首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Metabotropic glutamate receptor (type 1; mGluR1 ) is expressed predominantly in the hippocampus and the cerebellum. Using cultured cerebellar granule cells, we investigated the regulation of the mGluR1 mRNA expression. Levels of mGluR1 mRNA were decreased to less than half by high potassium stimulation and by glutamate and quisqualate. Although these glutamate receptor agonists tested are also known to cause neuronal cell death in culture, the effect of cell death cannot explain the observed reduction in mGluR1 mRNA because of the following reasons: (a) antagonists of N -methyl-D-aspartate and non- N -methyl-D-aspartate receptors inhibited cell death, but not the reduction of the level of mGluR1 mRNA; (b) mGluR1 mRNA returned to its initial level 48 h after the agonist application; and (c) the mRNA level of one of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptors (GluR1) was not altered by these conditions. Therefore, we conclude that the glutamate or quisqualate stimulation can specifically inhibit the expression of mGluR1 mRNA. The dose response of quisqualate for the reduction in mGluR1 mRNA is consistent with that for inositol phosphate formation stimulated through the cloned mGluR1 . The mRNA reduction did not require extracellular calcium. Desensitization of mGluR1 with phorbol ester abolished the mRNA reduction. These results suggest that the reduction in mGluR1 mRNA is mediated by the activation of the metabotropic receptor itself.  相似文献   

2.
Abstract: Using a range of Ca2+ channel blockers we have investigated the Ca2+ channel subtypes that mediate the depolarisation-induced elevation of the intracellular free Ca2+ concentration ([Ca2+]i) and glutamate release from cultured rat cerebellar granule cells. ω-Conotoxin-GVIA had little effect on either the transient or plateau phase of the depolarisation-induced [Ca2+]i rise or on glutamate release, ruling out a significant role for N-type Ca2+ channels. Nifedipine substantially inhibited the initial transient rise in [Ca2+]i and the plateau phase of the [Ca2+]i rise and glutamate release, suggesting the involvement of L-type Ca2+ channels. Both ω-agatoxin and ω-conotoxin-MVIIC also inhibited the transient rise in [Ca2+]i and glutamate release but not the plateau phase of the [Ca2+]i rise. The inhibitions by nifedipine were not increased by coaddition of ω-conotoxin-MVIIC, suggesting overlapping sensitivity to these channel blockers. These data show that glutamate release from granule cells in response to depolarisation with a high KCI level involves Ca2+ currents that are sensitive to nifedipine, ω-agatoxin-IVA, and also ω-conotoxin-MVIIC. The overlapping sensitivity of the channels to these toxins prevents attribution of any of the phases of the [Ca2+]i rise or glutamate release to distinct P-, Q-, or O-type Ca2+ currents.  相似文献   

3.
Endogenous amino acid release was measured in developing cerebellar neuronal cells in primary culture. In the presence of 25 mM K+ added to the culture medium, cerebellar cells survived more than 3 weeks and showed a high level of differentiation. These cultures are highly enriched in neurons, and electron-microscopic observation of these cells after 12 days in vitro (DIV) confirmed the presence of a very large proportion of cells with the morphological characteristics of granule cells, making synapses containing many synaptic vesicles. Synaptogenesis was also confirmed by immunostaining the cells with antisera against synapsin I and synaptophysin, two proteins associated with synaptic vesicles. From these cultures, endogenous glutamate release stimulated by 56 mM K+ was already detected after only a few days in culture, the maximal release value (1,579% increase over basal release) being reached after 10 DIV. In addition to that of glutamate, the release of aspartate, asparagine, alanine, and, particularly, gamma-aminobutyric acid (GABA) was stimulated by 56 mM K+ after 14 DIV, but to a lesser extent. No increase in serine, glutamine, taurine, or tyrosine release was observed during K+ depolarization. The effect of K+ on amino acid release was strictly Ca2+-dependent. Stimulation of the cells with veratridine resulted in a qualitatively similar effect on endogenous amino acid release. In the absence of Ca2+, 30% of the veratridine effect persisted. The Ca2+-dependent release was quantitatively similar after stimulation by veratridine and K+. Treatment of cerebellar cells with tetanus toxin (5 micrograms/ml) for 24 h resulted in a total inhibition of the Ca2+-dependent component of the glutamate release evoked by K+ or veratridine. It is concluded that glutamate is the main amino acid neurotransmitter of cerebellar cells developed in primary culture under the present conditions and that glutamate is probably mainly released through the exocytosis of synaptic vesicles.  相似文献   

4.
Abstract: Excitatory amino acid (EAA)-induced polyphosphoinositide (PPI) hydrolysis was studied during the development in culture of cerebellar granule cells. The developmental pattern was similar using metabotropic glutamate (Glu) receptor (mGluR) agonists, including L-Glu, quisqualate, and trans -(±)-1-amino-1,3-cyclopentanedicarboxylic acid: The stimulation of [3H]inositol monophosphate ([3H]-InsP) formation was low at 2 days in vitro (DIV), but the response increased steeply, reaching a peak at 4 DIV, followed by a progressive decline. In contrast, carbamylcholine-induced PPI hydrolysis exhibited a plateau after a pronounced increase during the first week in vitro. At 6 DIV, but not at 4 DIV, when the activity peaked, PPI hydrolysis elicited by Glu was reduced by the N -methyl- d -aspartate (NMDA) receptor antagonist MK-801, indicating that in cultured granule cells, NMDA receptors contribute to [3H]-InsP formation and that this component of the response develops relatively late. Accordingly, NMDA-induced [3H]-InsP formation, estimated under Mg2+-free conditions, increased markedly from very low values at 2 DIV to a plateau at 8–10 DIV. The developmental pattern of EAA-induced PPI hydrolysis was paralleled by changes in the level of an mRNA for a specific mGluR subtype ( mGluR1 mRNA). RNA blot analysis performed with the pmGR1 cDNA probe revealed that the hybridization signal in RNA extracts from cultures at 1 DIV was very weak, but mGluR mRNA levels increased dramatically between 1 and 3 DIV, followed by a progressive decrease, so that by 15 DIV the mRNA levels were only ∼10% of the values at 3 DIV. These observations indicate that the functional expression of the mGluR is subject to developmental regulation, which critically involves receptor mRNA levels.  相似文献   

5.
By use of nuclear mini-extracts prepared from cultured cerebellar granule cells in a gel-mobility assay, exogenous N-methyl-D-aspartate (NMDA) or kainate was shown to increase both 12-O-tetradecanoylphorbol 13-acetate-responsive element (TRE)- and cyclic AMP-responsive element (CRE)-binding activity. These increases were specifically prevented by the NMDA receptor antagonist D,L-2-amino-5-phosphonovalerate and the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione, respectively. The increase of TRE-binding activity was dependent on de novo protein synthesis, and its inductions by both NMDA and kainate required extracellular Ca2+. TRE-binding activity was competitively inhibited by the CRE, and vice versa, showing higher DNA-binding affinity to the CRE than to the TRE. A proteolytic clipping bandshift assay demonstrated that the increase in CRE-binding activity could be mediated by the TRE-binding activity. Thus, the TRE-binding activity cross-binding to the CRE could be activated by NMDA or kainate stimulation. The involvement of c-Fos or Fos-related proteins in the TRE- and CRE-binding complexes was shown by a supershift gel-mobility assay using anti-c-Fos antiserum.  相似文献   

6.
Abstract: The effect(s) of a prototypic intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), on glutamate-induced neurotoxicity was investigated in primary cultures of mouse cerebellar granule cells. Glutamate evoked an increase in cytosolic free-Ca2+ levels ([Ca2+]i) that was dependent on the extracellular concentration of Ca2+ ([Ca2+]o). In addition, this increase in [Ca2+]i correlated with a decrease in cell viability that was also dependent on [Ca2+]o. Glutamate-induced toxicity, quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, was shown to comprise two distinct components, an “early” Na+/Cl?-dependent component observed within minutes of glutamate exposure, and a “delayed” Ca2+-dependent component (ED50~50 µM) that coincided with progressive degeneration of granule cells 4–24 h after a brief (5–15 min) exposure to 100 µM glutamate. Quantitative analysis of cell viability and morphological observations identify a “window” in which TMB-8 (at >100 µM) protects granule cells from the Ca2+-dependent, but not the Na+/Cl?-dependent, component of glutamate-induced neurotoxic damage, and furthermore, where TMB-8 inhibits glutamate-evoked increases in [Ca2+]i. These findings suggest that Ca2+ release from a TMB-8-sensitive intracellular store may be a necessary step in the onset of glutamate-induced excitotoxicity in granule cells. However, these conclusions are compromised by additional observations that show that TMB-8 (1) exhibits intrinsic toxicity and (2) is able to reverse its initial inhibitory action on glutamate-evoked increases in [Ca2+]i and subsequently effect a pronounced time-dependent potentiation of glutamate responses. Dantrolene, another putative intracellular Ca2+ antagonist, was completely without effect in this system with regard to both glutamate-evoked increases in [Ca2+]i and glutamate-induced neurotoxicity.  相似文献   

7.
Abstract: Activation of the N-methyl-d -aspartate (NMDA) subtype of glutamate receptor increases levels of intracellular calcium and can lead to stimulation of protein kinase C activity. Several reports have demonstrated that stimulation of protein kinase C can, in turn, increase electrophysiological responses to NMDA in certain cells or in oocytes expressing certain NMDA receptor subunits. In the present study, the effects of protein kinase C activation on NMDA receptor-mediated increases in intracellular Ca2+ levels were investigated in primary cultures of rat cerebellar granule cells using fura-2 fluorescence spectroscopy. Pretreatment of the cells with the protein kinase C activator phorbol 12-myristate 13-acetate (PMA), but not the inactive analogue 4α-phorbol 12-myristate 13-acetate, inhibited NMDA-induced increases in intracellular Ca2+ levels. Coincubation of cells with PMA and the kinase inhibitor staurosporine or calphostin C blocked the PMA effect. The potency of NMDA was reduced twofold, and the potency of the NMDA receptor coagonist, glycine, to enhance the response to NMDA was decreased fourfold by pretreatment of cells with PMA. The effect on glycine was mimicked by pretreatment with okadaic acid, a protein phosphatase inhibitor. PMA treatment did not significantly alter Mg2+ inhibition of the NMDA response but decreased the potency of the competitive antagonist CGS-19755. These data suggest that, in cerebellar granule cells, the function of the NMDA receptor may be subject to feedback inhibition by protein kinase C stimulation. Under physiological conditions, this inhibition may result from a decreased effectiveness of the endogenous coagonists, glutamate and glycine.  相似文献   

8.
Abstract: There are two α-subunit isoforms (α1 and α2) and two β-subunit isoforms (β1 and β2) of Na+,K+-ATPase in astrocytes, but the functional heterodimer composition is not known. Ouabain (0.5–1.0 m M ) increased the levels of α1 and β1 mRNAs, whereas it decreased those of α2 and β2 mRNAs in cultured rat astrocytes. The increases in α1 and β1 mRNAs were observed at 6–48 h after addition of the inhibitor. Immunochemical analyses showed that ouabain increased α1 and β1, but not α2 and β2, proteins, and that the isoforms in control and ouabain-treated cultures were of glial origin. Low extracellular K+ and monensin (20 µ M ) mimicked the effect of ouabain on α1 mRNA. The ouabain-induced increase in α1 mRNA was blocked by the protein synthesis inhibitor cycloheximide (10 µ M ), the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane- N,N,N',N' -tetraacetic acid tetraacetoxymethyl ester (30 µ M ), and the calcineurin inhibitor FK506 (1 n M ). These findings indicate that chronic inhibition of Na+,K+-ATPase up-regulates the α1 and β1, but not α2 and β2, isoforms in astrocytes, suggesting a functional coupling of α1β1 complex. They also suggest that intracellular Na+, Ca2+, and calcineurin may be involved in ouabain-induced up-regulation of the enzyme in astrocytes.  相似文献   

9.
Changes in cytosolic free Ca2+ concentrations in response to glutamate receptor agonists and their interactions were studied in rat cerebellar granule cells grown on coverslips. The intracellular Ca2+ as measured with fura-2 increased by applying kainate (KA), quisqualate (QU), and N-methyl-D-aspartate (NMDA). The effect of KA could not be blocked by the NMDA receptor blocker 2-amino-5-phosphonovaleric acid (AP5). The KA- and QU-induced increase in intracellular free Ca2+ was also observed in a Na(+)-free medium, indicating that this response is not secondarily due to the depolarization. The effect of 10 microM QU on the KA-induced changes in cytosolic free Ca2+ was additive only at low KA concentrations, but QU at 0.1 mM totally blocked the response to KA. In the presence of 10 microM KA, the dose-response curve of QU became biphasic, whereas with 50 microM KA, a reduction of the response was seen around 1-100 microM QU. The effect of NMDA on the QU-induced response was additive only at low QU concentrations. It is proposed that rat cerebellar granule cells in primary culture express separate receptor-channel complexes for NMDA, QU, and KA, but interactions between agonists for these receptor sites exist. Thus, QU when present at intermediate concentrations seems to interact with the KA type of receptor, causing its desensitization. At high QU concentrations, an interaction of QU with the NMDA receptor site is apparent.  相似文献   

10.
We recently reported that prostaglandin E2 (PGE2) stimulated phosphoinositide metabolism in cultured bovine adrenal chromaffin cells and that PGE2 and ouabain, an inhibitor of Na+,K+-ATPase, synergistically induced a gradual secretion of catecholamines from the cells. The effect on catecholamine release was specific for prostaglandin E1 (PGE1) and PGE2 among prostaglandins tested (E1 = E2 greater than F2 alpha greater than D2). The release evoked by PGE2 plus ouabain was greatly reduced in Na+-depleted medium and not observed in Ca2+-free medium. Here we examined the synergistic effect of PGE2 and ouabain on the release with specific reference to ion fluxes. Regardless of the presence of PGE2, ouabain stimulated the release in a dose-dependent manner with half-maximal stimulation at 1 microM, and omission of K+ from the medium, a condition which suppresses the Na+,K+-ATPase activity, also enhanced the release from chromaffin cells exposed to PGE2. Ouabain induced a continuous accumulation of 22Na+ and 45Ca2+, as well as secretion of catecholamines. Although PGE2 itself showed hardly any effects on these cellular responses, PGE2 potentiated all of them induced by ouabain. The time course of catecholamine release was correlated with that of accumulation of 45Ca2+ rather than with that of 22Na+. The release evoked by PGE2 and ouabain was inhibited in a dose-dependent manner by amiloride and the analogue ethylisopropylamiloride, inhibitors of the Na+,H+-antiport, but not by the Na+-channel inhibitor tetrodotoxin nor by the nicotinic receptor antagonist hexamethonium. Ethylisopropylamiloride at 1 microM inhibited PGE2-enhanced accumulation of 22Na+ and 45Ca2+ and release of catecholamine by 40, 83, and 71%, respectively. Activation of the Na+,H+-antiport by elevation of the extracellular pH from 6.6 to 8.0 increased the release of catecholamines linearly. Furthermore, PGE2 induced a sustained increase in intracellular pH by about 0.1 pH unit above the resting value, which was abolished by amiloride or in Na+-free medium. These results taken together indicate that PGE2 activates the Na+,H+-antiport by stimulating phosphoinositide metabolism and that the increase in intracellular Na+ by both inhibition of Na+,K+-ATPase and activation of Na+,H+-antiport may lead to the redistribution of Ca2+, which is the initial trigger of catecholamine release.  相似文献   

11.
Abstract: When primary cultures of cerebellar granule neurons are grown in a physiological concentration of KCl (5 m M ) they undergo apoptosis, which can be prevented by growing the cells in the presence of N -methyl- d -aspartate (NMDA). We now show that ethanol inhibits this trophic effect of NMDA, i.e., promotes apoptosis, and also inhibits the NMDA-induced increase in intracellular Ca2+ concentration in cells grown in 5 m M KCl. Both effects of ethanol show a similar concentration dependence and are reversed by a high concentration of glycine, the co-agonist at the NMDA receptor. The data suggest that the effect of ethanol on apoptosis is mediated, at least in part, by inhibition of NMDA receptor function. This effect of ethanol to increase apoptosis could contribute to the previously described in vivo sensitivity of the developing cerebellum to ethanol-induced damage.  相似文献   

12.
The effect of γ-aminobutyric acid (GABA) and its agonists muscimol and 4,5,6,7-tetrahydroisoxazolo[5-4-c]pyridin-3-ol (THIP) on the development of GABA receptors on cerebellar granule cells was studied by cultivation of the cells in media containing these substances. It was found that the presence of 50 μM GABA in the culture media led to the induction of low-affinity GABA receptors (KD 546 ± 117 nM) in addition to the high-affinity receptors (KD 7 ± 0.5 nM) which were present regardless of the presence of GABA in the culture media. The functional activity of the GABA receptors was tested by investigating the ability of GABA to modulate evoked glutamate release from the cells. It was found that GABA could inhibit evoked glutamate release (ED50 10 ± 3 (μM) only when the cells had been cultured in the presence of 50 νM GABA, 50 μM muscimol, or 150 μM THIP, i.e., under conditions where low-affinity GABA receptors were present on the cells. This inhibitory effect of GABA could be blocked by 120 μM bicuculline and mimicked by 50 μM muscimol or 150 μM THIP whereas 150 μM (-)-baclofen had no effect. It is concluded that GABA acting extracellularly induces formation of low-affinity receptors on cerebellar granule cells and that these receptors are necessary for mediating an inhibitory effect of GABA on evoked glutamate release. The pharmacological properties of these GABA receptors indicate that they belong to the so-called GABAA receptors.  相似文献   

13.
The effects of 16 group-specific, amino acid-modifying agents were tested on ouabain binding, catalytical activity of membrane-bound (rat brain microsomal), sodium dodecyl sulfate-treated Na+,K(+)-ATPase, and Na+,K(+)-pump activity in intact muscle cells. With few exceptions, the potency of various tryptophan, tyrosine, histidine, amino, and carboxy group-oriented drugs to suppress ouabain binding and Na+,K(+)-ATPase activity correlated with inhibition of the Na+,K(+)-pump electrogenic effect. ATP hydrolysis was more sensitive to inhibition elicited by chemical modification than ouabain binding (membrane-bound or isolated enzyme) and than Na+,K(+)-pump activity. The efficiency of various drugs belonging to the same "specificity" group differed markedly. Tyrosine-oriented tetranitromethane was the only reagent that interfered directly with the cardiac receptor binding site as its inhibition of ouabain binding was completely protected by ouabagenin preincubation. The inhibition elicited by all other reagents was not, or only partially, protected by ouabagenin. It is surprising that agents like diethyl pyrocarbonate (histidine groups) or butanedione (arginine groups), whose action should be oriented to amino acids not involved in the putative ouabain binding site (represented by the -Glu-Tyr-Thr-Trp-Leu-Glu- sequence), are equally effective as agents acting on amino acids present directly in the ouabain binding site. These results support the proposal of long-distance regulation of Na+,K(+)-ATPase active sites.  相似文献   

14.
Abstract: In primary cultures of cerebellar neurons glutamate neurotoxicity is mainly mediated by activation of the NMDA receptor, which allows the entry of Ca2+ and Na+ into the neuron. To maintain Na+ homeostasis, the excess Na+ entering through the ion channel should be removed by Na+,K+-ATPase. It is shown that incubation of primary cultured cerebellar neurons with glutamate resulted in activation of the Na+,K+-ATPase. The effect was rapid, peaking between 5 and 15 min (85% activation), and was maintained for at least 2 h. Glutamate-induced activation of Na+,K+-ATPase was dose dependent: It was appreciable (37%) at 0.1 µ M and peaked (85%) at 100 µ M . The increase in Na+,K+-ATPase activity by glutamate was prevented by MK-801, indicating that it is mediated by activation of the NMDA receptor. Activation of the ATPase was reversed by phorbol 12-myristate 13-acetate, an activator of protein kinase C, indicating that activation of Na+,K+-ATPase is due to decreased phosphorylation by protein kinase C. W-7 or cyclosporin, both inhibitors of calcineurin, prevented the activation of Na+,K+-ATPase by glutamate. These results suggest that activation of NMDA receptors leads to activation of calcineurin, which dephosphorylates an amino acid residue of the Na+,K+-ATPase that was previously phosphorylated by protein kinase C. This dephosphorylation leads to activation of Na+,K+-ATPase.  相似文献   

15.
Abstract: The [Ca2+]1 of cerebellar granule cells can be increased in a biphasic manner by addition of NMDA or by depolarization (induced by elevating the extracellular K+ level), which both activate Ca2+ influx. The possibility that these stimuli activate Ca2+-induced Ca2+ release was investigated using granule cells loaded with fura 2-AM. Dantrolene, perfused onto groups of cells during the sustained plateau phase of the [Ca2+]1 response to K+ or NMDA, was found to reduce the response to both agents in a concentration-dependent manner. Preincubation with thapsigargm (10 μ M ) substantially reduced the plateau phase of the [Ca2+], response to K+ and both the peak and plateau phases of the NMDA response. Preincubation with ryanodine (10 μ M ) also reduced both the K+-evoked plateau response and both phases of the NMDA response. Neither had a consistent effect on the peak response to K+. The effects of thapsigargin and ryanodine on the NMDA response were partially additive. These results demonstrate that in cerebellar granule cells a major component of both K+- and NMDA-induced elevation of [Ca2+]1 appears to be due to release from intracellular stores. The partial additivity of the effects of thapsigargin and ryanodine suggests that these agents affect two overlapping but nonidentical Ca2+ pools.  相似文献   

16.
Abstract: To gain insight into the mechanism through which the neurotransmitter glutamate causally participates in several neurological diseases, in vitro cultured cerebellar granule cells were exposed to glutamate and oxygen radical production was investigated. To this aim, a novel procedure was developed to detect oxygen radicals; the fluorescent dye 2',7'-dichlorofluorescein was used to detect production of peroxides, and a specific search for the possible conversion of the enzyme xanthine dehydrogenase into xanthine oxidase after the excitotoxic glutamate pulse was undertaken. A 100 µ M glutamate pulse administered to 7-day-old cerebellar granule cells is accompanied by the onset of neuronal death, the appearance of xanthine oxidase, and production of oxygen radicals. Xanthine oxidase activation and superoxide (O2•−) production are completely inhibited by concomitant incubation of glutamate with MK-801, a specific NMDA receptor antagonist, or by chelation of external calcium with EGTA. Partial inhibition of both cell death and parallel production of reactive oxygen species is achieved with allopurinol, a xanthine oxidase inhibitor, leupeptin, a protease inhibitor, reducing agents such as glutathione or dithiothreitol, antioxidants such as vitamin E and vitamin C, and externally added superoxide dismutase. It is concluded that glutamate-triggered, NMDA-mediated, massive Ca2+ influx induces rapid conversion of xanthine dehydrogenase into xanthine oxidase with subsequent production of reactive oxygen species that most probably have a causal involvement in the initial steps of the series of intracellular events leading to neuronal degeneration and death.  相似文献   

17.
Abstract: Inositol phosphate accumulation on carbachol stimulation of rat cerebellar granule cells shows a marked dependence on factors affecting cytosolic Ca2+ concentration ([Ca2+]c). After 5 min, potassium depolarisation caused a modest accumulation of inositol phosphates but augmented the response to carbachol by a factor of 2–3. These effects of potassium were dependent on an extracellular source of calcium and could be partially blocked by specific (nifedipine) and nonspecific (verapamil) calcium channel blockers. Measurements of [Ca2+]c under a range of stimulatory conditions demonstrated a close correlation between the elevation of [Ca2+]c and agonist-stimulated phospholipase C (PLC) activity. The maximal potentiation of carbachol-stimulated inositol phosphate accumulation was achieved using 20 m M KCl, which increased [Ca2+]c from ∼20 to ∼75 n M , indicating the involvement of relatively low threshold Ca2+ channels and the high sensitivity of the relevant PLC to small changes in [Ca2+]c. By contrast, increases in [Ca2+]c induced by the Ca2+ ionophore ionomycin were associated with more modest and less potent effects on agonist-stimulated PLC. These results demonstrate a cooperative interaction between a receptor/G protein-regulated PLC and voltage-stimulated elevations of [Ca2+]c, which may function to integrate ionotropic and metabotropic signalling mechanisms in cerebellar granule cells.  相似文献   

18.
Peng L  Gu L  Hu X  Zhao L  Hertz L 《Neurochemical research》2008,33(2):328-335
We previously showed that cultured mouse cerebellar granule cells during incubation in glutamine-replete medium respond to 45 mM [K+]e after 20 and 60 min incubation with extracellular-signal regulated kinase 1 and 2 (ERK1/2) phosphorylation which is mainly, but probably not exclusively, secondary to glutamate release and transactivation of epidermal growth factor (EGF) receptors. In the present study the response after 20 min was shown to be abolished by protein kinase C (PKC) inhibition, whereas that at 60 min was PKC-independent. Addition of 50 μM glutamate to the cells caused ERK1/2 phosphorylation already after 5 min most of which was sensitive to PKC inhibition although a minor part was PKC inhibition-resistant. Exposure to [K+]e during incubation in glutamine-depleted medium caused no stimulated release of glutamate but a transactivation-independent ERK1/2 phosphorylation at 20 and 60 min. The response at 20 min was insensitive to PKC inhibition. The potential importance of these complex responses for synaptic plasticity is discussed. Special issue article in honor of Dr. Frode Fonnum.  相似文献   

19.
Abstract: The mechanism of glutamate release from cultured cerebellar granule neurones in response to a chemical model of ischaemia (10 m M 2-deoxyglucose plus 1 m M sodium cyanide) was investigated. In the first 2 min of ischaemia, release of preloaded d -[3H]aspartate could be extensively attenuated by tetanus toxin and bafilomycin A1 and was dependent on the activation of Ca2+ channels sensitive to the "Q" type Ca2+ channel antagonist, ω-conotoxin-MVIIC. During this period, ATP/ADP ratios fell rapidly. The extent of release in the first 2 min was comparable to that evoked by 2-min depolarization by 50 m M KCl. Free Ca2+ concentrations, determined in neurites and somata, did not increase until after 2 min. The neurite increase in cellular Ca2+ precedes that of the cell somata. Release of d -[3H]aspartate was partially inhibited by the NMDA receptor antagonist MK-801, which also delayed the increase in free Ca2+ concentration. Prolonging the period of ischaemia to 6 and 10 min produced no further increase in the apparently exocytotic component of release, but initiated an extensive nonexocytotic release of the amino acid. Studies with the synaptic vesicle membrane probe FM1-43 in which released amino acid was removed by superfusion indicated that Ca2+-dependent exocytosis was delayed in this system. It is concluded that chemical ischaemia initiates an initial exocytotic followed by nonexocytotic release and that the former is facilitated by NMDA receptor activation. These events occur in cells that are still able to exclude propidium iodide, indicating that cell death has not yet occurred.  相似文献   

20.
Abstract: The activities of certain properties of sodium, potassium-activated adenosine triphosphatase (Na +, K+- ATPase; EC 3.6.1.3) were examined in cultures and peri- karya fractions enriched in rat cerebellar nerve cells or astrocytes, in comparison with preparations from whole immature and adult rat cerebellum and derived synapto- somal fractions, as well as nonneural tissue such as the kidney. The specific activity of Na +, K+-ATPase was markedly higher in the freshly isolated astrocytes than in the nerve cells (3–15-fold greater depending on neuronal cell type). In contrast, the specific activity of the enzyme was about twice as high in the primary neuronal as in the a'strocytic cultures after 14 days in vitro. In membrane preparations from the whole cerebellum, synaptosomal fractions, and total perikarya suspensions the inhibition of enzyme activity by ouabain indicated complex kinetics, which were consistent with the presence of two forms of the Na +, K+-ATPase (apparent Aj values of about 10–7M and 10–4-10–5M, respectively), the high- affinity form accounting for 60–75% of the total activity. The interaction of the enzyme with ouabain was apparently similar in perikarya preparations of granule neurones, Purkinje cells, and astrocytes. Differences were, however, observed in the properties of the Na +,K + - ATPase of cultured neurones and astrocytes. The latter contained predominantly, but not exclusively, an Na+,K+-ATPase with low affinity for ouabain (73% of the total) that is similar to the single enzyme form in the kidney. This form constituted a significantly smaller proportion of the Na +, K+-ATPase in the cultured neuronal preparations (55%). It would appear, therefore, that in membrane fractions from preparations enriched in different separated and cultured neural cell types both the high- and the low-affinity forms of the enzyme, in terms of interaction with ouabain, are expressed. Depending on the class of cells these enzyme forms constituted a different proportion of the total activity, but both forms seemed to be present in every type of cell examined, even after taking into acc.ount the contribution in the enriched preparations of the contaminating cell types. In contrast with the results on the Na+, K+-ATPase activity determined under optimal conditions in preparations derived from disrupted cells, differences could not be detected between the cultured cell types when the effect of ouabain on the uptake of 86Rb into “live cells” was estimated as a measure of in situ ion pump activity. Besides the interaction with ouabain, the K+ dependence of the Na+, K+-ATPase activity was also investigated in crude particulate preparations from cultured cerebellar neurones and astrocytes. Differences were observed as nearly maximal enzyme activity was obtained in the as- trocyte preparations at 1 mM KCl, when only about one- third of the maximal activity was displayed by the cultured nerve cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号