首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Hexokinase I governs the rate-limiting step of glycolysis in brain tissue, being inhibited by its product, glucose 6-phosphate, and allosterically relieved of product inhibition by phosphate. On the basis of small-angle X-ray scattering, the wild-type enzyme is a monomer in the presence of glucose and phosphate at protein concentrations up to 10 mg/mL, but in the presence of glucose 6-phosphate, is a dimer down to protein concentrations as low as 1 mg/mL. A mutant form of hexokinase I, specifically engineered by directed mutation to block dimerization, remains monomeric at high protein concentration under all conditions of ligation. This nondimerizing mutant exhibits wild-type activity, potent inhibition by glucose 6-phosphate, and phosphate reversal of product inhibition. Small-angle X-ray scattering data from the mutant hexokinase I in the presence of glucose/phosphate, glucose/glucose 6-phosphate, and glucose/ADP/Mg2+/AlF3 are consistent with a rodlike conformation for the monomer similar to that observed in crystal structures of the hexokinase I dimer. Hence, any mechanism for allosteric regulation of hexokinase I should maintain a global conformation of the polypeptide similar to that observed in crystallographic structures.  相似文献   

2.
Hexokinase (EC 2.7.1.1) is present in a soluble and a bound form in homogenates of Ascaris suum muscle. Cellulose acetate electrophoresis, isoelectric focusing, and ion exchange chromatography confirmed the presence of only one molecular form of hexokinase in this muscle. A procedure for purifying hexokinase from Ascaris muscle has been developed utilizing ion-exchange chromatography, ammonium sulfate fractionation and gel filtration. The enzyme is a monomer with a molecular weight of 100 000 as determined by sodium dodecyl sulfate gel filtration. The Stokes' radius, diffusion coefficient, and frictional ratio have been determined. The apparent Michaelis constants for glucose and ATP are 4.7-10(-3) M and 2.2-10(-4) M, respectively. Ascaris hexokinase also exhibits end-product inhibition by glucose 6-phosphate and ADP. It is postulated that the kinetic parameters of the enzyme are the results of its function, that of generating glucose 6-phosphate primarily for glycogen synthesis.  相似文献   

3.
Mammary glucose 6-phosphate dehydrogenase. Molecular weight studies   总被引:1,自引:0,他引:1  
Glucose 6-phosphate dehydrogenase was isolated from lactating rat mammary glands by a procedure extended and modified from one previously described. The sedimentation coefficient, S20,W, was 10.3 in 0.01 m potassium phosphate, pH 6.9, containing 0.1 m NaCl at three protein concentrations between 0.51 and 1.45 mg/ml. The partial specific volume, v?, was 0.735 ml/g as determined by equilibrium sedimentation centrifugation in H2O and D2O containing buffers at pH(D) 6.5 containing 0.01 m potassium phosphate and 0.1 m NaCl. In the same buffer, but with 2.0 m NaCl, the apparent partial specific volume, φ′, was 0.756 ml/g. Equilibrium sedimentation of the enzyme at an initial concentration of 0.8 mg/ml was performed in 0.01 m potassium phosphate, pH 6.5, containing 1.0 mm EDTA, 7.0 mm mercaptoethanol, and various concentrations of NaCl between 0 and 2.0 m and with or without 0.1 mm NADP+. Weight-average and Z-average molecular weights were calculated and, from these values, the molecular weights of the monomer and dimer were derived. Under these conditions, the enzyme existed principally as a dimer, of molecular weight approximately 235,000, at low salt concentration, and as a monomer, of molecular weight approximately 120,000 in 1.0 m and 2.0 m NaCl. The subunit molecular weight was found to be 64,000 by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Equilibrium sedimentation in 6 m guanidine hydrochloride gave a subunit molecular weight of 62,000 (assuming v? was unaltered) or 58,000 or 54,000 (assuming v? is decreased by 0.01 or 0.02, respectively, in 6 m guanidine). We conclude that rat mammary glucose 6-phosphate dehydrogenase has a molecular weight similar to that of glucose 6-phosphate dehydrogenases isolated from various other mammalian sources with the notable exception of human erythrocyte glucose 6-phosphate dehydrogenase which, like the microbial glucose 6-phosphate dehydrogenases thus far examined, has a significantly lower molecular weight.  相似文献   

4.
1. The inhibition of hexokinase by glucose 6-phosphate has been investigated in crude homogenates of guinea-pig cerebral cortex by using a sensitive radio-chemical technique for the assay of hexokinase activity. 2. It was observed that 44% of cerebral-cortex hexokinase activity did not sediment with the microsomal or mitochondrial fractions (particulate fraction), and this is termed soluble hexokinase. The sensitivities of soluble and particulate hexokinase, and hexokinase in crude homogenates, to the inhibitory actions of glucose 6-phosphate were measured; 50% inhibition was produced by 0.023, 0.046 and 0.068mm-glucose 6-phosphate for soluble, particulate and crude homogenates respectively. 3. The optimum Mg(2+) concentration for the enzyme was about 10mm, and this appeared to be independent of the ATP concentration. In the presence of added glucose 6-phosphate, raising the Mg(2+) concentration to 5mm increased the activity of hexokinase, but above this concentration Mg(2+) potentiated the glucose 6-phosphate inhibition. When present at a concentration above 1mm, Ca(2+) ions inhibited the enzyme in the presence or absence of glucose 6-phosphate. 4. When the ATP/Mg(2+) ratio was 1.0 or below, variations in the ATP concentration had no effect on the glucose 6-phosphate inhibition; above this value ATP inhibited hexokinase in the presence of glucose 6-phosphate. ATP had an inhibitory effect on soluble hexokinase similar to that on a whole-homogenate hexokinase, so that the ATP inhibition could not be explained by a conversion of particulate into soluble hexokinase (which is more sensitive to inhibition by glucose 6-phosphate). It is concluded that ATP potentiates glucose 6-phosphate inhibition of cerebral-cortex hexokinase, whereas the ATP-Mg(2+) complex has no effect. Inorganic phosphate and l-alpha-glycerophosphate relieved glucose 6-phosphate inhibition of hexokinase; these effects could not be explained by changes in the concentration of glucose 6-phosphate during the assay. 5. The inhibition of hexokinase by ADP appeared to be independent of the glucose 6-phosphate effect and was not relieved by inorganic phosphate. 6. The physiological significance of the ATP, inorganic phosphate and alpha-glycerophosphate effects is discussed in relation to the control of glycolysis in cerebral-cortex tissue.  相似文献   

5.
The binding of glucose, ADP and AdoPP[NH]P, to the native PII dimer and PII monomer and the proteolytically-modified SII monomer of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) from Saccharomyces cerevisiae was monitored at pH 6.7 by the concomitant quenching of protein fluorescence. The data were analysed in terms of Qmax, the maximal quenching of fluorescence at saturating concentrations of ligand, and [L]0.5, the concentration of ligand at half-maximal quenching. No changes in fluorescence were observed with free enzyme and nucleotide alone. In the presence of saturating levels of glucose, Qmax induced by nucleotide was between 2 and 7%, and [L]0.5 was between 0.12 and 0.56 mM, depending on the nucleotide and enzyme species. Qmax induced by glucose alone was between 22 and 25%, while [L]0.5 was approx. 0.4 mM for either of the monomeric hexokinase forms and 3.4 for PII dimer. In the presence of 6 mM ADP or 2 mM AdoPP[NH]P, Qmax for glucose was increased by up to 4% and [L]0.5 was diminished 3-fold for hexokinase PII monomer, 6-fold for SII monomer, and 15-fold for PII dimer. The results are interpreted in terms of nucleotide-induced conformational change of hexokinase in the presence of glucose and synergistic binding interactions between glucose and nucleotide.  相似文献   

6.
Dissociation and catalysis in yeast hexokinase A.   总被引:1,自引:1,他引:0       下载免费PDF全文
1. The specific activity of yeast hexokinase A depends on the concentration of the protein in the solution being assayed. When a solution containing 13.5 mg of hexokinase A/ml is diluted 10--100-fold at various values of pH and temperature, there is a gradual decline in the specific activity of the enzyme until an equilibrium value is reached, which varies with the chosen experimental conditions. 2. The catalytic activity lost when hexokinase A (1 mg/ml) is incubated at 30degreesC is recovered by lowering the temperature to 25degreesC. 3. These concentration- and temperature-dependent phenomena are consistent with the existence of a monomer-dimer equilibrium in which the dimer alone is the catalytic form of the enzyme. 4. Glucose alone prevents the decline in specific activity of hexokinase A after dilution, but it does not re-activate dilute solutions solutions of the enzyme. It is concluded that glucose binds to both the dimer and the monomer and prevents both association and dissociation. 5. The progress curve describing the phosphorylation of glucose catalysed by hexokinase A does not attain a steady state. It is possible that dissociation of catalytically active dimers in a ternary complex with glucose and ATP (or glucose 6-phosphate and ADP) could explain the non-linearity of this progress curve.  相似文献   

7.
Glucose-6-phosphate dehydrogenase has been purified 1000-fold from pig liver. This enzyme exists as an active dimer of molecular weight 133,000 and an inactive monomer of molecular weight 67,500. The pH of maximum activity is 8.5 and the ionic strength maximum is 0.1 to 0.5 M. Glucose-6-phosphate dehydrogenase is highly specific for NADP+ and glucose 6-phosphate. Apparent Km values of 3.6 muM and 5.4 muM were obtained for glucose 6-phosphate and NADP+. This enzyme is located almost entirely within the soluble portion of the cellular cytoplasm.  相似文献   

8.
Hexokinase from larvae of the freeze-avoiding goldenrod gall moth, Epiblema scudderiana, was purified 20-fold using chromatography on DE52 Sephadex, phosphocellulose, and blue dextran. Final specific activity was 75.8 U/mg and SDS-PAGE gave a molecular weight of 94,000 for the monomer. Arrhenius plot showed a break at 16 degrees or 12 degrees C in the absence vs. presence of 10% v/v glycerol, indicating a conformational change in the enzyme at lower temperatures but suggesting a stabilizing effect of glycerol. Comparison of hexokinase kinetic properties at 22 degrees and 4 degrees C showed higher affinity for both glucose and ATP (Km values were 45-50% lower), as well as for the cofactor Mg(2+), at the lower temperature. Furthermore, product inhibition by glucose-6-phosphate and ADP was reduced at 4 degrees C. Glucose levels rise in E. scudderiana as an apparent by-product of high rates of glycogenolysis during glycerol synthesis. The temperature-dependent properties of hexokinase would facilitate the recycling of this glucose back into the pathway of glycerol synthesis and could help to achieve the near stoichiometric conversion of glycogen to glycerol that is seen during cold hardening. Arch.  相似文献   

9.
Protease B was purified from baker's yeast. The final preparation appeared homogeneous by ultracentrifugation and electrophoresis. The S20, ω value of the enzyme was 3.1 S and its molecular weight was calculated to be 31,000 from the results of sedimentation equilibrium analysis. The amino acid composition of the enzyme was also investigated. The enzyme inactivates phosphogluconate dehydrogenase and uricase, but not malate dehydrogenase, alcohol dehydrogenase, glucose-6-phosphate dehydrogenase or hexokinase.  相似文献   

10.
In the yeast Saccharomyces cerevisiae inactivation of trehalose-6-phosphate (Tre6P) synthase (Tps1) encoded by the TPS1 gene causes a specific growth defect in the presence of glucose in the medium. The growth inhibition is associated with deregulation of the initial part of glycolysis. Sugar phosphates, especially fructose-1,6-bisphosphate (Fru1,6bisP), hyperaccumulate while the levels of ATP, Pi and downstream metabolites are rapidly depleted. This was suggested to be due to the absence of Tre6P inhibition on hexokinase. Here we show that overexpression of Tre6P (as well as glucose-6-phosphate (Glu6P))-insensitive hexokinase from Schizosaccharomyces pombe in a wild-type strain does not affect growth on glucose but still transiently enhances initial sugar phosphate accumulation. We have in addition replaced the three endogenous glucose kinases of S. cerevisiae by the Tre6P-insensitive hexokinase from S. pombe. High hexokinase activity was measured in cell extracts and growth on glucose was somewhat reduced compared to an S. cerevisiae wild-type strain but expression of the Tre6P-insensitive S. pombe hexokinase never caused the typical tps1Delta phenotype. Moreover, deletion of TPS1 in this strain expressing only the Tre6P-insensitive S. pombe hexokinase still resulted in a severe drop in growth capacity on glucose as well as sensitivity to millimolar glucose levels in the presence of excess galactose. In this case, poor growth on glucose was associated with reduced rather than enhanced glucose influx into glycolysis. Initial glucose transport was not affected. Apparently, deletion of TPS1 causes reduced activity of the S. pombe hexokinase in vivo. Our results show that Tre6P inhibition of hexokinase is not the major mechanism by which Tps1 controls the influx of glucose into glycolysis or the capacity to grow on glucose. In addition, they show that a Tre6P-insensitive hexokinase can still be controlled by Tps1 in vivo.  相似文献   

11.
Using small-angle X-ray scattering from solutions of yeast hexokinase, we have measured the radii of gyration of the monomeric B isozyme and its complexes with sugar substrates. We find that the radius of gyration decreases by 0.95 +/- 0.24 A upon binding glucose and 1.25 +/- 0.28 A upon binding glucose 6-phosphate. This observed reduction in radius of gyration in the presence of glucose is the same as that calculated from the coordinates of the high-resolution crystal structures of native hexokinase B and a glucose complex with hexokinase A. Thus, these measurements suggest that the dramatic closing of the slit between the two lobes of hexokinase observed in the crystal structures (Bennett, W.S., & Steitz, T.A. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 4848--4852) occurs in solution when either glucose or glucose 6-phosphate is bound.  相似文献   

12.
Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer.  相似文献   

13.
The aggregation state of low molecular weight mannose 6-phosphate receptor from bovine testis was determined in membrane preparations and in purified soluble preparations. The effect of aggregation on binding of the receptor to immobilized pentamannose 6-phosphate was also examined. Nonreducing SDS-PAGE followed by immunoblotting revealed that interchain disulfide bonds exist in detergent-solubilized and purified receptor preparations, but not in membrane-associated receptor. Reduction of the receptor with dithiothreitol abolished its ligand binding activity and drastically altered its ability to bind antibodies. The results of receptor crosslinking and molecular sieving chromatography studies suggest that the receptor exists in membranes as a noncovalently linked dimer and in solution as oligomeric forms, largely as a tetramer. The formation of the tetramer is affected by the concentration of the receptor, but not by its solubilization from membranes with detergent, nor by the presence of mannose 6-phosphate. Mono-, di-, and tetramer forms of 125I-labeled receptor were separated by molecular sieving chromatography and examined for their ability to bind to immobilized ligand, agarose-pentamannose-phosphate. The order of binding observed was tetramer greater than dimer greater than monomer. Binding of the monomer and dimer to immobilized ligand was dependent on the presence of divalent cations while the tetramer had little requirement for divalent cations.  相似文献   

14.
Column chromatography of the Escherichia coli mannitol permease (mannitol-specific enzyme II of the phosphotransferase system) in the presence of deoxycholate has revealed that the active permease can exist in at least two association states with apparent molecular weights consistent with a monomer and a dimer. The monomeric conformation is favored by the presence of mannitol and by the phosphoenolpyruvate (PEP)-dependent phosphorylation of the protein. The dimer is stabilized by inorganic phosphate (Pi), which also stimulates phospho-exchange between mannitol and mannitol 1-phosphate (a partial reaction in the overall PEP-dependent phosphorylation of mannitol). Kinetic analysis of the phospho-exchange reaction revealed that Pi stimulates phospho-exchange by increasing the Vmax of the reaction. A kinetic model for mannitol permease function is presented involving both conformations of the permease. The monomer (or a less-stable conformation of the dimer) is hypothesized to be involved in the initial mannitol-binding and PEP-dependent phosphorylation steps, while the stably associated dimer is suggested to participate in later steps involving direct phosphotransfer between the permease, mannitol and mannitol 1-phosphate.  相似文献   

15.
The phosphorylation of D-glucose (1.0mM) was measured in homogenates of tumoral islet cells incubated at 7 degrees C in the presence of labelled alpha- and/or beta-D-glucose, with or without exogenous glucose 6-phosphate. The close-to-maximal reaction velocity of hexokinase was higher with beta- than alpha-D-glucose. The latter anomer inhibited beta-D-glucose phosphorylation more than the beta-anomer decreased the phosphorylation of alpha-D-glucose. This behaviour was accounted for by the higher affinity of hexokinase for alpha- than for beta-D-glucose. These direct measurements of the relative contribution of each anomer to the overall rate of glucose phosphorylation in the presence of mixed populations of alpha- and beta-D-glucose validate the concept that the phosphorylation of D-glucose displays anomeric specificity even when the hexose is used at anomeric equilibrium. Glucose 6-phosphate inhibited the phosphorylation of the two anomers more severely when alpha-D-glucose rather than beta-D-glucose was the most abundant anomer.  相似文献   

16.
The hemocyanin from the crayfish Jasus edwardsii(=lalandii) has been studied using ultracentrifugation, viscosity, circular dichroism and oxygen binding techniques. Sedimentation velocity experiments at pH 7.0 indicated the presence of principal species with S 20w=16.4 S, and at higher pH the presence of a species with S20,w=5.2S. Sedimentation equilibrium experiments yielded molecular weights of 490 000 and 81 000 respectively, indicating that the larger unit is a hexamer of the monomer unit. However, preliminary experiments with gel filtration and electrophoresis under denaturing conditions indicate that more than one monomer species may be present with molecular weight in the range 76-100 000. Circular dichroism (CD) spectra are presented at pH 7.0,8.6,10.0 and 11.0 for oxy-, deoxy- and apo-hemocyanins. Slight differences were observed in the magnitude of the bands in the presence or absence of Mg++. Oxygen binding studies have been made at pH 6.1,7.0,8.8 and 10.6, in the presence of 0.01 M MgCl2. The extent of cooperative binding was indicated by a maximum value of n=3.7, and a pronounced bohr effect was observed.  相似文献   

17.
Glucose 6-phosphate as well as several other hexose mono- and diphosphates were found by kinetic studies to be competitive inhibitors of human hexokinase I (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) versus MgATP. Limited proteolysis by trypsin does not destroy the hexokinase activity but produces as well-defined peptide map when the digested enzyme is electrophoresed in the presence of sodium dodecyl sulfate. MgATP at subsaturating concentration protects hexokinase from trypsin digestion, while phosphorylated sugars, Mg2+, glucose and inorganic phosphate have no effect. Addition of glucose 6-phosphate to the MgATP-hexokinase complex at a concentration 100-times higher than its Ki was not able to reverse the MgATP-induced conformation of hexokinase, suggesting that the binding of glucose 6-phosphate and MgATP are not mutually exclusive. Similar evidence was also obtained by studies of the induced modifications of ultraviolet spectra of hexokinase by the binding of MgATP, glucose 6-phosphate and both compounds. Among a library of monoclonal antibodies produced against rat brain hexokinase I and that recognize human placenta hexokinase I, one (4A6) was found to be able to modify the Ki of glucose 6-phosphate (from 25 to 140 microM) for human hexokinase I. The same antibody also weakens the inhibition by all the other hexoses phosphate studied without affecting the apparent Km for MgATP (from 0.6 to 0.75 mM) or for glucose. These data support the view for the binding of glucose 6-phosphate at a regulatory site on the enzyme.  相似文献   

18.
The metabolism of glucose in Plasmodium falciparum-infected human erythrocytes is increased 50- to 100-fold. This is accomplished in part by parasite-directed synthesis of a protozoan hexokinase with unique kinetic, electrophoretic, and heat stability properties. The total hexokinase activity is increased approximately 25-fold over that of control uninfected erythrocytes of the same age from the same donor. The parasite hexokinase has a lower affinity for glucose than the mammalian enzyme (Km = 431 microM +/- 21 S.D. for the parasite enzyme versus 98 microM +/- 10 for the erythrocyte enzyme), but the Km for ATP and the Vmax for both glucose and ATP are similar. The NADPH-dependent reduction of oxidized glutathione (GSSG) requires the formation of glucose 6-phosphate which in turn is metabolized by the pentose shunt pathway in which NADPH is generated. Using glucose as the substrate, lysates of P. falciparum-infected normal erythrocytes demonstrated enhanced ability to reduce GSSG. The rate of GSSG reduction was proportional both to the parasitemia and the hexokinase activity of the lysates. However, infected glucose-6-phosphate dehydrogenase-deficient red cell lysates displayed a severely restricted ability to reduce GSSG under the same conditions. In conclusion, P. falciparum-infected red cells contain a parasite-encoded hexokinase with unique properties which initiates the large increase in glucose consumption. In normal infected red cells, reduction of GSSG is also dependent upon hexokinase activity, but in infected glucose-6-phosphate dehydrogenase-deficient red cells, the absence of this pentose shunt enzyme remains the rate-limiting step in GSSG reduction.  相似文献   

19.
The target size of four soluble enzymes (beta-galactosidase, pyruvate kinase, alcohol dehydrogenase, and glucose-6-phosphate dehydrogenase) in the presence or absence of subcellular membrane fractions has been determined by the radiation-inactivation method using samples in the frozen state. For each of the four enzymes, full activity was recovered after freezing and thawing in the absence of radiation. We found minimal (less than 20%) binding of the enzymes to either submitochondrial vesicles or sarcoplasmic reticulum vesicles. Under the conditions tested, beta-galactosidase, pyruvate kinase, and alcohol dehydrogenase exhibited target sizes which varied according to the experimental conditions, i.e., the buffer selected and also the presence or absence of membrane preparations. For these tetrameric enzymes, the target sizes were generally comparable to either a monomer or a dimer. By contrast, the target size of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides was found to be essentially invariant when frozen in a variety of buffers and in the presence or absence of either cryoprotectant (sucrose or glycerol) or different membrane preparations. The target size from 19 separate determinations gave an average value of 104 +/- 16 kDa, which is comparable to the molecular weight of the enzyme (104 kDa). We conclude that glucose-6-phosphate dehydrogenase from L. mesenteroides is a reliable internal standard for radiation-inactivation studies of membrane preparations in the frozen state.  相似文献   

20.
Polyamines stimulate the binding of hexokinase type II to mitochondria   总被引:1,自引:0,他引:1  
Spermine and spermidine enhanced the binding of hexokinase isoenzyme type II to mitochondria, both of which were prepared from Ehrlich-Lettre hyperdiploid ascites tumor cells, at much lower concentrations than Mg2+. Chymotrypsin-treated hexokinase II could not bind to the mitochondrial membrane in the presence of either spermine or Mg2+, indicating that the effect of spermine is not a nonspecific action, since the treatment of chymotrypsin cleaves only the region essential for the binding without any significant effect of the catalytic activity. Both spermine and Mg2+ antagonized the glucose 6-phosphate-induced release of mitochondria-bound hexokinase, and promoted the binding of the solubilized hexokinase II even in the presence of glucose 6-phosphate. However, inhibition of the activity of soluble hexokinase by glucose 6-phosphate was not reversed by spermine and Mg2+. Hexokinase II rebound to mitochondria with spermine and Mg2+ produced glucose 6-phosphate using ATP generated inside the mitochondria, and no difference was observed between the spermine- and Mg2+-rebound systems. Significance of the binding of hexokinase to mitochondria, especially with polyamines, is discussed with reference to high glycolytic rate in tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号