首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.
Summary A methylammonium-resistant mutant, named hereafter strain 2170 (ma-1), was isolated for the first time from a eukaryotic phototrophic organism. Mutant 2170 from Chlamydomonas reinhardtii carries a single mendelian mutation which results in a decreased rate of uptake of both ammonium and methylammonium without being affected either in uptake of nitrate or nitrite or any of the tested enzyme activities related to ammonium assimilation. Mutant cells could not use methylammonium as nitrogen source nor excrete ammonium into the medium but they had derepressed nitrate and nitrite reductases when growing in the presence of ammonium. Mutant 2170 also exhibited a diminished methylammonium transport rate in comparison with the wild-type cells. We conclude that mutant 2170 is affected in a transport system responsible for the entrance of both ammonium and methylammonium into the cells.Abbreviations CHES 2-(N-Cyclohexylamino)ethanesulphonic acid - MOPS 3(N-morpholine)propanesulphonic acid  相似文献   

2.
Ammonium at low concentrations caused a rapid and effective inhibition of nitrate utilization in the light by the cyanobacterium Anacystis nidulans without affecting the cellular level of nitrate reductase activity. The inhibition was reversible, and the ability of the cells to utilize nitrate was restored immediately after ammonium had been exhausted. The inhibitory effect was dependent on consumption by the cells of the added ammonium which was rapidly incorporated into amino acids. In the presence of L-methionine-d,l-sulfoximine (MSX) or azaserine, inhibitors of the glutamine synthetase-glutamate synthase pathway, ammonium did not exhibit any inhibitory effect on nitrate utilization. Ammonium assimilation, rather than ammonium itself, seems to regulate nitrate utilization in A. nidulans. Short-term inhibition by ammonium of nitrate utilization and its prevention by MSX were also demonstrated in the filamentous cyanobacteria Anabaena and Nostoc.Abbreviations MSX L-Methionine-d-l-sulfoximine  相似文献   

3.
In phototrophically grown Chlamydomonas cells, ammonium strongly inhibited the utilization of nitrate or nitrite. Under darkness, or in the presence of an uncoupler or inhibitor of the non-cyclic photosynthetic electron flow, the utilization of nitrate, nitrite or ammonium was suppressed. l-Methionine-d,l-sulfoximine (MSX) or azaserine, which blocks the assimilation of ammonium, inhibited the consumption of nitrate, but not nitrite, by the cells. Ammonium produced an immediate inhibition of the permease for nitrate in Chlamydomonas growing with nitrate, while ammonium-grown cells lacked this permease. The synthesis of nitrate-reductase activity was dependent on an active permease. In N-starved Chlamydomonas cells, previously treated with MSX, the permease for nitrate was insensitive to inhibition by ammonium, and a significant amount of nitrate reductase was synthetized. These cells photoproduce ammonium by reducing nitrate. Nitrogen-repleted cells, treated with MSX, actively photoproduced ammonium by reducing nitrite, but not nitrate.Abbreviations DCMU N-(3,4-dichlorophenyl)N,N-di-methyl-urea - PCCP Carbonylcyanid-p-trifluoromethoxy-phenylhydrazone - Mops 2-(N-morpholino)propanesulfonic acid - MSX l-Methionine-d,l-sulfoximine  相似文献   

4.
The role of ammonium in the regulation of nitrite uptake in Chlamydomonas reinhardtii has been investigated under conditions that prevented ammonium assimilation. Prolonged carbon-starvation or inhibition of glutamine synthesis with l-methionine-dl-sulfoximine partially relieved ammonium inhibition of nitrite uptake. However, nitrite uptake was inhibited in both methionine sulfoximine-treated and carbon-starved cells preincubated with ammonium, the inhibition extent in the two cases being directly dependent on the ammonium concentration in the preincubation media. Methionine sulfoximine treatment caused an increase of intracellular ammonium levels. When methionine sulfoximine-treated cells were transferred to ammonium media there existed a linear correlation between intracellular and extracellular ammonium concentration. Addition of methionine sulfoximine to cells with their nitrite uptake system inhibited by ammonium counteracted the effect of ammonium and restored nitrite uptake rate. These results strongly suggest that ammonium itself and a (some) product(s) of its metabolism must act together to block completely nitrite uptake by C. reinhardtii cells. Partial inhibition of nitrite uptake by methylammonium, a structural analogue of ammonium incapable of being used for cell nutrition, supports the above conclusion.  相似文献   

5.
Summary Expression of uncase (urate oxidase) fromChlamydomonas reinhardtii has been investigated by using specific polyclonal antibodies. By Western blot analyses performed under nondenaturing conditions, a 124 kDa protein band corresponding to active uricase was detected in protein extracts from cells cultured with urate or nitrogen-starved cells. This protein band was absent in cells cultured with ammonium. Besides the 124 kDa band, the antibodies also reacted with a massive protein band, with an apparent molecular mass of 500 kDa, that was detected in all nutritional conditions assayed. In vitro, inactive uricase from cells grown with ammonium was activated by incubation in presence of urate. The appearance of uricase activity in vitro coincided with a decrease of the 500 kDa protein and an increase of the 124 kDa band corresponding to the active enzyme. We suggest that a posttranslational regulation of uricase synthesis takes place inC. reinhardtii, and that urate may be responsible for the assembly or maturation of inactive precursors to form the active uricase.  相似文献   

6.
Phaeodactylum tricornutum Bohlin grew well withL-methionine-DL-sulfoximine (MSX) as sole nitrogen source. Such growth helps to explain the lack of effect of MSX on ammonium assimilation by this organism. Methylammonium inhibited growth with nitrate or MSX as sole nitrogen source but not growth on ammonium. Methylammonium could not be metabolised byP. tricornutum but was accumulated in the cells, the concentration factor sometimes approaching 25,000. Ammonium addition, but not that of MSX or nitrate, displaced methylammonium from the cells and this displacement was followed by resumption of growth. Both methylammonium and ammonium inhibited the uptake of nitrate and nitrite by the cells but inhibition by methylammonium, in comparison with that by ammonium, required a higher concentration and a longer time to develop. Inhibition by methylammonium is shown to be associated with its accumulation by the cells. Methylammonium also prevented the disappearance of nitrate from the interior of the cells (presumably by nitrate assimilation) whereas ammonium did not. It is concluded that methylammonium and ammonium differ in the ways in which they inhibit nitrate metabolism inP. tricornutum.Abbreviation MSX L-methionine-DL-sulfoximine  相似文献   

7.
Addition of NH4Cl at low concentrations to Azotobacter chroococcum cells caused an immediate cessation of nitrate uptake activity, which was restored when the added NH 4 + was exhausted from the medium or by adding an NH 4 + assimilation inhibitor, l-methionine-dl-sulfoximine (MSX) or l-methionine sulfone (MSF). In the presence of such inhibitors the newly-reduced nitrate was released into the medium as NH 4 + . When the artificial electron donor system ascorbate/N-methylphenazinium methylsulfate (PMS), which is a respiratory substrate that was known to support nitrate uptake by A. chroococcum while inhibiting glutamine synthetase activity, was the energy source, externally added NH 4 + had no effect on nitrate uptake. It is concluded that, in A. chroococcum cells, NH 4 + must be assimilated to exert its short-term inhibitory effect on nitrate uptake. A similar proposal was previously made to explain the short-term ammonium inhibition of N2 fixation in this bacterium.Abbreviations MOPS morpholinopropanesulfonic acid - MSX l-methionine-dl-sulfoximine - PMS N-methylphenazinium methylsulfate - MSF l-methionine sulfone  相似文献   

8.
When grown in the light and in a Tris-acetate phosphate medium, cells of Chlamydomonas reinhardtii Dang. can use the following l-amino acids as a sole nitrogen source: asparagine, glutamine, arginine, lysine, alanine, valine, leucine, isoleucine, serine, methionine, histidine, and phenylalanine, whereas, in the absence of acetate, the cells only used l-arginine. The utilization system in the acetate medium consisted of an extracellular deaminating activity induced by l-amino acids; it took between 10 to 30 h before the system appeared in cells previously grown with ammonium. This deaminase activity was nonspecific, required an organic carbon source for its de-novo synthesis, and was sensitive to high ammonium concentration and light deprivation.Abbreviations HPLC high-performance liquid chromatography - TAP Tris-acetate-phosphate This work was supported by a grant of the CAICYT, Spain. The secretarial assistance of C. Santos and I. Molina is gratefully acknowledged.To whom correspondence should be addressed.  相似文献   

9.
In an attempt to establish the nature of the ammonium-assimilation products which mediate the inhibition by ammonium of nitrate uptake in cyanobacteria, the effect of different amino acids on nitrate utilization by intact Anacystis nidulans cells has been assayed. To exclude an indirect inhibition of nitrate uptake through the ammonium which the amino acids might release, the cells were pretreated with l-methionine-d,l-sulfoximine (MSX), a potent inactivator of glutamine synthetase. Under these conditions, several l-amino acids, but not the corresponding d-isomers, affected nitrate utilization to a variable extent, causing inhibitions ranging between 20 and 80% when added at 20 mM concentration.For most of the inhibitory amino acids, including l-isoleucine, l-leucine and l-valine, a correlation was found between their ability to act as amino group donors to -ketoglutarate, in reactions catalyzed by A. nidulans cell-free extracts, and their inhibitory effect on nitrate utilization. l-Glutamine, l-asparagine and glycine, being effective inhibitors of nitrate utilization, were poor substrates for the transaminating activity to -ketoglutarate, however. The possible role of the latter amino acids as mediators in the ammonium-promoted inhibition of nitrate uptake is discussed.Abbreviations MSX l-methionine-d,l-sulfoximine - MTA-5 mixed alkyltrimethylammonium bromide - Mops morpholinopropane sulfonic acid  相似文献   

10.
Strain 21gr from Chlamydomonas reinhardtii is a cryptic mutant defective in the Nit5 gene related to the biosynthesis of molybdenum cofactor (MoCo). In spite of this mutation, this strain has active MoCo and can grow on nitrate media. In genetic crosses, the Nit5 mutation cosegregated with a phenotype of resistance to high concentrations of molybdate and tungstate. Molybdate/tungstate toxicity was much higher in nitrate than in ammonium media. Strain 21gr showed lower amounts of MoCo activity than the wild type both when grown in nitrate and after growth in ammonium and nitrate induction. However, nitrate reductase (NR) specific activity was similar in wild type and 21gr cells. Tungstate, either at nanomolar concentrations in nitrate media or at micromolar concentrations during growth in ammonium and nitrate induction, strongly decreased MoCo and NR amounts in wild‐type cells but had a slight effect in 21gr cells. Molybdate uptake activity of ammonium‐grown cells from both the wild‐type and 21gr strains was small and blocked by sulphate 0·3 mM . However, cells from nitrate medium showed a molybdate uptake activity insensitive to sulphate. This uptake activity was much higher and more sensitive to inhibition by tungstate in the wild type than in strain 21gr. These results suggest that strain 21gr has a high affinity and low capacity molybdate transport system able to discriminate efficiently tungstate, and lacks a high capacity molybdate/tungstate transport system, which operates in wild‐type cells upon nitrate induction. This high capacity molybdate transport system would account for both the stimulating effect of molybdate on MoCo amounts and the toxic effects of tungstate and molybdate when present at high concentrations.  相似文献   

11.
Plasmid DNA carrying either the nitrate reductase (NR) gene or the argininosuccinate lyase gene as selectable markers and the correspondingChlamydomonas reinhardtii mutants as recipient strains have been used to isolate regulatory mutants for nitrate assimilation by insertional mutagenesis. Identification of putative regulatory mutants was based on their chlorate sensitivity in the presence of ammonium. Among 8975 transformants, two mutants, N1 and T1, were obtained. Genetic characterization of these mutants indicated that they carry recessive mutations at two different loci, namedNrg1 andNrg2. The mutation in N1 was shown to be linked to the plasmid insertion. Two copies of the nitrate reductase plasmid, one of them truncated, were inserted in the N1 genome in inverse orientation. In addition to the chlorate sensitivity phenotype in the presence of ammonium, these mutants expressed NR, nitrite reductase and nitrate transport activities in ammonium-nitrate media. Kinetic constants for ammonium (14C-methylammonium) transport, as well as enzymatic activities related to the ammonium-regulated metabolic pathway for xanthine utilization, were not affected in these strains. The data strongly suggest thatNrg1 andNrg2 are regulatory genes which specifically mediate the negative control exerted by ammonium on the nitrate assimilation pathway inC. reinhardtii.  相似文献   

12.
We have compared the characteristics of nitrate uptake by Aphanothece halophytica grown under non-stress and salt-stress conditions. Both cell types showed essentially similar patterns of nitrate uptake toward ammonium, nitrite, and DL-glyceraldehyde. Although the affinities of nitrate to non-stress cells and salt-stress cells were not significantly different, i.e., Ks = 416 and 450 µM, respectively, the Vmax value for non-stress cells was about twofold of that for salt-stress cells (9.1 vs 5.3 µmol min–1 mg–1 Chl). Nitrate uptake by A. halophytica was found to be dependent on Na+. Ammonium inhibited nitrate uptake, and the presence of methionine sulfoximine could not release the inhibition by ammonium. Nitrite appeared to competitively inhibit nitrate uptake with a Ki value of 84 µM. Both chloride and phosphate anions did not affect nitrate uptake. DL-Glyceraldehyde, an inhibitor of CO2 fixation, caused a reduction in the uptake of nitrate.Received: 22 October 2002 / Accepted: 6 December 2002  相似文献   

13.
Chlamydomonas reinhardtii cells consumed hypoxanthine and xanthine by means of active systems which promoted purine intracellular accumulation against a high concentration gradient. Both uptake and accumulation were also observed in mutant strains lacking xanthine dehydrogenase activity. Xanthine and hypoxanthine uptake systems exhibited very similar Michaelis constants for transport and pH values, and both systems were induced by either hypoxanthine or xanthine. However, they differed greatly in the length of the lag phase before uptake induction, which was longer for hypoxanthine than for xanthine. Cells grown on ammonium and transferred to hypoxanthine media consumed xanthine before hypoxanthine, whereas cells transferred to xanthine media did not take up hypoxanthine until 2 hours after commencing xanthine consumption. Metabolic and photosynthetic inhibitors such as 2,4-dinitrophenol, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea, and carbonylcyanide m-chlorophenylhydrazone inhibited to a different extent the hypoxanthine and xanthine uptake. Similarly, N-ethylmaleimide abolished xanthine uptake but slightly affected that of hypoxanthine. Hypoxanthine consumption was inhibited by adenine and guanine whereas that of xanthine was inhibited only by urate. We conclude that hypoxanthine and xanthine in C. reinhardtii are taken up by different active transport systems which work independently of the intracellular enzymatic oxidation of these purines.  相似文献   

14.
Summary Spontaneous chlorate-resistant (CR) mutants have been isolated from Chlamydomonas reinhardtii wildtype strains. Most of them, 244, were able to grow on nitrate minimal medium, but 23 were not. Genetic and in vivo complementation analyses of this latter group of mutants indicated that they were defective either at the regulatory locus nit-2, or at the nitrate reductase (NR) locus nit-1, or at very closely linked loci. Some of these nit-1 or nit-2 mutants were also defective in pathways not directly related to nitrate assimilation, such as those of amino acids and purines. Chlorate treatment of wild-type cells resulted in both a decrease in cell survival and an increase in mutant cells resistant to a number of different chemicals (chlorate, methylammonium, sulphanilamide, arsenate, and streptomycin). The toxic and mutagenic effects of chlorate in minimal medium were not found when cells were grown either in darkness or in the presence of ammonium, conditions under which nitrate uptake is drastically inhibited. Chlorate was also able to induce reversion of nit mutants of C. reinhardtii, but failed to produce His + revertants or Arar mutants in the BA-13 strain of Salmonella typhimurium. In contrast, chlorate treatment induced mutagenesis in strain E1F1 of the phototrophic bacterium Rhodobacter capsulatus. Genetic analyses of nitrate reductase-deficient CR mutants of C. reinhardtii revealed two types of CR, to low (1.5 mM) and high (15 mM) chlorate concentrations. These two traits were recessive in heterozygous diploids and segregated in genetic crosses independently of each other and of the nit-1 and nit-2 loci. Three her loci and four lcr loci mediating resistance to high (HC) and low (LC) concentrations of chlorate were identified. Mutations at the nit-2 locus, and deletions of a putative locus for nitrate transport were always epistatic to mutations responsible for resistance to either LC or HC. In both nit + and nit chlorate-sensitive (CS) strains, nitrate and nitrite gave protection from the toxic effect of chlorate. Our data indicate that in C. reinhardtii chlorate toxicity is primarily dependent on the nitrate transport system and independent of the existence of an active NR enzyme. At least seven loci unrelated to the nitrate assimilation pathway and mediating CR are thought to control indirectly the efficiency of the nitrate transporter for chlorate transport. In addition, chlorate appears to be a mutagen capable of inducing a wide range of mutations unrelated to the nitrate assimilation pathway.  相似文献   

15.
Inhibition of nitrate uptake by aluminium in maize   总被引:1,自引:0,他引:1  
Experiments with two maize (Zea mays L.) hybrids were conducted to determine (a) if the inhibition of nitrate uptake by aluminium involved a restriction in the induction (synthesis/assemblage) of nitrate transporters, and (b) if the magnitude of the inhibition was affected by the concurrent presence of ambient ammonium. At pH 4.5, the rate of nitrate uptake from 240 μM NH4NO3 was maximally inhibited by 100 μM aluminium, but there was little measurable effect on the rate of ammonium uptake. Presence of ambient aluminium did not eliminate the characteristic induction pattern of nitrate uptake upon first exposure of nitrogen-depleted seedlings to that ion. Removal of ambient aluminium after six hours of induction resulted in recovery within 30 minutes to rates of nitrate uptake that were similar to those of plants induced in absence of aluminium. Addition of aluminium to plants that had been induced in absence of aluminium rapidly restricted the rate of nitrate uptake to the level of plants that had been induced in the presence of aluminium. The data are interpreted as indicating that aluminium inhibited the activity of nitrate transporters to a greater extent than the induction of those transporters. When aluminium was added at initiation of induction, the effect of ambient ammonium on development of the inhibition by aluminium differed between the two hybrids. The responses indicate a complex interaction between the aluminium and ammonium components of high acidity soils in their influence on nitrate uptake. ei]{gnA C}{fnBorstlap}  相似文献   

16.
Kinetics of nitrite uptake and reduction by Chlamydomonas reinhardtii cells growing phototrophically has been studied by means of progress curves and the Michaelis-Menten integrated equation. Both uptake and reduction processes exhibited hyperbolic saturation kinetics, the nitrite uptake system lacking a diffusion component. Nitrite uptake and reduction showed significant differences in Ks for nitrite at pH 7.5 (1.6 versus 20 micromolar, respectively), optimal pH, activation energy values, and sensitivity toward reagents of sulfhydryl groups. Ks values for nitrite uptake were halved in cells subjected to darkness or to nitrogen-starvation. Nitrate inhibited nitrite uptake by a partially competitive mechanism. The same inhibition pattern was found for nitrite uptake by C. reinhardtii mutant 305 cells incapable of nitrate assimilation. The results demonstrate that C. reinhardtii cells take up nitrite via a highly specific carrier, probably energy-dependent, kinetically responsive to environmental changes, distinguishable from the enzymic nitrite reduction and endowed with an active site for nitrite not usable for nitrate transport.  相似文献   

17.
Summary Chlamydomonas reinhardtii cells immobilized in Ba-alginate beads provide a stable and effective system for photoproducing ammonium from nitrite in a culture medium containing l-methionine-d,l-sulphoximine. The process was studied in either air-lift, fluidized or packed-bed reactors, the last one providing the most suitable system with a volumetric activity of 2700 mol NH inf+ sup4 ·1–1 per hour.  相似文献   

18.
Excised wheat (Triticum aestivum L. var. Maris Freeman) and barley (Hordeum vulgare L. var. Maris Mink) embryos were grown on medium containing both nitrate and ammonium ions. Addition of lysine (1 mM) plus threonine (1 mM) caused a synergistic inhibition of growth measured by length of first leaf or dry weight. The inhibition was specifically relieved by methionine, homocysteine and homoserine. Threonine at 0.2–0.3 mM caused half-maximal inhibition of growth at all lysine concentrations whereas lysine increased the synergistic inhibition up to 3 mM. The inhibition is explained by a model in which lysine acts as a feedback inhibitor of aspartate kinase and threonine of homoserine dehydrogenase. This is compatible with published studies of the enzymes involved. The implications of these findings for using lysine plus threonine as a selection system for lysine-overproducing cereals are discussed.Abbreviations Lys Lysine - Thr Threonine - Met Methionine - Hser Homoserine - Hcys Homocysteine  相似文献   

19.
Summary Low molecular weight nitrogenous impurity compounds as well as raffinose are negative quality factors that interfere with efficient processing of sugarbeet (Beta vulgaris L.) for sucrose. In order to identify nutrient media for cell selection of biochemical mutants or transgenics that might have reduced levels of these processing impurities, the ability of 10 endogenous compounds to serve as sole nitrogen or carbon source for suspension plating and subculture callus growth was evaluated. The most productive concentrations of nitrate, ammonium, l-glutamine, l-glutamate, urea, and l-proline as sole nitrogen sources supported plating callus growth at 106, 159, 233, 167, 80, and 52%, respectively, as well as the historical 60 mM mix of nitrate and ammonium in Murashige-Skoog medium. Glycine betaine and choline did not support growth. d(+) Raffinose and d(+) galactose supported plating callus growth only 67 and 25%, respectively, as well as sucrose as sole carbohydrate source. No callus growth occurred on glutamine, glutamate, or glycine betaine as the sole carbon or carbon plus nitrogen source. Platings on either nitrate or ammonium as sole nitrogen source did not differ in sensitivity to the nitrate uptake inhibitor phenylglyoxal, suggesting that phenylglyoxal lacks the specificity for use in selection for mutants of nitrate uptake. The ability of raffinose to be used as the carbon source, and glutamine or glutamate as the nitrogen source, may preclude their use for selection of genetic variants accumulating less of these processing impurities. However, mutants or transgenics able to utilize either glutamine, glutamate, or glycine betaine might be selectable on media containing any one of these as carbon, nitrogen, or carbon plus nitrogen source, respectively, that is incapable of supporting wild-type cell growth.  相似文献   

20.
In the present study, we quantified the physiological consequences of nitric oxide (NO) on ammonium release in tadpoles of Xenopus laevis. Tadpoles exposed to S-nitro-N-acetylpenicillamine (SNAP), an NO-donor, or l-arginine, the substrate of NO synthase (NOS), showed a reversible decrease, whereas animals exposed to the NOS inhibitor Nω-methyl-l-arginine (l-NMMA) exhibited an increase in ammonium release. Release of ammonium may be of physiological relevance during stress response of the animal. Handling of tadpoles as well as exposure to hyposmotic environments increased ammonium release. To localize NO synthesizing cells, we used diaminofluorescein-diacetate (DAF-2DA), an NO-sensitive fluorescent dye, and NADPH-diaphorase histochemistry, an indicator for NOS activity. We observed a fluorescence signal as well as NADPH-diaphorase activity in small, solitary cells in the epidermis. Similarly to NADPH-diaphorase histochemistry, silver nitrate staining and rhodamine labelling, markers for mitochondria-rich cells, showed a strong reaction in these cells. These observations indicate that NO (1) inhibits ammonium release, and (2) is endogenously synthesized in mitochondria-rich cells in Xenopus tadpoles. Based on our histochemical results, we speculate that gill epithelium and epidermis work in parallel to release ammonium as epidermal tissue contains mitochondria-rich and NADPH-diaphorase positive cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号