首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We have isolated cDNA clones specific for Arabidopsis thaliana cytosolic ribosomal protein S11 and plastid ribosomal protein CS17, both of which are encoded in the nuclear genome, through the use of the corresponding soybean and pea cDNAs as probes, respectively. The nucleotide sequences of all four cDNAs were determined. The amino acid sequences derived from these cDNA sequences show that the soybean and A. thaliana S11 cDNAs encode proteins that are homologous to rat ribosomal protein S11 and that the pea and A. thaliana CS17 cDNAs encode proteins that are homologous to Escherichia coli ribosomal protein S17. The plant S11 cytosolic ribosomal proteins also show significant sequence similarity to both E. coli ribosomal protein S17 and plastid CS17 indicating that these are all related proteins. Comparison of A. thaliana CS17 with A. thaliana S11 and with E. coli S17 suggests that CS17 is more related to S17 than it is to S11. These results support the idea that the gene encoding CS17 was derived from a prokaryotic endosymbiont and not from a duplication of the eukaryotic S11 gene.  相似文献   

2.
Sphingolipid long-chain base (LCB) kinase catalyses the phosphorylation of sphingolipid LCB to form LCB 1-phosphate. Based on sequence identity to a murine sphingosine kinase (murine SPHK1a), we isolated and characterized a LCB kinase-like cDNA in Arabidopsis thaliana. The deduced amino acid sequence of the homologous cDNA shows several regions that are highly conserved in LCB kinases from mouse, yeast, human and Caenorhabditis elegans. These regions are not similar to those of other known kinase families. For a functional identification, the homologous cDNA from A. thaliana was expressed in Escherichia coli, and LCB kinase activity was measured. The recombinant AtLcbk1 protein was found to utilize ATP and sphinganine. These results indicate the first identification of a gene coding for a LCB kinase in plants.  相似文献   

3.
The molybdenum co-factor (Moco) is an essential part of all eukaryotic molybdoenzymes. It is a molybdopterin and reveals the same principal structure in eubacteria, archaebacteria and eukaryotes. This paper reports the isolation of cnx1 , a cDNA clone of Arabidopsis thaliana which complements the Escherichia coli Moco mutant mogA . The mapping data of this cDNA correlate well with the mapping position of the A. thaliana molybdenum cofactor locus chl6 . As mutants in chl6 are known to be repairable by high concentrations of molybdate, the defective gene is very likely to be involved in the last step of Moco biosynthesis, that is, the insertion of molybdenum into molybdopterin. The protein encoded by cnx1 shows a two-domain structure: the N-terminal domain is homologous to the E. coli Moco protein MoeA, the C-terminal domain is homologous to the E. coli Moco proteins MoaB and MogA, respectively. These homologies show that part of the prokaryotic Moco biosynthetic pathway accomplished by monofunctional proteins in E. coli , is performed by a single multifunctional protein in eukaryotes. In addition Cnx1 is homologous to the eukaryotic proteins Gephyrin, a rat neuroprotein, and Cinnamon, a Drosophila protein with a function in Moco biosynthesis. These proteins also show a two-domain structure but the order of the domains is inversed as compared with Cnx1. Southern analysis indicates the existence of at least one further member, in addition to the cnx1 gene, of this novel gene family in the Arabidopsis genome.  相似文献   

4.
A cDNA clone encoding a monofunctional aspartate kinase (AK, ATP:L-aspartate 4-phosphotransferase, EC 2.7.2.4) has been isolated from an Arabidopsis thaliana cell suspension cDNA library using a homologous PCR fragment as hybridizing probe. Amplification of the PCR fragment was done using a degenerate primer designed from a conserved region between bacterial monofunctional AK sequences and a primer identical to a region of the A. thaliana bifunctional aspartate kinase-homoserine dehydrogenase (AK-HSDH). By comparing the deduced amino acid sequence of the fragment with the bacterial and yeast corresponding gene products, the highest identity score was found with the Escherichia coli AKIII enzyme that is feedback-inhibited by lysine (encoded by lysC). The absence of HSDH-encoding sequence at the COOH end of the peptide further implies that this new cDNA is a plant lysC homologue. The presence of two homologous genes in A. thaliana is supported by PCR product sequences, Southern blot analysis and by the independent cloning of the corresponding second cDNA (see Tang et al., Plant Molecular Biology 34, pp. 287–294 [this issue]). This work is the first report of cloning a plant putative lysine-sensitive monofunctional AK cDNA. The presence of at least two genes is discussed in relation to possible different physiological roles of their respective product.  相似文献   

5.
6.
A cDNA encoding a homolog of mammalian serine racemase, a unique enzyme in eukaryotes, was isolated from Arabidopsis thaliana and expressed in Escherichia coli cells. The gene product, of which the amino acid residues for binding pyridoxal 5'-phosphate (PLP) are conserved in this as well as mammalian serine racemases, catalyzes not only serine racemization but also dehydration of serine to pyruvate. The enzyme is a homodimer and requires PLP and divalent cations, Ca2+, Mg2+, Mn2+, Fe2+, or Ni2+, at alkaline pH for both activities. The racemization process is highly specific toward L-serine, whereas L-alanine, L-arginine, and L-glutamine were poor substrates. The Vmax/Km values for racemase activity of L- and D-serine are 2.0 and 1.4 nmol/mg/min/mM, respectively, and those values for L- and D-serine on dehydratase activity are 13 and 5.3 nmol/mg/min/mM, i.e. consistent with the theory of racemization reaction and the specificity of dehydration toward L-serine. Hybridization analysis showed that the serine racemase gene was expressed in various organs of A. thaliana.  相似文献   

7.
As in many bacterial species, the first enzymatic reaction of the aspartate-family pathway in plants is mediated by several isozymes of aspartate kinase (AK) that are subject to feedback inhibition by the end-product amino acids lysine or threonine. So far, only cDNAs and genes encoding threonine-sensitive AKs have been cloned from plants. These were all shown to encode polypeptides containing two linked activities, namely AK and homoserine dehydrogenase (HSD), similar to the Escherichia coli thrA gene encoding a threonine-sensitive bifunctional AK/HSD isozyme. In the present report, we describe the cloning of a new Arabidopsis thaliana cDNA that is relatively highly homologous to the E. coli lysC gene encoding the lysine-sensitive AK isozyme. Moreover, similar to the bacterial lysine-sensitive AK, the polypeptide encoded by the present cDNA is monofunctional and does not contain an HSD domain. These observations imply that our cloned cDNA encodes a lysine-sensitive AK. Southern blot hybridization detected a single gene highly homologous to the present cDNA, plus an additional much less homologous gene. This was confirmed by the independent cloning of an additional Arabidopsis cDNA encoding a lysine-sensitive AK (see accompanying paper). Northern blot analysis suggested that the gene encoding this monofunctional AK cDNA is abundantly expressed in most if not all tissues of Arabidopsis.  相似文献   

8.
根据GenBank收录的CRC基因cDNA序列设计引物,以短角果荠菜(Capsella bursa-pastoris)为材料,通过RT-PCR扩增出与拟南芥CRC基因同源的全长cDNA,进行测序、比对及同源性分析.结果显示,克隆的该基因cDNA序列与报道的拟南芥CRC序列一致性达到93%,可以推断其为荠菜CRC基因的cDNA(cbCRC).以Ti质粒pWM101为载体,构建了由CaMV35S启动子调控的cbCRC基因植物表达载体pWM101-cbCRC, 采用根癌农杆菌滴注柱头法转化拟南芥,获得了转cbCRC基因的拟南芥植株.转基因拟南芥心皮果荚形态大小发生了一定的变化,说明荠菜cbCRC基因在拟南芥中的表达对拟南芥心皮形态和大小都产生了一定影响,但其并没有使拟南芥表现出荠菜短角果的形态.  相似文献   

9.
A cDNA homologous to beta-carotene hydroxylase from Arabidopsis thaliana was isolated from the green alga Haematococcus pluvialis. The predicted amino acid sequence for this enzyme shows homology to the three known plant beta-carotene hydroxylases from Arabidopsis thaliana and from Capsicum annuum (38% identity) and to prokaryote carotenoid hydroxylases (32-34% identities). Heterologous complementation using E. coli strains which were genetically engineered to produce carotenoids indicated that the H. pluvialis beta-carotene hydroxylase was able to catalyse not only the conversion of beta-carotene to zeaxanthin but also the conversion of canthaxanthin to astaxanthin. Furthermore, Northern blot analysis revealed increased beta-carotene hydroxylase mRNA steady state levels after induction of astaxanthin biosynthesis. In accordance with the latter results, it is proposed that the carotenoid hydroxylase characterized in the present publication is involved in the biosynthesis of astaxanthin during cyst cell formation of H. pluvialis.  相似文献   

10.
A cDNA segment from Arabidopsis thaliana with similarity to the ribA gene of Bacillus subtilis was sequenced. A similar gene was cloned from tomato. The open reading frame of A. thaliana was fused to the malE gene of Escherichia coli and was expressed in a recombinant E. coli strain. The recombinant fusion protein was purified and shown to have GTP cyclohydrolase II activity as well as 3,4-dihydroxy-2-butanone 4-phosphate synthase activity. The cognate gene was amplified by polymerase chain reaction from chromosomal Arabidopsis DNA and was shown to contain six introns. Intron 4 is located in the region connecting the GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase domain of the putative domains catalyzing the two reaction steps. By comparison with the bacterial ribA gene, the Arabidopsis gene contains an additional 5' element specifying about 120 amino acid residues. This segment contains numerous serine and threonine residues and does not show similarity with other known sequences. The N-terminal segment is not required for catalytic activity and is likely to serve as signal sequence for import into chloroplasts.  相似文献   

11.
12.
【目的】丝氨酸蛋白酶(Serine protease,SP)是以丝氨酸为活性中心的重要的蛋白水解酶。在昆虫中,丝氨酸蛋白酶参与消化、发育、先天免疫反应和组织重建等重要的生理过程。本试验以苜蓿夜蛾Heliothis viriplaca为材料,克隆其丝氨酸蛋白酶基因的cDNA序列,再对该基因进行原核表达并对表达产物进行活性测定研究。【方法】从苜蓿夜蛾中肠中提取总RNA,通过RT-PCR和RACE技术,扩增获得丝氨酸蛋白酶基因cDNA全长序列,用大肠杆菌E.coli表达系统进行表达;再对表达的重组蛋白进行变性、纯化与复性,并以BTEE为底物进行活性测定。【结果】克隆得到的苜蓿夜蛾中肠丝氨酸蛋白酶基因命名为Hv SP,该基因已登录Gen Bank,登录号为KT907053。该基因全长1 017 bp,开放阅读框为886 bp,编码295个氨基酸,分子量约为30.8 ku,等电点为8.27,推导的氨基酸序列与其他昆虫丝氨酸蛋白酶氨基酸序列相似性在46%~92%之间。在Tris-HCl缓冲液中,p H为8.5时,复性的重组蛋白活性最高,为28.7 U/m L。荧光定量PCR结果表明,Hv SP基因的m RNA在苜蓿夜蛾的多个组织中特异性表达,且在中肠中表达量最高,但在唾腺中未检测到Hv SP的m RNA表达。【结论】该研究克隆了一个新的苜蓿夜蛾丝氨酸蛋白酶基因的cDNA序列,且原核表达后的重组蛋白经过变性、纯化及复性后具有活性,为进一步探索丝氨酸蛋白酶在昆虫体内的生理生化功能奠定了基础。  相似文献   

13.
14.
An S-receptor kinase (SRK) cDNA, SRK-910, from the active S-locus in a self-incompatible Brassica napus W1 line has been isolated and characterized. The SRK-910 gene is predominantly expressed in pistils and segregates with the W1 self-incompatibility phenotype in an F2 population derived from a cross between the self-incompatible W1 line and a self-compatible Westar line. Analysis of the predicted amino acid sequence demonstrated that the extracellular receptor domain is highly homologous to S-locus glycoproteins, whereas the cytoplasmic kinase domain contains conserved amino acids present in serine/threonine kinases. An SRK-910 kinase protein fusion was produced in Escherichia coli and found to contain kinase activity. Phosphoamino acid analysis confirmed that only serine and threonine residues were phosphorylated. Thus, the SRK-910 gene encodes a functional serine/threonine receptor kinase.  相似文献   

15.
Human F1-ATPase: molecular cloning of cDNA for the beta subunit   总被引:4,自引:0,他引:4  
F1-ATPase is the major enzyme for ATP synthesis, and its beta subunit is the catalytic site. To date, no full-length cDNA for the eukaryotic F1 gene has been reported. Human F1 was studied because of its importance in medicine and cell biology. Here we report molecular cloning of a full-length cDNA for the human F1 beta subunit and purification of the human F1 beta subunit. The HeLa cell cDNA library constructed in an expression vector gamma gt11 was screened with antiserum against the yeast F1 beta subunit. One of the positive phage DNAs containing the human F1 beta gene and its flanking regions (1.8 kilobase pairs) was sequenced by the dideoxy chain termination method. The open reading frame started from a putative signal presequence, which was rich in both serine and arginine. There was a homologous segment in the signal presequence of human ornithine transcarbamoylase and that of F1 beta. The precursor of F1 beta was expressed in E. coli harboring a plasmid which had been constructed with T5 promotor and the F1 beta cDNA. Both the precursor and mature form of F1 beta were detected in HeLa cells in a pulse-chase experiment. The amino acid sequence of 480 residues (51,568.3 daltons) following the presequence was highly homologous with that of mature beef heart F1 beta (97.5%) and E. coli F1 beta (71.7%), but the codon usage in the human gene was very different from those of reported genes coding for F1 beta of other species.  相似文献   

16.
The sequence of tryptic and chymotryptic peptides from cytosolic and mitochondrial rabbit liver serine hydroxymethyltransferase are compared to the proposed sequence of a protein coded for by the glyA gene of Escherichia coli. The E. coli glyA gene is believed to code for serine hydroxymethyltransferase. Extensive sequence homology between these peptides were found for the proposed E. coli enzyme in the aminoterminal two-thirds of the molecule. All three proteins have identical sequences from residue 222-231. This sequence is known to contain the lysyl residue which forms a Schiff's base with pyridoxal-P in the two rabbit liver enzymes. These results support the interpretation that the proposed sequence of E. coli serine hydroxymethyltransferase is correct. The data also show that cytosolic and mitochondrial serine hydroxymethyltransferase are homologous proteins.  相似文献   

17.
Lipases are useful enzymes that are primarily responsible for the hydrolysis of acylglycerides during lipid processing. We have cloned a lipase gene from a rice seed coat cDNA library (Oryza sativa cv. Dongjin). The cDNA was 1,445 bp in length and encoded 361 amino acid residues (GenBank accession No. AY580163). The deduced amino acid sequence had 82 and 56% identity to Oryza sativa (cv. Chuchung) and Arabidopsis thaliana lipase genes, respectively, and there was a GxSxG consensus motif near the catalytic triad at the active serine site. The deduced sequence had little homology to mammalian and microbial lipases. When the Oryza sativa lipase gene was expressed in Escherichia coli with the pET expression system, activity was found mainly in the pellet fraction. The purified product had lipolytic activity towards tributyrin and was about 40 kDa in size.  相似文献   

18.
Two cDNAs encoding feedback inhibition-insensitive serine acetyltransferases of Arabidopsis thaliana were expressed in the chromosomal serine acetyltransferase-deficient and L-cysteine non-utilizing Escherichia coli strain JM39-8. The transformants produced 1600 to 1700 mg l(-1) of L-cysteine and L-cystine from glucose. The amount of these amino acids produced per cell was 30 to 60% higher than that of an E. coli strain carrying mutant serine acetyltransferase less sensitive to feedback inhibition.  相似文献   

19.
Abscisic acid (ABA) is a plant hormone which plays an important role in seed development and dormancy and in plant response to environmental stresses. An ABA-deficient mutant of Nicotiana plumbaginifolia, aba2, was isolated by transposon tagging using the maize Activator transposon. The aba2 mutant exhibits precocious seed germination and a severe wilty phenotype. The mutant is impaired in the first step of the ABA biosynthesis pathway, the zeaxanthin epoxidation reaction. ABA2 cDNA is able to complement N.plumbaginifolia aba2 and Arabidopsis thaliana aba mutations indicating that these mutants are homologous. ABA2 cDNA encodes a chloroplast-imported protein of 72.5 kDa, sharing similarities with different mono-oxigenases and oxidases of bacterial origin and having an ADP-binding fold and an FAD-binding domain. ABA2 protein, produced in Escherichia coli, exhibits in vitro zeaxanthin epoxidase activity. This is the first report of the isolation of a gene of the ABA biosynthetic pathway. The molecular identification of ABA2 opens the possibility to study the regulation of ABA biosynthesis and its cellular location.  相似文献   

20.
A full-length cDNA clone encoding fructose-6-phosphate, 2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana (AtF2KP) was isolated. The encoded protein is composed of two different regions: (i) a 400 amino acid COOH-terminal region, covering the catalytic region of the protein which is homologous to enzymes from other eukaryotes. This region is highly conserved among plant species (88% identity to spinach F2KP). (ii) A 345 amino acid plant-specific NH(2)-terminal region, with 59% identity to spinach F2KP, which is composed of homologous motifs and intermittent variable sequences. Western blots show that F2KP from several plant species migrates in sodium dodecyl sulphate-polyacrylamide gel electrophoresis as a similar sized (93 kDa) protein. AtF2KP was expressed in Escherichia coli as a full length and a truncated (without the NH(2)-terminal region) fusion protein. Both forms had kinase as well as phosphatase activity, but presence of the NH(2)-terminal region influenced the ratio between the two activities. It is suggested that the NH(2)-terminal region represents a regulatory region, which defines specific properties of the plant enzymes. A genomic clone for the corresponding gene, AtF2KP, was isolated. The clone (9519 bp) included 23 exons, 22 introns and the promoter sequence. Southern blot analysis showed only one copy of the gene in the A. thaliana genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号