首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Serum- and glucocorticoid-induced kinase 1 (SGK1) is thought to be an important regulator of Na+ reabsorption in the kidney. It has been proposed that SGK1 mediates the effects of aldosterone on transepithelial Na+ transport. Previous studies have shown that SGK1 increases Na+ transport and epithelial Na+ channel (ENaC) activity in the apical membrane of renal epithelial cells. SGK1 has also been implicated in the modulation of Na+-K+-ATPase activity, the transporter responsible for basolateral Na+ efflux, although this observation has not been confirmed in renal epithelial cells. We examined Na+-K+-ATPase function in an A6 renal epithelial cell line that expresses SGK1 under the control of a tetracycline-inducible promoter. The results showed that expression of a constitutively active mutant of SGK1 (SGK1TS425D) increased the transport activity of Na+-K+-ATPase 2.5-fold. The increase in activity was a direct consequence of activation of the pump itself. The onset of Na+-K+-ATPase activation was observed between 6 and 24 h after induction of SGK1 expression, a delay that is significantly longer than that required for activation of ENaC in the same cell line (1 h). SGK1 and aldosterone stimulated the Na+ pump synergistically, indicating that the pathways mediated by these molecules operate independently. This observation was confirmed by demonstrating that aldosterone, but not SGK1TS425D, induced an 2.5-fold increase in total protein and plasma membrane Na+-K+-ATPase 1-subunit abundance. We conclude that aldosterone increases the abundance of Na+-K+-ATPase, whereas SGK1 may activate existing pumps in the membrane in response to chronic or slowly acting stimuli. sodium transport; serum- and glucocorticoid-induced kinase; A6 cells; sodium pump  相似文献   

5.
6.
To investigate the effects of training in normoxia vs. training in normobaric hypoxia (fraction of inspired O2 = 20.9 vs. 13.5%, respectively) on the regulation of Na+-K+-ATPase pump concentration in skeletal muscle (vastus lateralis), 9 untrained men, ranging in age from 19 to 25 yr, underwent 8 wk of cycle training. The training consisted of both prolonged and intermittent single leg exercise for both normoxia (N) and hypoxia (H) during a single session (a similar work output for each leg) and was performed 3 times/wk. Na+-K+-ATPase concentration was 326 +/- 17 (SE) pmol/g wet wt before training (Control), increased by 14% with N (371 +/- 18 pmol/g wet wt; P < 0.05), and decreased by 14% with H (282 +/- 20 pmol/g wet wt; P < 0.05). The maximal activity of citrate synthase, selected as a measure of mitochondrial potential, showed greater increases (P < 0.05) with H (1.22 +/- 0.10 mmol x h-1 x g wet wt-1; 70%; P < 0.05) than with N (0.99 +/- 0.10 mmol x h-1 x g wet wt-1; 51%; P < 0.05) compared with pretraining (0.658 +/- 0.09 mmol x h-1 x g wet wt-1). These results demonstrate that normobaric hypoxia induced during exercise training represents a potent stimulus for the upregulation in mitochondrial potential while at the same time promoting a downregulation in Na+-K+-ATPase pump expression. In contrast, normoxic training stimulates increases in both mitochondrial potential and Na+-K+-ATPase concentration.  相似文献   

7.
8.
钠泵的信号转导作用   总被引:3,自引:0,他引:3  
最近发现,钠泵作为P型ATPase超家族的成员之一,具有与其他一些重要蛋白质相互作用的结构基础;实验研究也表明,钠泵作为受体,与其配体结合后,介导了细胞信号的传递,并对细胞增殖和死亡产生重要影响.  相似文献   

9.
To examine the effect of aldosterone on sarcolemmalNa+ transport, we measuredouabain-sensitive electrogenicNa+-K+pump current(Ip) involtage-clamped ventricular myocytes and intracellularNa+ activity(aiNa) in right ventricularpapillary muscles. Aldosterone (10 nM) induced an increase in bothIp and the rateof rise of aiNa duringNa+-K+pump blockade with the fast-acting cardiac steroid dihydroouabain. Thealdosterone-induced increase inIp and rate ofrise of aiNa was eliminated bybumetanide, suggesting that aldosterone activates Na+ influx through theNa+-K+-2Clcotransporter. To obtain independent support for this, theNa+,K+, andCl concentrations in thesuperfusate and solution of pipettes used to voltage clamp myocyteswere set at levels designed to abolish the inward electrochemicaldriving force for theNa+-K+-2Clcotransporter. This eliminated the aldosterone-induced increase inIp. We concludethat in vitro exposure of cardiac myocytes to aldosterone activates theNa+-K+-2Clcotransporter to enhance Na+influx and stimulate theNa+-K+pump.

  相似文献   

10.
11.
Na+-K+ pump and metabolic activities of trout erythrocytes during anoxia   总被引:1,自引:0,他引:1  
Metabolic activity in the red blood cells of brown trout wasmonitored under conditions of oxygen depletion and chemically inducedanoxia. Although metabolic activity was reduced during anoxia toone-third of the normoxic value, these cells maintained their ATPcontents stable and were viable for hours in the absence of oxygen. Inaddition,Na+-K+pump activity was not down-regulated when metabolic activity wasreduced during anoxia. The compatibility of this finding with energyequilibrium and ion homeostasis was investigated.

  相似文献   

12.
The Na+-K+ pumps in the transverse tubular (T) system of a muscle fiber play a vital role keeping K+ concentration in the T-system sufficiently low during activity to prevent chronic depolarization and consequent loss of excitability. These Na+-K+ pumps are located in the triad junction, the key transduction zone controlling excitation-contraction (EC) coupling, a region rich in glycolytic enzymes and likely having high localized ATP usage and limited substrate diffusion. This study examined whether Na+-K+ pump function is dependent on ATP derived via the glycolytic pathway locally within the triad region. Single fibers from rat fast-twitch muscle were mechanically skinned, sealing off the T-system but retaining normal EC coupling. Intracellular composition was set by the bathing solution and action potentials (APs) triggered in the T-system, eliciting intracellular Ca2+ release and twitch and tetanic force responses. Conditions were selected such that increased Na+-K+ pump function could be detected from the consequent increase in T-system polarization and resultant faster rate of AP repriming. Na+-K+ pump function was not adequately supported by maintaining cytoplasmic ATP concentration at its normal resting level (8 mM), even with 10 or 40 mM creatine phosphate present. Addition of as little as 1 mM phospho(enol)pyruvate resulted in a marked increase in Na+-K+ pump function, supported by endogenous pyruvate kinase bound within the triad. These results demonstrate that the triad junction is a highly restricted microenvironment, where glycolytic resynthesis of ATP is critical to meet the high demand of the Na+-K+ pump and maintain muscle excitability. muscle fatigue; sodium-potassium-adenosinetriphosphatase; excitation-contraction coupling; T-system; excitability  相似文献   

13.
We have previously demonstrated that the sarcolemmalNa+-K+pump current(Ip) in cardiacmyocytes is stimulated by cell swelling induced by exposure tohyposmolar solutions. However, the underlying mechanism has not beenexamined. Because cell swelling activates stretch-sensitive ionchannels and intracellular messenger pathways, we examined their rolein mediating Ipstimulation during exposure of rabbit ventricular myocytes to ahyposmolar solution.Ip was measuredby the whole cell patch-clamp technique. Swelling-induced pumpstimulation altered the voltage dependence ofIp. Pumpstimulation persisted in the absence of extracellularNa+ and under conditions designedto minimize changes in intracellular Ca2+, excluding an indirectinfluence on Ipmediated via fluxes through stretch-activated channels. Pumpstimulation was protein kinase C independent. The tyrosine kinaseinhibitor tyrphostin A25, the phosphatidylinositol 3-kinase inhibitorLY-294002, and the protein phosphatase-1 and -2A inhibitor okadaic acidabolished Ipstimulation. Our findings suggest that swelling-induced pumpstimulation involves the activation of tyrosine kinase,phosphatidylinositol 3-kinase, and a serine/threonine proteinphosphatase. Activation of this messenger cascade maycause activation by the dephosphorylation of pump units.  相似文献   

14.
15.
Previous data indicate that adenosine 3',5'-cyclicmonophosphate activates the epithelial basolateralNa+-K+-Clcotransporter in microfilament-dependent fashion in part by direct action but also in response to apicalCl loss (due to cellshrinkage or decreased intracellularCl). To further addressthe actin dependence ofNa+-K+-Clcotransport, human epithelial T84 monolayers were exposed to anisotonicity, and isotopic flux analysis was performed.Na+-K+-Clcotransport was activated by hypertonicity induced by added mannitol but not added NaCl. Cotransport was also markedly activated by hypotonic stress, a response that appeared to be due in part to reduction of extracellularCl concentration and alsoto activation of K+ andCl efflux pathways.Stabilization of actin with phalloidin blunted cotransporter activationby hypotonicity and abolished hypotonic activation ofK+ andCl efflux. However,phalloidin did not prevent activation of cotransport by hypertonicityor isosmotic reduction of extracellularCl. Conversely, hypertonicbut not hypotonic activation was attenuated by the microfilamentdisassembler cytochalasin D. The results emphasize the complexinterrelationship among intracellularCl activity, cell volume,and the actin cytoskeleton in the regulation of epithelialCl transport.

  相似文献   

16.
Properties of heart sarcolemmal Na+-K+ ATPase   总被引:4,自引:0,他引:4  
  相似文献   

17.
18.
Hypoxia inhibits Na and lung fluid reabsorption, which contributes to the formation of pulmonary edema. We tested whether dexamethasone prevents hypoxia-induced inhibition of reabsorption by stimulation of alveolar Na transport. Fluid reabsorption, transport activity, and expression of Na transporters were measured in hypoxia-exposed rats and in primary alveolar type II (ATII) cells. Rats were treated with dexamethasone (DEX; 2 mg/kg) on 3 consecutive days and exposed to 10% O(2) on the 2nd and 3rd day of treatment to measure hypoxia effects on reabsorption of fluid instilled into lungs. ATII cells were treated with DEX (1 muM) for 3 days before exposure to hypoxia (1.5% O(2)). In normoxic rats, DEX induced a twofold increase in alveolar fluid clearance. Hypoxia decreased reabsorption (-30%) by decreasing its amiloride-sensitive component; pretreatment with DEX prevented the hypoxia-induced inhibition. DEX increased short-circuit currents (ISC) of ATII monolayers in normoxia and blunted hypoxic transport inhibition by increasing the capacity of Na(+)-K(+)-ATPase and epithelial Na(+) channels (ENaC) and amiloride-sensitive ISC. DEX slightly increased the mRNA of alpha- and gamma-ENaC in whole rat lung. In ATII cells from DEX-treated rats, mRNA of alpha(1)-Na(+)-K(+)-ATPase and alpha-ENaC increased in normoxia and hypoxia, and gamma-ENaC was increased in normoxia only. DEX stimulated the mRNA expression of alpha(1)-Na(+)-K(+)-ATPase and alpha-, beta-, and gamma-ENaC of A549 cells in normoxia and hypoxia (1.5% O(2)) when DEX treatment was begun before or during hypoxic exposure. These results indicate that DEX prevents inhibition of alveolar reabsorption by hypoxia and stimulates the expression of Na transporters even when it is applied in hypoxia.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号