstituted which were capable of ATP-dependent Ca2+ transport.  相似文献   

3.
Large-scale isolation of human erythrocyte Ca2+-transport ATPase   总被引:2,自引:2,他引:0       下载免费PDF全文
A rapid procedure for preparing large quantities of purified erythrocyte Ca2+-transport ATPase is presented. The method involves: (1) fast preparation of calmodulin-deficient, essentially haemoglobin-free, erythrocyte membranes by molecular filtration using Pellicon filters; (2) solubilization of membrane proteins by deoxycholate; and (3) a batch procedure using calmodulin-Sepharose 4B gel for purification of Ca2+-transport ATPase.  相似文献   

4.
The hepatic microsomal fraction contains tightly bound calmodulin as demonstrated by affinity chromatography. When this calmodulin was partially removed by EGTA treatment (0.5 mM-EGTA), the uptake of 45Ca2+ by the microsomal vesicles was stimulated by added calmodulin and inhibited by trifluoperazine (TFP). The Ca2+-dependent ATPase was partially purified on a calmodulin column. This partial purification resulted in a 500-fold increase in the specific activity of the enzyme when measured in the presence of added calmodulin. Antibodies prepared against calmodulin prevented this stimulatory effect. The fraction eluted from the calmodulin column contained several protein bands indicating that the specific activity of the Ca2+-dependent ATPase is probably still underestimated. There are likely to be other calmodulin-sensitive processes present in the hepatic microsomal fraction.  相似文献   

5.
Abundance of the Ca2+-pumping ATPase in pig erythrocyte membranes.   总被引:1,自引:0,他引:1       下载免费PDF全文
The Ca2+-pumping ATPase (Ca2+-ATPase) was purified from human and pig erythrocyte membranes by calmodulin affinity chromatography in the presence of phosphatidylcholine. The amount of enzyme present in pig erythrocytes is at least 7 times greater than that isolated from human erythrocyte ghosts. However, the properties of the enzyme from the two species are similar in many respects.  相似文献   

6.
Coated microvesicle fractions isolated from ox forebrain cortex by the ultracentrifugation procedure of Pearse (1) and by the modified, less time consuming method of Keen et al (2) had comparable Ca2+ +Mg2+ dependent ATPase activities (about 9 mumol/h per mg protein). The Na+ +K+ +Mg2+ dependent ATPase activity was 3.2 mumol/h per mg (+/- 1.0, S.D., n = 3) when microvesicles were prepared according to (1) and 1.5 mumol/h per mg (+/- 1.0, S.D., n = 3) when prepared according to (2). Oligomycin, ruthenium red, and trifluoperazine, inhibitors of Ca2+ transport in mitochondria and erythrocyte membranes had no effect on Ca2+ +Mg2+ dependent ATPase from any of the preparations. As demonstrated both by ATPase assays and electron microscopy, coated microvesicles could be bound to immunosorbents prepared with poly-specific antibodies against a coated microvesicle fraction obtained by the method of Pearse (1). The binding could be inhibited by dissolved coat protein using partially purified clathrin. The fraction of coated vesicles eluted from the immunosorbent was purified relative to the starting material as judged by electron microscopy. The Ca2+ +Mg2+ ATPase activity and calmodulin content was copurified with the coated microvesicles and the specific activity of Na+ +K+ +Mg2+ ATPase was decreased. Na+ +K+ +Mg2+ dependent ATPase activity in the coated microvesicle fraction could be ascribed to membranes with the appearance of microsomes. These membranes were also bound to the immunosorbents, but the binding was not influenced by clathrin. The capacity of the immunosorbents for these membranes was less than for the coated microvesicles, resulting in a decrease of Na+ +K+ +Mg2+ dependent ATPase activity in the eluted coated microvesicle fraction. It was concluded that Ca2+ +Mg2+ ATPase activity is not a contamination from plasma membrane vesicles or mitochondrial membranes but seems to be an integral part of the coated vesicle membrane.  相似文献   

7.
The calmodulin activation of the (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes was studied in the range of 1 nM to 40 microM of purified calmodulin. The apparent calmodulin-affinity of the ATPase was strongly dependent on Ca2+ and decreased approx. 1000-times when the Ca2+ concentration was reduced from 112 to 0.5 microM. The data of calmodulin (Z) activation were analyzed by the aid of a kinetic enzyme model which suggests that 1 molecule of calmodulin binds per ATPase unit and that the affinities of the calcium-calmodulin complexes (CaiZ) decreases in the order of Ca3Z greater than Ca4Z greater than Ca2Z greater than or equal to CaZ. Furthermore, calmodulin dissociates from the calmodulin-saturated Ca2+-ATPase in the range of 10(-7)-10(-6) M Ca2+, even at a calmodulin concentration of 5 microM. The apparent concentration of calmodulin in the erythrocyte cytosol was determined to be 3 to 5 microM, corresponding to 50-80-times the cellular concentration of Ca2+-ATPase, estimated to be approx. 10 nmol/h membrane protein. We therefore conclude that most of the calmodulin is dissociated from the Ca2+-transport ATPase in erythrocytes at the prevailing Ca2+ concentration (probably 10(-7)-10(-8) M) in vivo, and that the calmodulin-binding and subsequent activation of the Ca2+-ATPase requires that the Ca2+ concentration rises to 10(-6)-10(-5) M.  相似文献   

8.
The effect of calmodulin on the formation and decomposition of the Ca2+-dependent phosphoprotein intermediate of the (Mg2+ + Ca2+)-dependent ATPase in erythrocyte membranes was investigated. In the presence of 60 microM-Ca2+ and 25 microM-MgCl2, calmodulin (0.5-1.5 microgram) did not alter the steady-state concentration of the phosphoprotein, but increased its rate of decomposition. Higher calmodulin concentrations significantly decreased the steady-state concentration of phosphoprotein. Calmodulin (0.5-1.7 microgram) increased Ca2+-transport ATPase activity by increasing the turnover rate of its phosphoprotein intermediate. Increasing the MgCl2 concentration from 25 microM to 250 microM increased the (Mg2+ + Ca2+)-dependent ATPase activity, but decreased the concentration of the phosphoprotein intermediate. Similarly to calmodulin, MgCl2 increased the turnover rate of the Ca2+-transport ATPase complex (about 3-fold). At the higher MgCl2 concentration calmodulin did not further affect the decomposition of the phosphoprotein intermediate. It was concluded that both calmodulin and MgCl2 increase the turnover of the Ca2+-pump by enhancing the decomposition of the Ca2+-dependent phosphoprotein intermediate.  相似文献   

9.
The basic kinetic properties of the solubilized and purified Ca2+-translocating ATPase from human erythrocyte membranes were studied. A complex interaction between the major ligands (i.e., Ca2+, Mg2+, H+, calmodulin and ATP) and the enzyme was found. The apparent affinity of the enzyme for Ca2+ was inversely proportional to the concentration of free Mg2+ and H+, both in the presence or absence of calmodulin. In addition, the apparent affinity of the enzyme for Ca2+ was significantly increased by the presence of calmodulin at high concentrations of MgCl2 (5 mM), while it was hardly affected at low concentrations of MgCl2 (2 mM or less). In addition, the ATPase activity was inhibited by free Mg2+ in the millimolar concentration range. Evidence for a high degree of positive cooperativity for Ca2+ activation of the enzyme (Hill coefficient near to 4) was found in the presence of calmodulin in the slightly alkaline pH range. The degree of cooperativity induced by Ca2+ in the presence of calmodulin was decreased strongly as the pH decreased to acid values (Hill coefficient below 2). In the absence of calmodulin, the Hill coefficient was 2 or slightly below over the whole pH range tested. Two binding affinities of the enzyme for ATP were found. The apparent affinity of the enzyme for calmodulin was around 6 nM and independent of the Mg2+ concentration. The degree of stimulation of the ATPase activity by calmodulin was dependent on the concentrations of both Ca2+ and Mg2+ in the assay system.  相似文献   

10.
The stimulation of the (Ca2+ + Mg2+)ATPase of erythrocyte ghosts by calmodulin was observed not only in intact ghosts, but also in the solubilized (Triton X-100) and partially purified, reconstituted (phosphatidylserine liposomes) forms. Since the solubilized form of the enzyme migrated on Sepharose 6B at a position corresponding to a molecular weight of about 150,000, these results show that calmodulin stimulates by direct interaction with the ATPase complex. Additionally, the effects of calmodulin on erythrocyte ghosts prepared by the Dodge-EDTA method (hypotonic ghosts) and by the method of Ronner et al. (involving lysis followed by an isotonic wash repeated several times) were compared (P. Ronner, P. Gazzotti, and E. Carafoli, 1977, Arch. Biochem. Biophys. 179, 578–583). The (Ca2+ + Mg2+)ATPase of the hypotonic ghosts was low and was stimulated by added calmodulin while that of the isotonic ghosts was high and changed only slightly upon calmodulin addition; this difference in response to calmodulin persisted in the solubilized and reconstituted forms. Hypotonic ghosts bound 125I-labeled calmodulin, while isotonic ghosts did not. This comparison of two types of ghosts showed that isotonic ghosts possess an intact calmodulin-(Ca2+ + Mg2+)ATPase complex, and that the calmodulin remained with the ATPase during solubilization and reconstitution. The isotonic preparation is a particularly useful method of preparing ghosts with an intact calmodulin-ATPase complex, since it requires no special equipment and produces an enzyme activity which is stable to freezing.  相似文献   

11.
Although acute alterations in Ca2+ fluxes may mediate the skeletal responses to certain humoral agents, the processes subserving those fluxes are not well understood. We have sought evidence for Ca2+-dependent ATPase activity in isolated osteoblast-like cells maintained in primary culture. Two Ca2+-dependent ATPase components were found in a plasma membrane fraction: a high affinity component (half-saturation constant for Ca2+ of 280 nM, Vmax of 13.5 nmol/mg per min) and a low affinity component, which was in reality a divalent cation ATPase, since Mg2+ could replace Ca2+ without loss of activity. The high affinity component exhibited a pH optimum of 7.2 and required Mg2+ for full activity. It was unaffected by potassium or sodium chloride, ouabain or sodium azide, but was inhibited by lanthanum and by the calmodulin antagonist trifluoperazine. This component was prevalent in a subcellular fraction which was also enriched in 5'-nucleotidase and adenylate cyclase activities, suggesting the plasma membrane as its principal location. Osteosarcoma cells, known to resemble osteoblasts in their biological characteristics and responses to bone-seeking hormones, contained similar ATPase activities. Inclusion of purified calmodulin in the assay system caused small non-reproducible increases in the Ca2+-dependent ATPase activity of EGTA-washed membranes. Marked, consistent calmodulin stimulation was demonstrated in membranes exposed previously to trifluoperazine and then washed in trifluoperazine-free buffer. These results indicate the presence of a high affinity, calmodulin-sensitive Ca2+-dependent ATPase in osteoblast-like bone cells. As one determinant of Ca2+ fluxes in bone cells, this enzyme may participate in the hormonal regulation of bone cell function.  相似文献   

12.
The activity of the membrane-bound and the purified erythrocyte Ca2+-ATPase in the absence of calmodulin was stimulated by calpain digestion but could be further increased to maximal levels by calmodulin (CaM). Thus, CaM sensitivity was retained by the digested ATPase, at least at short times of incubation. In membranes digested at higher temperatures and in the purified ATPase digested at higher calpain/ATPase ratios, the ATPase became fully activated. The membrane-bound and the purified 138-kDa ATPase were converted by calpain to a fragment of approximately 124 kDa which still bound CaM and could be isolated on CaM columns when proteolysis occurred slowly but not when it occurred rapidly. Carboxypeptidase digestion of the purified enzyme and of its fragment of about 124 kDa has shown that calpain attacked the CaM-binding domain near the C terminus of the ATPase. This has also been supported by digestion of the purified enzyme and of its fragment of about 124 kDa. A first cut occurred in the middle of the domain producing a fragment of about 14 kDa and a (CaM-binding) fragment of about 124 kDa. A second cut closer to the N terminus of the domain also produced a fragment of about 124 kDa and accounted for the loss of CaM binding at prolonged times of incubation of the ATPase with calpain.  相似文献   

13.
A water-soluble Mg2+-ATPase previously reported (White, M.D. and Ralston, G.B. (1976) Biochim. Biophys. Acta 436, 567-576) has been purified from human erythrocyte membranes. The purified enzyme has a molecular weight of 575 000; the apparent minimum molecular weight was 100 000, corresponding to a soluble protein of the component 3 region. The Km value for ATP was 1 mM and apparent Km for Mg2+ was 3.6 mM. By means of histochemical activity staining in acrylamide gels it was shown that the purified ATPase preparation could be inhibited by Cd2+ and Zn2+ salts, p-chloromercuribenzoate and N-ethylmaleimide, known inhibitors of membrane endocytosis.  相似文献   

14.
The (Ca2+-Mg2+)-ATPase from human erythrocyte membranes has been solubilized in Triton X-100 and purified on a calmodulin affinity chromatography column in the presence of phosphatidylserine, to limit the inactivation of the enzyme. The enzyme was purified at least 150 times when compared with the original ghosts and showed a specific activity of 3.8 mumol.mg-1.min-1. In sodium dodecyl sulfate-polyacrylamide gels, a single major band was visible at a position corresponding to a molecular weight of about 125,000; a minor band (11% of the total protein) was present at a position corresponding to Mr = 205,000. Upon incubation of the purified preparation with [32P]ATP, both bands were phosphorylated in proportion to their mass, suggesting that both were active forms of purified ATPase.  相似文献   

15.
Partial purification of a tonoplast ATPase from corn coleoptiles   总被引:20,自引:13,他引:7       下载免费PDF全文
Mandala S  Taiz L 《Plant physiology》1985,78(2):327-333
The tonoplast ATPase from corn coleoptile membranes was solubilized using a two-step procedure consisting of a pretreatment with 0.15% (w/v) deoxycholate to remove 60% of the protein, and 40 millimolar octyl-glucoside to solubilize the ATPase. During ultracentrifugation, the solublized ATPase entered a linear sucrose gradient faster than the majority of the protein, resulting in an 11-fold purification over the initial specific activity. The partially purified ATPase was almost completely inhibited by KNO3 with an estimated Ki of 10 millimolar. The specific activity of the KNO3-sensitive ATPase was increased 29-fold during purification. N,N′-Dicyclohexylcarbodiimide also completely inhibited the ATPase with half-maximal effects at a concentration of 4 micromolar. Neither vanadate nor azide inhibited enzyme activity. The purified ATPase was stimulated by Cl and preferred Mg-ATP as substrate. Analysis of frations from the sucrose gradient by sodium dodecyl sulfate-polyacrylamide gel electrophoresis led to the identification of two major polypeptides at 72,000 and 62,000 daltons which were best correlated with ATPase activity. Several minor bands also appeared to copurify with enzyme activity, but were less consistent. Radiation inactivation experiments with intact membranes indicated that the functional molecular size of the tonoplast ATPase was nearly 400,000 daltons. This suggests that the ATPase is composed of several polypeptides, possibly including the 72,000- and 62,000-dalton proteins.  相似文献   

16.
The Ca2+-pumping ATPase has been isolated from calf heart sarcolemma by calmodulin affinity chromatography (Caroni, P., and Carafoli, E. (1981) J. Biol. Chem. 256, 3263-3270) as a polypeptide of Mr about 140,000. The purified enzyme has high affinity for Ca2+ in the presence of calmodulin (Km about 0.4 microM) but shifts to a low affinity state (Km about 20 microM) in its absence. Calmodulin increases also the Vmax of the enzyme. The effects of calmodulin are mimicked by phosphatidylserine and by a limited proteolytic treatment of the enzyme with trypsin. The purified ATPase can be reconstituted in asolectin liposomes, where it pumps Ca2+ with an approximate stoichiometry to ATP of 1. The purified (and reconstituted) enzyme is not phosphorylated by added ATP and cAMP-dependent protein kinase under conditions where the enzyme in situ is stimulated concomitant with the phosphorylation of the sarcolemmal membrane (Caroni, P., and Carafoli, E. (1981) J. Biol. Chem. 256, 9371-9373). Hence, the target of the regulatory phosphorylation system is not the ATPase molecule. The purified ATPase cross-reacts with an antibody raised against the erythrocyte Ca2+-pumping ATPase. Under the same conditions, the purified sarcoplasmic reticulum Ca2+-ATPase does not react. The proteolytic splitting pattern of the purified heart sarcolemma and erythrocyte enzymes are similar but not identical.  相似文献   

17.
Transverse tubule membranes isolated from rabbit skeletal muscle have high levels of a Ca2+- or Mg2+-ATPase with Km values for Ca-ATP or Mg-ATP in the 0.2 mM range, but do not display detectable levels of ATPase activity activated by micromolar [Ca2+]. The transverse tubule enzyme is less temperature or pH dependent than the Ca2+-ATPase of sarcoplasmic reticulum and hydrolyzes equally well ATP, ITP, UTP, CTP, and GTP. Of several ionic, non-ionic, and zwitterionic detergents tested, only lysolecithin solubilizes the transverse tubule membrane while preserving ATPase activity. After extraction of about 50% of the transverse tubule proteins by solubilization with lysolecithin most of the ATPase activity remains membrane bound, indicating that the Ca2+- or Mg2+-ATPase is an intrinsic membrane enzyme. A second extraction of the remaining transverse tubule proteins with lysolecithin results in solubilization and partial purification of the enzyme. Sedimentation of the Ca2+- or Mg2+-ATPase, partially purified by lysolecithin solubilization, through a continuous sucrose gradient devoid of detergent leads to additional purification, with an overall 3- to 5-fold purification factor. The purified enzyme preparation contains two main protein components of molecular weights 107,000 and 30,000. Cholesterol, which is highly enriched in the transverse tubule membrane, copurifies with the enzyme. Transverse tubule membrane vesicles also display ATP-dependent calcium transport which is not affected by phosphate or oxalate. The possibility that the Ca2+- or Mg2+-ATPase is the enzyme responsible for the Ca2+ transport displayed by isolated transverse tubules is discussed.  相似文献   

18.
The purified Ca2+ ATPase of the erythrocyte plasma membrane has been submitted to controlled trypsin proteolysis under conditions that favor either its (putative) E1 or E2 configurations. The former configuration has been forced by treating the enzyme with Ca2+-saturated calmodulin, the latter with vanadate and Mg2+. The E1 conformation leads to the accumulation of a polypeptide of Mr 85 KDa which still binds calmodulin, the E2 conformation to the accumulation of one of Mr 81 KDa which does not. Both fragments arise from the hydrolysis of a transient 90 KDa product which has Ca2+-calmodulin dependent ATPase activity, and which retains the ability to pump Ca2+ in reconstituted liposomes. Highly enriched preparations of the 85 and 81 KDa fragments have been obtained and reconstituted into liposomes. The former has limited ATPase and Ca2+ transport ability and is not stimulated by calmodulin. The latter has much higher ATPase and Ca2+ transport activity. It is proposed that the Ca2+ pumping ATPase of erythrocytes plasma membrane contains a 9 KDa domain which is essential for the interaction of the enzyme with calmodulin and for the full expression of the hydrolytic and transport activity. This putative 9 KDa sequence contains a 4 KDa "inhibitory" domain which limits the activity of the ATPase. In the presence of this 4 KDa sequence, i.e., when the enzyme is degraded to the 85 KDa product, calmodulin can still be bound, but no longer stimulates ATPase and Ca2+ transport.  相似文献   

19.
Summary Calpain I purified from human erythrocyte cytosol activates both the ATP hydrolytic activity and the ATP-dependent Ca2+ transport function of the Ca2+-translocating ATPase solubilized and purified from the plasma membrane of human erythrocytes and reconstituted into phosphatidylcholine vesicles. Following partial proteolysis of the enzyme by calpain I, both the initial rates of calcium ion uptake and ATP hydrolysis were increased to near maximal levels similar to those obtained upon addition of calmodulin. The proteolytic activation resulted in the loss of further stimulation of the rates of Ca2+ translocation or ATP hydrolysis by calmodulin as well as an increase of the affinity of the enzyme for calcium ion. However, the mechanistic Ca2+/ATP stoichiometric ratio was not affected by the proteolytic treatment of the reconstituted Ca2+-translocating ATPase. The proteolytic activation of the ATP hydrolytic activity of the reconstituted enzyme could be largely prevented by calmodulin. Different patterns of proteolysis were obtained in the absence or in the presence of calmodulin during calpain treatment: the 136-kDa enzyme was transformed mainly into a 124-kDa active ATPase fragment in the absence of calmodulin, whereas a 127-kDa active ATPase fragment was formed in the presence of calmodulin. This study shows that calpain I irreversibly activates the Ca2+ translocation function of the Ca2+-ATPase in reconstituted proteoliposomes by producing a calmodulin-independent active enzyme fragment, while calmodulin antagonizes this activating effect by protecting the calmodulin-binding domain against proteolytic cleavage by calpain.  相似文献   

20.
A spectrin-dependent ATPase of the human erythrocyte membrane   总被引:3,自引:0,他引:3  
Removal of spectrin from erythrocyte membranes results in the simultaneous loss of a calcium-stimulated, magnesium-dependent ATPase with an apparent KD for Ca2+ of 1 microM. This ATPase activity with high Ca2+ affinity is specifically reconstituted by addition of purified spectrin to spectrin-depleted membranes, and the reconstituted activity is directly proportional to the amount of spectrin that is reassociated with the membranes. Spectrin binding and activation of the high Ca2+ affinity Mg2+-ATPase are proportionally inhibited by thermal denaturation, trypsin digestion, or treatment of the membranes with thiol-reactive reagents. Binding of calmodulin to the Ca2+ pump ATPase requires that calmodulin contains bound ca2+. By contrast, spectrin binding to the erythrocyte membrane is Ca2+-independent. Direct assay of calmodulin is purified spectrin and absence of chlorpromazine inhibition of reconstitution demonstrate that activation of the high Ca2+ affinity ATPase resulting from spectrin binding is not a result of contamination of spectrin by calmodulin. Additional evidence that the spectrin-activated ATPase is an entity separate and distinct from the Ca2+ pump is provided by other characteristics of the activation phenomenon. It is suggested that spectrin constitutes part of an ATPase which may function as a component of the "cytoskeleton" controlling erythrocyte shape and membrane flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号