首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this study we demonstrate for the first time that short-lived intermediate glutathione (GSH) conjugates (5-S-GSH-DA-o-quinone and 2-S-GSH-DA-o-quinone) must have first formed when GSH reacted with dopamine (DA)-derived DA-o-quinones without enzymatic catalysis in solutions. These intermediate GSH-conjugates are unstable and would finally transform into reactive or non-reactive GSH-conjugates dependent on ambient reductive forces. We demonstrated that, under sufficient reductive force, the intermediate GSH-conjugates could be reduced and transform into non-reactive 5-S-GSH-DA and 2-S-GSH-DA. However, under insufficient reductive forces, the intermediate GSH-conjugates could cyclize spontaneously to form reactive 7-S-GSH-aminochrome (7-S-GSH-AM). The 7-S-GSH-AM is so reactive and toxic that it could further conjugate with another GSH to form non-reactive 4,7-bi-GSH-5,6-dihydroindole in solutions. Furthermore 7-S-GSH-AM could abrogate tyrosinase activity rapidly and even inhibit proteasome activity in solutions. However, 7-S-GSH-AM could undergo automatically internal rearrangement and transform into non-reactive 7-S-GSH-5,6-dihydroindole if it had not conjugated with GSH. Therefore, insufficient ambient reductive force, such as decreased GSH concentration, could lead to decreased GSH detoxification efficiency for toxic DA quinones. Based on findings in this study, we propose two potential detrimental positive feedback loops involving accelerated DA oxidation, increased GSH consumption and impaired GSH detoxification efficiency, as the potential underlying chemical explanation for dopaminergic neuron degeneration in Parkinson’s disease.  相似文献   

2.
Several mechanisms are thought to be involved in the progressive decline in neurons of the substantia nigra pars compacta (SNpc) that leads to Parkinson's disease (PD). Neurotoxin 6-hydroxydopamine (6-OHDA), which induces parkinsonian symptoms in experimental animals, is thought to be formed endogenously in patients with PD through dopamine (DA) oxidation and may cause dopaminergic cell death via a free radical mechanism. We therefore investigated protection against 6-OHDA by inhibiting oxidative stress using a gene transfer strategy. We overexpressed the antioxidative Cu/Zn-superoxide dismutase (SOD1) enzyme in primary culture dopaminergic cells by infection with an adenovirus carrying the human SOD1 gene (Ad-hSOD1). Survival of the dopaminergic cells exposed to 6-OHDA was 50% higher among the SOD1-producing cells than the cells infected with control adenoviruses. In contrast, no significant increased survival of (6-OHDA)-treated dopaminergic cells was observed when they were infected with an adenovirus expressing the H(2) O(2) -scavenging glutathione peroxidase (GPx) enzyme. These results underline the major contribution of superoxide in the dopaminergic cell death process induced by 6-OHDA in primary cultures. Overall, this study demonstrates that the survival of the dopaminergic neurons can be highly increased by the adenoviral gene transfer of SOD1. An antioxidant gene transfer strategy using viral vectors expressing SOD1 is therefore potentially beneficial for protecting dopaminergic neurons in PD.  相似文献   

3.
Oxidative stress has been implicated in the degeneration of dopaminergic neurons in the substantia nigra (SN) of Parkinson's disease (PD) patients. An important biochemical feature of presymptomatic PD is a significant depletion of the thiol antioxidant glutathione (GSH) in these neurons resulting in oxidative stress, mitochondrial dysfunction, and ultimately cell death. We have earlier demonstrated that curcumin, a natural polyphenol obtained from turmeric, protects against peroxynitrite-mediated mitochondrial dysfunction both in vitro and in vivo. Here we report that treatment of dopaminergic neuronal cells and mice with curcumin restores depletion of GSH levels, protects against protein oxidation, and preserves mitochondrial complex I activity which normally is impaired due to GSH loss. Using systems biology and dynamic modeling we have explained the mechanism of curcumin action in a model of mitochondrial dysfunction linked to GSH metabolism that corroborates the major findings of our experimental work. These data suggest that curcumin has potential therapeutic value for neurodegenerative diseases involving GSH depletion-mediated oxidative stress.  相似文献   

4.
Abstract: Oxidation of l -3,4-dihydroxyphenylalanine ( l -DOPA) and dopamine (DA) to generate semiquinones/quinones, oxygen radicals, and other reactive oxygen species may play a role in neuronal cell death in Parkinson's disease (PD). In particular, semiquinones/quinones can form conjugates with thiol compounds such as GSH and cysteine. Exposure of l -DOPA, DA, and other catecholamines to a system generating O2•− radical led to O2•−-dependent depletion of added GSH (or cysteine), accompanied by the formation of thiol-DA or -DOPA adducts as detected by HPLC. Superoxide could additionally cause destruction of these adducts. Iron or copper ions could also promote conjugate formation between GSH or cysteine and DA and l -DOPA, especially if H2O2 was present. We applied HPLC to measure glutathionyl and cysteinyl conjugates of l -DOPA, DA, and 3,4-dihydroxyphenylacetic acid (DOPAC) in postmortem brain samples from PD patients and normal control subjects. Conjugates were detected in most brain areas examined, but levels were highest in the substantia nigra and putamen. In most regions, adduct levels were lower in PD, but there were significant increases in cysteinyl adducts of l -DOPA, DA, and DOPAC in PD substantia nigra, suggesting that acceleration of l -DOPA/DA oxidation occurs in PD, although we cannot say if this is a primary feature of the disease or if it is related to therapy with l -DOPA. In vitro, conjugate formation could be inhibited by the dithiol dihydrolipoate but not by its oxidised form, lipoic acid.  相似文献   

5.
Oxidative stress and mitochondrial dysfunction, especially at the level of complex I of the electronic transport chain, have been proposed to be involved in the pathogenesis of Parkinson disease (PD). A plausible source of oxidative stress in nigral dopaminergic neurons is the redox reactions that specifically involve dopamine (DA) and produce various toxic molecules, i.e., free radicals and quinone species (DAQ). It has been shown that DA oxidation products can induce various forms of mitochondrial dysfunction, such as mitochondrial swelling and decreased electron transport chain activity. In the present work, we analyzed the potentially toxic effects of DAQ on mitochondria and, specifically, on the NADH and GSH pools. Our results demonstrate that the generation of DAQ in isolated respiring mitochondria triggers the opening of the permeability transition pore most probably by inducing oxidation of NADH, while GSH levels are not affected. We then characterized in vitro, by UV and NMR spectroscopy, the reactivity of different DA-derived quinones, i.e., dopamine-o-quinone (DQ), aminochrome (AC) and indole-quinone (IQ), toward NADH and GSH. Our results indicate a very diverse reactivity for the different DAQ studied that may contribute to unravel the complex molecular mechanisms underlying oxidative stress and mitochondria dysfunction in the context of PD.  相似文献   

6.
Oxidative stress appears to play an important role in degeneration of dopaminergic neurons of the substantia nigra (SN) associated with Parkinson's disease (PD). The SN of early PD patients have dramatically decreased levels of the thiol tripeptide glutathione (GSH). GSH plays multiple roles in the nervous system both as an antioxidant and a redox modulator. We have generated dopaminergic PC12 cell lines in which levels of GSH can be inducibly down-regulated via doxycycline induction of antisense messages against both the heavy and light subunits of gamma-glutamyl-cysteine synthetase, the rate-limiting enzyme in glutathione synthesis. Down-regulation of glutamyl-cysteine synthetase results in reduction in mitochondrial GSH levels, increased oxidative stress, and decreased mitochondrial function. Interestingly, decreases in mitochondrial activities in GSH-depleted PC12 cells appears to be because of a selective inhibition of complex I activity as a result of thiol oxidation. These results suggest that the early observed GSH losses in the SN may be directly responsible for the noted decreases in complex I activity and the subsequent mitochondrial dysfunction, which ultimately leads to dopaminergic cell death associated with PD.  相似文献   

7.
Parkinson's disease (PD) is characterized by the presence of proteinaceous neuronal inclusions called Lewy bodies in susceptible dopaminergic midbrain neurons. Inhibition of the ubiquitin-proteasome protein degradation pathway may contribute to protein build-up and subsequent cell death. Ubiquitin is normally activated for transfer to substrate proteins by interaction with the E1 ubiquitin ligase enzyme via a thiol ester bond. Parkinson's disease is also characterized by decreases in midbrain levels of total glutathione which could impact on E1 enzyme activity via oxidation of the active site sulfhydryl. We have demonstrated that increasing reductions in total glutathione in dopaminergic PC12 cells results in corresponding decreases in ubiquitin-protein conjugate levels suggesting that ubiquitination of proteins is inhibited in a glutathione-dependent fashion. Decreased ubiquitinated protein levels appears to be due to inhibition of E1 activity as demonstrated by reductions in endogenous E1-ubiquitin conjugate levels as well as decreases in the production of de novo E1-ubiquitin conjugates when glutathione is depleted. This is a reversible process as E1 activity increases upon glutathione restoration. Our data suggests that decreases in cellular glutathione in dopaminergic cells results in decreased E1 activity and subsequent disruption of the ubiquitin pathway. This may have implications for neuronal degeneration in PD.  相似文献   

8.
Dopamine (DA) and its metabolites containing two hydroxyl residues exert cytotoxicity in dopaminergic neuronal cells, primarily due to the generation of highly reactive DA and DOPA quinones. Quinone formation is closely linked to other representative hypotheses such as mitochondrial dysfunction, inflammation, oxidative stress, and dysfunction of the ubiquitin-proteasome system, in the pathogenesis of neurodegenerative diseases such as Parkinson’s disease and methamphetamine-induced neurotoxicity. Therefore, pathogenic effects of the DA quinone have focused on dopaminergic neuron-specific oxidative stress. Recently, various studies have demonstrated that some intrinsic molecules and several drugs exert protective effects against DA quinone-induced damage of dopaminergic neurons. In this article, we review recent studies on some neuroprotective approaches against DA quinone-induced dysfunction and/or degeneration of dopaminergic neurons. Special issue article in honor of Dr. Akitane Mori.  相似文献   

9.
Parkinson’s disease (PD) is well known as a neurodegenerative disorder with progressive loss of dopaminergic (DA) neurons. Nei-like 1 (NEIL1) is one of four mammalian DNA glycosylases involved in the progression of various diseases, including neuroinflammation. However, it is still unknown if the expression changes of NEIL1 could contribute to PD progression. In the present study, we established mouse model with PD using 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to explore the effects of NEIL1 on PD development. Here, we found that NEIL1 deletion significantly promoted the motor dysfunction in the wild type mice treated with 6-OHDA. Furthermore, DA neuronal loss was further accelerated by NEIL1 deletion in 6-OHDA-injected mice, as evidenced by the significantly reduced expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT). Furthermore, in PD mice induced by MPTP, remarkably reduced expression of NEIL1 was observed in nigra and striatum of mice. A strong positive correlation was detected in the expression of NEIL1 and the survival rate of DA neurons. Also, NEIL1 ablation further elevated the DA neuronal loss in MPTP-treated mice, accompanied with higher glial activation, as evidenced by the obvious up-regulation of glial fibrillary acidic protein (GFAP) and Ionized calcium-Binding Adapter molecule 1 (Iba1). Moreover, MPTP-triggered inflammation was highly aggravated by the loss of NEIL1 through inducing the expression of pro-inflammatory cytokines and chemokines. In contrast, promoting NEIL1 expression effectively reversedPD progression induced by MPTP in mice. Together, these results demonstrated that NEIL1 insufficiency might be a contributing factor for the progression of PD, which therefore could be considered as a novel candidate to develop effective treatments against PD progression.  相似文献   

10.
The phenomenon of aging is known to modulate many disease conditions including neurodegenerative ailments like Parkinson’s disease (PD) which is characterized by selective loss of dopaminergic neurons. Recent studies have reported on such effects, as calorie restriction, in modulating aging in living systems. We reason that PD, being an age-associated neurodegenerative disease might be modulated by interventions like calorie restriction. In the present study we employed the transgenic Caenorhabditis elegans model (Pdat-1::GFP) expressing green fluorescence protein (GFP) specifically in eight dopaminergic (DA) neurons. Selective degeneration of dopaminergic neurons was induced by treatment of worms with 6-hydroxy dopamine (6-OHDA), a selective catecholaminergic neurotoxin, followed by studies on effect of calorie restriction on the neurodegeneration. Employing confocal microscopy of the dopaminergic neurons and HPLC analysis of dopamine levels in the nematodes, we found that calorie restriction has a preventive effect on dopaminergic neurodegeneration in the worm model. We further studied the role of sirtuin, sir-2.1, in modulating such an effect. Studies employing RNAi induced gene silencing of nematode sir-2.1, revealed that presence of Sir-2.1 is necessary for achieving the protective effect of calorie restriction on dopaminergic neurodegeneration.Our studies provide evidence that calorie restriction affords, an sir-2.1 mediated, protection against the dopaminergic neurodegeneration, that might have implications for neurodegenerative Parkinson’s disease.  相似文献   

11.
Parkinson's disease (PD) is a movement disorder characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of intraneuronal inclusions called Lewy bodies, which are composed mainly of α-synuclein (α-syn). Selegiline (Sel) is a noncompetitive monoamino oxidase B inhibitor that has neuroprotective effects and has been administered to PD patients as monotherapy or in combination with l-dopa. Besides its known effect of increasing the level of dopamine (DA) by monoamino oxidase B inhibition, Sel induces other effects that contribute to its action against PD. We evaluated the effects of Sel on the in vitro aggregation of A30P and wild-type α-syn. Sel delays fibril formation by extending the lag phase of aggregation. In the presence of Sel, electron microscopy reveals amorphous heterogeneous aggregates, including large annular species, which are innocuous to a primary culture enriched in dopaminergic neurons, while their age-matched counterparts are toxic. The inhibitory effect displayed by Sel is abolished when seeds (small fibril pieces) are added to the aggregation reaction, reinforcing the hypothesis that Sel interferes with early nuclei formation and, to a lesser extent, with fibril elongation. NMR experiments indicate that Sel does not interact with monomeric α-syn. Interestingly, when added in combination with DA (which favors the formation of toxic protofibrils), Sel overrides the inhibitory effect of DA and favors fibrillation. Additionally, Sel blocks the formation of smaller toxic aggregates by perturbing DA-dependent fibril disaggregation. These effects might be beneficial for PD patients, since the sequestration of protofibrils into fibrils or the inhibition of fibril dissociation could alleviate the toxic effects of protofibrils on dopaminergic neurons. In nondopaminergic neurons, Sel might slow the fibrillation, giving rise to the formation of large nontoxic aggregates.  相似文献   

12.
Activation of cannabinoid receptor type II (CB2R) by AM1241 has been demonstrated to protect dopaminergic neurons in Parkinson's disease (PD) animals. However, the specific mechanisms of the action of the CB2R agonist AM1241 for PD treatment have not been characterized. Wild-type (WT), CB1R knockout (CB1-KO), and CB2R knockout (CB2-KO) mice were exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 1 week to obtain a PD mouse model. The therapeutic effects of AM1241 were evaluated in each group. Behavioral tests, analysis of neurotransmitters, and immunofluorescence results demonstrated that AM1241 ameliorated PD in WT animals and CB1-KO animals. However, AM1241 did not ameliorate PD symptoms in CB2-KO mice. RNA-seq analysis identified the lncRNA Xist as an important regulator of the protective actions of AM1241. Specifically, AM1241 allowed WT and CB1-KO animals treated with MPTP to maintain normal expression of Xist, which affected the expression of miR-133b-3p and Pitx3. In vitro, overexpression of Xist or AM1241 protected neuronal cells from death induced by 6-hydroxydopamine and increased Pitx3 expression. The CB2 receptor agonist AM1241 alleviated PD via regulation of the Xist/miR-133b-3p/Pitx3 axis, and revealed a new approach for PD treatment.  相似文献   

13.
It is believed that both mitochondrial dysfunction and oxidative stress play important roles in the pathogenesis of Parkinson's disease (PD). We studied the effect of chronic systemic exposure to the mitochondrial inhibitor rotenone on the uptake, content, and release of striatal neurotransmitters upon neuronal activity and oxidative stress, the latter simulated by H(2)O(2) perfusion. The dopamine content in the rat striatum is decreased simultaneously with the progressive loss of tyrosine hydroxylase (TH) immunoreactivity in response to chronic intravenous rotenone infusion. However, surviving dopaminergic neurons take up and release only a slightly lower amount of dopamine (DA) in response to electrical stimulation. Striatal dopaminergic neurons showed increased susceptibility to oxidative stress by H(2)O(2), responding with enhanced release of DA and with formation of an unidentified metabolite, which is most likely the toxic dopamine quinone (DAQ). In contrast, the uptake of [(3)H]choline and the electrically induced release of acetylcholine increased, in coincidence with a decline in its D(2) receptor-mediated dopaminergic control. Thus, oxidative stress-induced dysregulation of DA release/uptake based on a mitochondrial deficit might underlie the selective vulnerability of dopaminergic transmission in PD, causing a self-amplifying production of reactive oxygen species, and thereby contributing to the progressive degeneration of dopaminergic neurons.  相似文献   

14.
This study demonstrated that dopaminergic MN9D and PC12 cells were more vulnerable than non-dopaminergic N2A cells to the challenge by proteasome inhibitor MG132, which could be alleviated by reductants and alpha-methyl tyrosine (alpha-MT), a specific tyrosine hydroxylase inhibitor. Furthermore, challenging non-dopaminergic N2A cells with exogenous DA could aggravate MG132-induced cell viability decrease, which could be abrogated by reductants but not by alpha-MT. It was observed that alpha-MT could decrease endogenous DA content in dopaminergic MN9D and PC12 cells while N2A cells could take in exogenous DA into cytosol. The endogenous DA in dopaminergic cells was demonstrated to inhibit proteasome activity in the cells and further sensitize the proteasome to MG132 inhibition. In addition, the endogenous DA was also implicated for the increased level of lipid peroxidation and ubiquitinated proteins as well as inclusion bodies formation when non-dopaminergic cells were challenged with exogenous DA. Taken together it is proposed that endogenous DA in dopaminergic neurons could promote selective dopaminergic neurodegeneration, especially under the conditions of exopathic or idiopathic defects of ubiquitin–proteasome system (UPS), which may be abolished by reductant remedy.  相似文献   

15.
This study demonstrated that dopaminergic MN9D and PC12 cells were more vulnerable than non-dopaminergic N2A cells to the challenge by proteasome inhibitor MG132, which could be alleviated by reductants and alpha-methyl tyrosine (alpha-MT), a specific tyrosine hydroxylase inhibitor. Furthermore, challenging non-dopaminergic N2A cells with exogenous DA could aggravate MG132-induced cell viability decrease, which could be abrogated by reductants but not by alpha-MT. It was observed that alpha-MT could decrease endogenous DA content in dopaminergic MN9D and PC12 cells while N2A cells could take in exogenous DA into cytosol. The endogenous DA in dopaminergic cells was demonstrated to inhibit proteasome activity in the cells and further sensitize the proteasome to MG132 inhibition. In addition, the endogenous DA was also implicated for the increased level of lipid peroxidation and ubiquitinated proteins as well as inclusion bodies formation when non-dopaminergic cells were challenged with exogenous DA. Taken together it is proposed that endogenous DA in dopaminergic neurons could promote selective dopaminergic neurodegeneration, especially under the conditions of exopathic or idiopathic defects of ubiquitin-proteasome system (UPS), which may be abolished by reductant remedy.  相似文献   

16.
Parkinson’s disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates β-catenin protein levels in vivo. Stabilization of β-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of β-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and β-catenin-induced cell death.  相似文献   

17.
Excessive reactive oxygen species (ROS) generated from abnormal cellular process lead to various human diseases such as inflammation, ischemia, and Parkinson’s disease (PD). Sensitive to apoptosis gene (SAG), a RING-FINGER protein, has anti-apoptotic activity and anti-oxidant activity. In this study, we investigate whether Tat-SAG, fused with a Tat domain, could protect SH-SY5Y neuroblastoma cells against 1-methyl-4-phenylpyridinium (MPP+) and dopaminergic (DA) neurons in the substantia nigra (SN) against 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) toxicity. Western blot and immunohistochemical analysis showed that, unlike SAG, Tat-SAG transduced efficiently into SH-SY5Y cells and into the brain, respectively. Tat-SAG remarkably suppressed ROS generation, DNA damage, and the progression of apoptosis, caused by MPP+ in SH-SY5Y cells. Also, immunohistochemical data using a tyrosine hydroxylase antibody and cresyl violet staining demonstrated that Tat-SAG obviously protected DA neurons in the SN against MPTP toxicity in a PD mouse model. Tat-SAG-treated mice showed significant enhanced motor activities, compared to SAG- or Tat-treated mice. Therefore, our results suggest that Tat-SAG has potential as a therapeutic agent against ROS-related diseases such as PD.  相似文献   

18.
Parkinson’s disease (PD) is a neurodegenerative disorder due to loss of dopaminergic neurons in the substantia nigra pars compacta (SNC). PD finally leads to incapacitating symptoms including motor and cognitive deficits. This study was undertaken to assess protective effect of the flavanone hesperetin against striatal 6-hydroxydopamine lesion and to explore in more detail some underlying mechanisms including apoptosis, inflammation and oxidative stress. In this research study, intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats received hesperetin (50 mg/kg/day) for 1 week. Hesperetin reduced apomorphine-induced rotational asymmetry and decreased the latency to initiate and the total time on the narrow beam task. It also attenuated striatal malondialdehyde and enhanced striatal catalase activity and GSH content, lowered striatal level of glial fibrillary acidic protein as an index of astrogliosis and increased Bcl2 with no significant change of the nuclear factor NF-kB as a marker of inflammation. Hesperetin treatment was also capable to mitigate nigral DNA fragmentation as an index of apoptosis and to prevent loss of SNC dopaminergic neurons. This study indicated the protective effect of hesperetin in an early model of PD via attenuation of apoptosis, astrogliosis marker and oxidative stress and it may be helpful as an adjuvant therapy for management of PD at its early stages.  相似文献   

19.
Parkinson's disease (PD) is a neurodegenerative disorder with motor symptoms caused by the loss of dopaminergic (DA) cells and consequently dopamine release in the nigrostriatal system. In vivo and in vitro 6-hydroxydopamine (6-OHDA) PD models are widely used to study the effect of striatal dopamine depletion as well as novel neuroprotective or restorative therapeutic strategies for PD. In the present study, we investigated in vitro the toxicity of 6-OHDA on DA neurons derived from E14 rat ventral mesencephalon (VM) and the neuroprotective efficiency of erythropoietin (Epo) on VM-derived cell cultures against 6-OHDA toxicity. Using E14 VM-derived DA-rich primary cultures, we could demonstrate that 6-OHDA toxicity works in a time-and concentration-dependent way, and leads to cell death not only in DA cells but also in non-DA cells in direct relation to concentration and incubation times. In addition, we found that 6-OHDA toxicity induces caspase-3 activation and an increment of intracellular reactive oxygen species (ROS) in VM-derived cultures. When 6-OHDA-treated VMs were cultured in the presence of the anti-apoptotic protein erythropoietin (Epo), the total neuronal population, including the DA neurons, was protected. However, untreated VM cultures exposed to Epo showed an increase in the total neuronal population, but not an additional increase in DA neuron cell number.These findings suggest that 6-OHDA toxicity is time and concentration-dependent and does not exclusively affect DA neurons. In high concentration and long incubation times, 6-OHDA influences the survival of other neuronal and non-neuronal cell populations derived from the VM cultures. 6-OHDA toxicity induces caspase-3 activation, indicating cell death via the apoptotic pathway which could be restricted or even prevented by pre-exposure to Epo, known to interact via the apoptotic pathway. Our results support and expand on previous findings showing that Epo is an interesting candidate molecule to mediate neuroprotective effects on DA neurons in PD. Furthermore, it could be used in promoting the survival of DA neurons after transplantation in clinical trials.  相似文献   

20.
Parkinson disease (PD) is characterized by the specific degeneration of dopaminergic (DA) neurons in substantia nigra and has been linked to a variety of environmental and genetic factors. Rotenone, an environmental PD toxin, exhibited much greater toxicity to DA neurons in midbrain neuronal cultures than to non-DA neurons. The effect was significantly decreased by the microtubule-stabilizing drug taxol and mimicked by microtubule-depolymerizing agents such as colchicine or nocodazole. Microtubule depolymerization disrupted vesicular transport along microtubules and caused the accumulation of dopamine vesicles in the soma. This led to increased oxidative stress due to oxidation of cytosolic dopamine leaked from vesicles. Inhibition of dopamine metabolism significantly reduced rotenone toxicity. Thus, our results suggest that microtubule depolymerization induced by PD toxins such as rotenone plays a key role in the selective death of dopaminergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号