首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purified A protein and A* protein of bacteriophage phi X174 have been tested for endonuclease activity on single stranded viral phi X174 DNA. The A protein (55.000 daltons) nicks single-stranded DNA in the same way and at the same place as it does superhelical RFI DNA, at the origin of DNA replication. The A* protein (37.000 daltons) can cleave the single-stranded viral DNA at many different sites. It has however a strong preference for the origin of replication. Both proteins generate 3'OH ends and blocked 5' termini at the nick site.  相似文献   

2.
Purified phi X gene A* protein cleaves phi X single stranded DNA. The cleavage appears to be stoichiometric, whereby a gene A* protein molecule cleaves a phosphodiester bond and binds to the DNA fragment. The size of the cleavage product was inversely proportional to the ratio of A* protein to DNA in the reaction mixture. The cleavage of the DNA resulted in the formation of an A* protein - ssDNA complex identified on SDS-polyacrylamide gels and by banding in CsCl. An A* protein-ssDNA complex was isolated by gel filtration and shown to be active in a ligating reaction in which the two ends of the DNA fragment were joined to form a covalently closed circle. The joining reaction required Mg++ ions and was accompanied by the release of the protein from the DNA.  相似文献   

3.
In the preceeding paper (Brown, D. R., Roth, M. J., Reinberg, D., and Hurwitz, J. (1984) J. Biol. Chem. 259, 10545-10555), it was shown that following bacteriophage phi X174 (phi X) DNA synthesis in vitro using purified proteins, the phi X A protein could be detected covalently linked to nascent 32P-labeled DNA. This phi X A protein-[32P]DNA complex was the product of the reinitiation reaction. The phi X A protein-[32P]DNA complex could be trapped as a protein-32P-oligonucleotide complex by the inclusion of ddGTP in reaction mixtures. In this report, the structure of the phi X A protein-32P-oligonucleotide complex has been analyzed. The DNA sequence of the oligonucleotide bound to the phi X A protein has been determined and shown to be homologous to the phi X (+) strand sequence immediately adjacent (3') to the replication origin. The phi X A protein was directly linked to the 5' position of a dAMP residue of the oligonucleotide; this residue corresponded to position 4306 of the phi X DNA sequence. The phi X A protein-32P-oligonucleotide complex was exhaustively digested with either trypsin or proteinase K and the 32P-labeled proteolytic fragments were analyzed. Each protease yielded two different 32P-labeled peptides in approximately equimolar ratios. The two 32P-labeled peptides formed after digestion with trypsin (designated T1 and T2) and with proteinase K (designated PK1 and PK2) were isolated and characterized. Digestion of peptide T1 with proteinase K yielded a product which co-migrated with peptide PK2. In contrast, peptide T2 was unaffected by digestion with proteinase K. These results suggest that the phi X A protein contains two active sites that are each capable of binding covalently to DNA. The peptide-mononucleotide complexes T1-[32P]pdA and T2-[32P]pdA were isolated and subjected to acid hydrolysis in 6.0 N HCl. In each case, the major 32P-labeled products were identified as [32P] phosphotyrosine and [32P]Pi. This indicates that each active site of the phi X A protein participates in a phosphodiester linkage between a tyrosyl moiety of the protein and the 5' position of dAMP.  相似文献   

4.
It is already known that phi X gene A protein converts besides phi X RFI DNA also the RFI DNAs of the single-stranded bacteriophages G4, St-1, alpha 3 and phi K into RFII DNA. We have extended this observations for bacteriophages G14 and U3. Restriction enzyme analysis placed the phi X gene A protein cleavage site in St-1 RF DNA in the HinfI restriction DNA fragment F10 and in the overlapping HaeIII restriction DNA fragment Z7. The exact position and the nucleotide sequence at the 3'-OH end of the nick were determined by DNA sequence analysis of the single-stranded DNA subfragment of the nicked DNA fragment F10 obtained by gelelectrophoresis in denaturing conditions. A stretch of 85 nucleotides of St-1 DNA around the position of the phi X gene A protein cleavage site was established by DNA sequence analysis of the restriction DNA fragment Z7F1. Comparison of this nucleotide sequence with the previously determined nucleotide sequence around the cleavage site of phi X gene A protein in phi X174 RF DNA and G4 RF DNA revealed an identical sequence of only 10 nucleotides. The results suggest that the recognition sequence of the phi X174 gene A protein lies within these 10 nucleotides.  相似文献   

5.
Gene A protein of bacteriophage phi X174 plays a role as a site-specific endonuclease in the initiation and termination of phi X rolling circle DNA replication. To clarify the sequence requirements of this protein we have studied the cleavage of single-stranded restriction fragments from phi X and G4 viral DNAs using purified gene A protein. The results show that in both viral DNAs cleavage occurs at the origin and at one additional site which shows striking sequence homology with the origin region. During rolling circle replication the single-stranded viral DNA tail is covered with single-stranded DNA binding (SSB) protein. Therefore, we have also studied the effect of SSB on phi X gene A protein cleavage. In these conditions only single-stranded fragments containing the complete or almost complete origin region of 30 bases are cleaved, whereas cleavage at the additional sites of phi X or G4 viral DNAs does not occur. A model for termination of rolling circle replication which is based on these findings is presented. Finally, we present evidence that the second product of gene A, the A* protein, cleaves phi X viral DNA at the additional cleavage site in the presence of SSB, not only in vitro but also in vivo. The functional significance of this cleavage in vivo is discussed.  相似文献   

6.
The single-stranded packaged genome (ssDNA) of bacteriophage phi X174 is shown by Raman spectroscopy to lack both the ordered phosphodiester backbone and base stacking, which are demonstrated for unpackaged, protein-free ssDNA. In solutions of moderate ionic strength, unpackaged ssDNA contains 36 +/- 7% of deoxyribosyl phosphate groups with conventional B-type backbone geometry [i.e., gauche- and trans orientations, respectively, for the 5'O-P (alpha) and 3'O-P (zeta) torsions], indicative of hairpin formation and intramolecular base pairing. Additionally, the bases of unpackaged ssDNA are extensively stacked. Estimates from Raman band hypochromic effects indicate that unpackaged ssDNA contains approximately 70% of the maximal base stacking exhibited in the linear, double-stranded, replicative form III of phi X174 DNA. Conversely, for the packaged phi X174 genome, ordered (B-type) phosphodiester groups are not present, and only 40% of the base stacking in RFIII DNA is observed. These results are interpreted as evidence that the substantial hairpin-forming potential of ssDNA is eliminated by specific and extensive ssDNA-protein interactions within the phi X174 virion. Comparison of the present results with studies of other packaged single-stranded nucleic acids suggests that proteins of the capsid shell (gpF + gpG + gpH) do not fully account for the conformational constraints imposed on ssDNA of phi X174. Accordingly, we propose a model for ssDNA packaging in which the small basic gpJ protein, which is packaged along with the genome, is involved stoichiometrically in binding to the ssDNA (approximately 90 nucleotides per subunit). The proposed gpJ-DNA interactions could prevent helical hairpin formation, restrict base stacking, and disfavor fortuitous base pairing within the capsid. The present analysis is based upon use of model nucleic acids of known conformation for calibration of the Raman intensity in the region 810-860 cm-1 in terms of specific secondary structures. The calibration curve allows quantitative determination of the percentage of ssDNA nucleotides for which the 5'O-P-O3' group is configured (g-,t) as in the B-form of DNA. The method proposed here is analogous to that employed by Thomas and Hartman (1973) for ssRNA and should be applicable to single-stranded DNA and to partially denatured forms of double- and multiple-stranded DNAs.  相似文献   

7.
The phi X174 A protein cleaves single-stranded DNA and binds covalently to the 5'-phosphorylated end. To determine the nature of the covalent linkage and the amino acid involved, we used the A protein to cleave DNA synthesized in vitro with [alpha-32P]dATP to form the complex of A protein covalently linked to single-stranded DNA. The complex was then digested with DNase I, and the 32P-labeled A protein was isolated by electrophoresis on polyacrylamide gels. The isolated complex was treated extensively with trypsin, and the released peptide-oligonucleotide complexes were incubated with formic acid and diphenylamine (Burton reaction). The Burton reaction caused a transfer of the labeled phosphate from dAMP to the peptide. The labeled phosphopeptides were isolated and hydrolyzed, revealing a linkage of the phosphate to a tyrosine. These results indicate that the A protein cleaves single-stranded DNA and binds covalently to the 5'-phosphorylated terminus by a tyrosyl-dAMP phosphodiester bond.  相似文献   

8.
Bacteriophage phi X174 single-stranded DNA molecules were primed with five different restriction fragments and irradiated with visible light in the presence of proflavine. This photodamaged DNA was used as template for the in vitro complementary chain synthesis by E. coli DNA polymerase I (Klenow fragment). Chain terminations were observed by polyacrylamide gel electrophoresis of the synthesized products and localized by comparison with standard sequencing performed simultaneously on the untreated template. 90% of the chain terminations occurred one nucleotide before a guanine residue in the template strand. More than 80% of the sequenced guanine residues were blocking lesions demonstrating the absence of 'hot-spots' for the photodamaging effect of proflavine. At a defined position, the chain termination frequency increased linearly with the irradiation time and was directly influenced by the proflavine concentration present. An important part of lesions resulted from the action of singlet oxygen produced by excited proflavine as shown by the effect that both NaN3 and 2H2O exerted on the reaction. The induced blocking lesions must be important in vivo since no complete replicative forms could be extracted from cell infected with bacteriophages inactivated by 'proflavine and light' treatment.  相似文献   

9.
10.
The intracellular presence of a recombinant plasmid containing the intercistronic region between the genes H and A of bacteriophage phi X174 strongly inhibits the conversion of infecting single-stranded phi X DNA to parental replicative-form DNA. Also, transfection with single-stranded or double-stranded phi X174 DNA of spheroplasts from a strain containing such a "reduction" plasmid shows a strong decrease in phage yield. This phenomenon, the phi X reduction effect, was studied in more detail by using the phi X174 packaging system, by which plasmid DNA strands that contain the phi X(+) origin of replication were packaged as single-stranded DNA into phi X phage coats. These "plasmid particles" can transduce phi X-sensitive host cells to the antibiotic resistance coded for by the vector part of the plasmid. The phi X reduction sequence in the resident plasmid strongly affected the efficiency of the transduction process, but only when the transducing plasmid depended on primosome-mediated initiation of DNA synthesis for its conversion to double-stranded DNA. The combination of these results led to a model for the reduction effect in which the phi X reduction sequence interacted with an intracellular component that was present in limiting amounts and that specified the site at which phi X174 replicative-form DNA replication takes place. The phi X reduction sequence functioned as a viral incompatibility element in a way similar to the membrane attachment site model for plasmid incompatibility. In the DNA of bacteriophage G4, a sequence with a similar biological effect on infecting phages was identified. This reduction sequence not only inhibited phage G4 propagation, but also phi X174 infection.  相似文献   

11.
The DNA sequence of 30 nucleotides which surrounds the origin of viral strand DNA replication is highly conserved amongst the icosahedral single-stranded DNA bacteriophages. The A gene of these phages encodes a protein which is required for initiation and termination of viral strand DNA synthesis and acts as a nicking-closing activity specifically within this 30-nucleotide sequence. A system of purified Escherichia coli host proteins and phi X174 gene A protein has been developed which specifically replicates in vitro the viral strand of phi X174 from RF (replicative form) I template DNA and yields single-stranded circular DNA products (RF leads to SS(c) DNA replication system). Recombinant plasmids carrying inserts derived from phage phi X174 or G4 DNA which range in length from 49 to 1175 base pairs and contain the 30-nucleotide conserved sequence have been shown to support phi X A protein-dependent DNA synthesis in vitro in this replication system. We report here that insertion of the 30-nucleotide sequence alone into pBR322 allows the resulting recombinant plasmids to support phi X A protein-dependent in vitro DNA synthesis as efficiently as phi X174 template DNA in the RF leads to SS(c) replication system. The 30-nucleotide sequence functions as a fully wild type DNA replication origin as determined by the rate of DNA synthesis and the structure of resulting DNA products. Furthermore, the DNA sequence requirements for nicking of RF I DNA by the phi X A protein and for supporting replication origin function have been partially separated. Homology to positions 1, 29, and 30 of the 30-nucleotide conserved sequence are not required for cleavage of RF I DNA by the A protein; homology to position 1 but not 29 or 30 is required for efficient DNA replication.  相似文献   

12.
Evidence is presented that the gene A and A * proteins of bacteriophage phi X 174 form covalent associations with the 5' ends of the DNA molecules when superhelical phi X replicative form DNA is nicked by a combination of these proteins in vitro. This evidence is: 1, The 5' ends of the DNA molecules nicked by the gene A protein and reacted with bacterial alkaline phosphatase were protected against subsequent phosphorylation by polynucleotide kinase even after treatment of the nicked DNA with SDS and pronase followed by centrifugation on a high-salt neutral sucrose gradient. 2, Iodinated pronase-sensitive material remained attached to the nicked replicative form DNA and could not be removed by exposure to SDS or 2 M NaCl, either by sedimentation through high-salt neutral sucrose gradients, or by CsCl equilibrium centrifugation. 3, Iodinated pronase-sensitive material was detected on DNA that had been nicked during the reaction, but not on unreacted DNA. 4, Electrophoresis of the iodinated pronase-sensitive, DNA-bound material in SDS-polyacrylamide gels after DNAse digestion revealed that it was composed almost entirely polypeptides with electrophoretic mobilities similar to those of the gene A and A * proteins. We speculate that the gene * protein may be essential for normal progeny single-stranded DNA synthesis in vivo.  相似文献   

13.
Type II restriction endonucleases cleave duplex DNA at nucleotide sequences displaying 2-fold symmetry. Our data show that Msp I cleaves single strand oligonucleotides, d(G-A-A-C-C-G-G-A-G-A) and d(T-C-T-C-C-G-G-T-T) at 4 degrees, 25 degrees, and 37 degrees C reaction temperatures. The rate of cleavage of d(G-A-A-C-C-G-G-A-G-A) is several-fold faster than that of d(T-C-T-C-C-G-G-T-T). Single strand phi X174 DNA is also, cleaved by Msp I endonuclease giving well defined fragments. 5'-Nucleotide analysis of the fragments generated from single strand and replicating form DNA suggest that cleavage occurs at the recognition sequence d(C-C-G-G). The data show that Msp I endonuclease cleaves single strand oligonucleotides and prefers a recognition sequence surrounded by purine nucleotides. A general model for endonuclease cleavage of single strand and duplex DNA is presented.  相似文献   

14.
The bacteriophage phi X174 viral (+) origin when inserted in a plasmid can interact in vivo with the A protein produced by infecting phi X174 phages. A consequence of this interaction is packaging of single-stranded plasmid DNA into preformed phage coats resulting in infective particles (1). This property was used to study morphogenesis and to analyse the signals for initiation and termination of the rolling circle DNA replication in vivo. It is shown that the size of the DNA had a strong effect on the encapsidation by the phage coats and the infectivity of the particle. Termination was analysed by using plasmids with two phi X (+) origins either in the same orientation or in opposite orientation. Both origins were used with equal frequency. Initiation at one origin resulted in very efficient termination (greater than 96%) at the second origin in the case of two origins in the same orientation. When the two (+) origins have opposite orientations, no correct termination was observed. The second origin in the opposite strand effectively inhibits (greater than 98%) the normal DNA synthesis; i.e. the covalently bound A protein present in the replication fork interacts with the (+) origin sequence in the opposite strand.  相似文献   

15.
The binding of the bacteriophage phi X 174-coded A and A* proteins to single-stranded (ssDNA) and double-stranded (dsDNA ) phi X DNA was studied by electron microscopy. The interaction of the A* protein with ssDNA and dsDNA was also studied by sedimentation velocity centrifugation. It was shown that the binding of the A and A* proteins to ssDNA occurs in a non-cooperative manner and requires no or very little sequence specificity under the conditions used here. Both protein-ssDNA complexes have the same compact structure caused by intrastrand cross-linking through the interaction of protein molecules with separate parts of the ssDNA molecule. The A protein does not bind to phi X dsDNA in the absence of divalent cations. The A* protein does bind to dsDNA, although it has a strong preference for binding to ssDNA. The structure of the A* protein-dsDNA complexes is different from that of the A* protein-ssDNA complexes, as the former have a rosette-like structure caused by protein-protein interactions. High ionic strengths favour the formation of large condensed aggregates.  相似文献   

16.
Monomers of purified RecA protein polymerize into helical fibers whose pitch is 7.2 nm to 7.5 nm and whose diameter is 11 nm. Either short (approximately 0.2 micron), single fibers, or bundles of aligned, longer fibers, can be formed preferentially, by varying the Mg2+ concentration. When RecA protein is bound to circular, single-stranded phi X174 DNA it forms helical fibers of different classes of contour lengths, ranging from 0.98 micron, depending upon the conditions of assembly. Two different helical pitches are found, one of 9.3 nm when the incubation buffer contains, besides the obligatory Mg2+, either ATP gamma S or ATP accompanied by single-strand binding protein, and one of 5.5 nm when the latter additives are omitted. Preformed fibers of the compact type can be converted to open ones of 9.3 nm pitch upon addition of ATP gamma S, even after the removal of unbound RecA. All signs of helicity are obliterated upon glutaraldehyde cross-linking except in those fibers whose assembly has been mediated by ATP gamma S. RecA protein and single-strand binding protein are competitively bound to single-stranded DNA. Composite complexes, however, are not encountered unless ATP gamma S is present. Otherwise, segments of DNA that are coated by one or the other protein are seen as separate regions. When the assembly of complexes of single-stranded DNA and RecA is mediated by single-strand binding protein and ATP, the axial separation between successive bases is 0 X 42 nm, somewhat greater than the axial distance between bases in one strand of duplex DNA in the B form. It is proposed that the bases of the single-stranded DNA in the complex are located near its inner surface, and that base-pairing with double-stranded DNA takes place following invasion of the central cavity of the complex.  相似文献   

17.
Gene A of the phi X174 genome codes for two proteins, A and A* (Linney, E.A., and Hayashi, M.N. (1973) Nature New Biol. 245, 6-8) of molecular weights 60,000 and 35,000, respectively. The phi X A* protein is formed from a natural internal initiator site within the A gene cistron while the phi X A protein is the product of the entire A gene. These two proteins have been purified to homogeneity as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Previous studies have shown that the phi X A protein is an endonuclease which specifically introduces a discontinuity in the A cistron of the viral strand of supertwisted phi XRFI DNA. In addition to this activity, the phi X A protein also causes relaxation of supertwisted phi XRFI DNA and formation of a phi XRFH DNA . phi X A protein complex which has a discontinuity in the A cistron of the viral strand. This isolatable complex supports DNA synthesis when supplemented with extracts of uninfected Escherichia coli which lack phi X A protein and phi XRFI DNA. The phi XRFII DNA . phi X A protein complex can be attacked by exonuclease III but is not susceptible to attack by E. coli DNA polymerase I, indicating that the 5'-end of the complex is blocked. Attempts to seal the RFII structure generated from the phi XRFII DNA . phi X A protein complex with T4 DNA ligase in the presence or absence of DNA polymerase were unsuccessful. The phi X A protein does not act catalytically in the cleavage of phi XRFI DNA. Under conditions leading to the quantitative cleavage of phi XRFI DNA, the molar ratio of phi XRFI DNA to added phi X A protein was approximately 1:10. At this molar ratio, cross-linking experiments with dimethyl suberimidate yielded 10 distinct protein bands which were multiples of the monomeric phi X A protein. In the absence of DNA or in the presence of inactive DNA (phi XRFII DNA) no distinct protein bands above a trimer were detected. We found it possible in vitro to form a phi XRFII DNA . phi X A protein complex with wild-type phi XRFI DNA (phi X A gene+) and with phi XRFI DNA isolated from E. coli (su+) infected with phage phi X H90 (an am mutant in the phi X A gene). Thus, in vitro, in contrast to in vivo studies, phi X A protein is not a cis acting protein. The purified phi X A* protein does not substitute for the phi X A protein in in vitro replication of phi XRFI DNA nor does it interfere with the action of the phi X A protein which binds only to supertwisted phi XRFI DNA. In contrast, the phi X A* protein binds to all duplex DNA preparations tested. This property prevents nucleases of E. coli from hydrolyzing duplex DNAs to small molecular weight products.  相似文献   

18.
Biochemical and genetic studies have suggested that a transmembrane tunnel structure penetrating the inner and outer membranes is formed during the lytic action of bacteriophage phi X174 protein E. In this study we directly visualized the lysis tunnel by using high-magnification scanning and transmission electron microscopy.  相似文献   

19.
20.
phi X174-directed DNA and protein syntheses in infected minicells.   总被引:1,自引:1,他引:0       下载免费PDF全文
Phi X174-infected minicells, produced by Escherichia coli PC2251, synthesized 11 phi X174-encoded polypeptides. The infecting single-stranded viral genome was converted to a double-stranded, closed circular, replicative form (replicative form I). Little, if any, replicative form I replication took place, and synthesis of progeny single-stranded molecules could not be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号