首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Changes in [Mg2+] in a millimolar range have a significant inverse effect on the Ca2+- (or Sr2+)activated tension generation of skeletal muscle fibers. Single frog (Rana pipiens) semitendinosus muscle fibers were "skinned" (sarcolemma removed) and contracted isometrically in bathing solutions of varying [Ca2+] or [Sr2+] and [Mg2+] but a constant pH, [MgATP2-], [K+], [CP2-], [CPK], and ionic strength. Ca2+- (or Sr2+- )activated steady-state tensions were recorded for three [Mg2+]'s: 5 X 10(-5)M, 1 X 10(-3) M, and 2 X 10(-3) M; and these tensions were expressed as the percentages of maximum tension generation of the fibers for the same [Mg2+]. Maximum tension was not affected by [Mg2+] within Ca2+-activating or Sr2+-activating sets of solutions; however, the submaximum Ca2+-(or Sr2+)activated tension is strongly affected in an inverse fashion by increasing [Mg2+]. Mg2+ behaves as a competitive inhibitor of Ca2+ and also affects the degree of cooperativity in the system. At [Mg2+] = 5 X 10(-5)M the shape of tension versus [Ca2+] (or [Sr2+]) curve showed evidence of cooperativity of Ca2+ (or Sr2+) binding or activation of the contractile system. As [Mg2+] increased, the apparent affinity for Ca2+ or Sr2+ and cooperativity of the contractile system declined. The effect on cooperativity suggests that as [Mg2+] decreases a threshold for Ca2+ activation appears.  相似文献   

2.
Conflicting reports have appeared concerning the effect of [Mg2+] on muscle activity. Several groups have found that increasing [Mg2+] produces a right-ward shift of the pCa-tension curve, while others have found no effect of [Mg2+] on myofibrillar ATPase activity. The present study is a careful evaluation of the effect of [Mg2+] on myofibrillar ATPase, skinned fiber tension development, TnCDANZ (troponin C (TnC)-labeled with 5-dimethylaminonaphthalene-1-sulfonyl aziridine) fluorescence, and simultaneous TnCDANZ fluorescence and tension development in the same fiber. A small effect of [Mg2+] on both ATPase and tension development was found with an apparent association constant of about 2 X 10(2) M-1. The Ca2+ dependence of TnCDANZ fluorescence was similarly effected by [Mg2+], either alone or when incorporated into TnC-depleted skinned fibers (K'Mg approximately equal to 2-3 X 10(2) M-1), suggesting that the effect of [Mg2+] on activity is due to an effect of [Mg2+] on Ca2+ binding to the Ca2+-specific sites of TnC. It is not yet clear whether this effect of [Mg2+] is through direct competition at the binding sites or through indirect effects. In either case, the calculated effect of physiological [Mg2+] is so small that the regulatory sites of TnC can still be considered "Ca2+-specific." In addition, a slightly greater effect of [Mg2+] on tension development (K'Mg = 4.62 X 10(2) M-1) was observed only for very low levels of [Mg2+], which might suggest an additional effect of Mg2+ on tension development which is saturated by millimolar Mg2+.  相似文献   

3.
1. A procedure recently described to produce rapid changes in [Ca2+] and [Sr2+] within the whole cross-section of skinned muscle preparations (Moisescu, D.G. (1976) Nature 262, 610--613, and Moisescu, D.G. and Thieleczek, R. (1978) J. Physiol. 275, 241--262) has enabled us to obtain whole Ca2+- or Sr2+-activation curves at different sacromere lengths with the same preparation. 2. The maximal isometric force response was found to be very similar in Ca2+-and Sr2+-buffered solutions for otherwise identical conditions. 3. The change in sarcomere length between approx. 2.2 and 2.6 micron reversibly shifted both the Ca2+- and the Sr2+-activation curves by approx. 0.1 log units towards lower concentrations of the activator, without affecting their shape. However, the change in sarcomere length in the range above 2.6 micron did not have an effect upon the relative isometric force response-pCa (and -pSr) relationship. 4. All the Ca2+- and Sr2+-activation curves present a similar steepness and indicate that the relative isometric force increases from approx. 10 to 90% if the concentration of the activator is increased 3-fold. 5. The half time for force development in these experiments did not appear to be influenced by the length of the sarcomeres. 6. A potentiometric method for determining the apparent affinity constants of Ca2+, Mg2+ and Sr2+ to EGTA and ATP under various conditions is described.  相似文献   

4.
Linear dichroism of 5' tetramethyl-rhodamine (5'ATR) was measured to monitor the effect of sarcomere length (SL) on troponin C (TnC) structure during Ca2+ activation in single glycerinated rabbit psoas fibers and skinned right ventricular trabeculae from rats. Endogenous TnC was extracted, and the preparations were reconstituted with TnC fluorescently labeled with 5'ATR. In skinned psoas fibers reconstituted with sTnC labeled at Cys 98 with 5'ATR, dichroism was maximal during relaxation (pCa 9.2) and was minimal at pCa 4.0. In skinned cardiac trabeculae reconstituted with a mono-cysteine mutant cTnC (cTnC(C84)), dichroism of the 5'ATR probe attached to Cys 84 increased during Ca2+ activation of force. Force and dichroism-[Ca2+] relations were fit with the Hill equation to determine the pCa50 and slope (n). Increasing SL increased the Ca2+ sensitivity of force in both skinned psoas fibers and trabeculae. However, in skinned psoas fibers, neither SL changes or force inhibition had an effect on the Ca2+ sensitivity of dichroism. In contrast, increasing SL increased the Ca2+ sensitivity of both force and dichroism in skinned trabeculae. Furthermore, inhibition of force caused decreased Ca2+ sensitivity of dichroism, decreased dichroism at saturating [Ca2+], and loss of the influence of SL in cardiac muscle. The data indicate that in skeletal fibers SL-dependent shifts in the Ca2+ sensitivity of force are not caused by corresponding changes in Ca2+ binding to TnC and that strong cross-bridge binding has little effect on TnC structure at any SL or level of activation. On the other hand, in cardiac muscle, both force and activation-dependent changes in cTnC structure were influenced by SL. Additionally, the effect of SL on cardiac muscle activation was itself dependent on active, cycling cross-bridges.  相似文献   

5.
Chemically skinned anterior byssus retractor muscle (ABRM) preparations were prepared by treatment with the nonionic detergents saponin and Triton X-100. Both maximum peak tension and rate of contraction were found to be greater in saponin-treated ABRM than in ABRM treated with Triton X-100. Active tension was initiated at a concentration of free Ca2+ above 0.1 microM, and maximum tension development was found at a [Ca2+] = approximately 32 microM. During exposure of the muscle preparation to optimal Ca2+ concentration, a high and almost constant tension level was sustained. The force recovery was high after a quick release during this period indicating the presence of an "active" state rather than a "catch" state. Actually, a state equivalent to the catch state in the living ABRM could not be induced, if the Ca2+ concentration was above 0.1 microM. Variations in the ionic strength in the range of 0.07--0.28 M had no influence on active state and only slightly affected the maximum tension developed. The influence of Mg2+ on the Ca2+-activated tension was examined by studying the tension-pCa relation at two concentrations of free Mg2+ (0.43 and 4.0 mM). The tension-pCa relation was found to be S-shaped with tension increasing steeply over approximately 1 pCa unit, indicating the existence of cooperativity between Ca2+ sites. Increasing the free concentration of Mg2+ shifted the tension-pCa relation to lower pCa as in striated muscles, demonstrating a decreasing Ca2+ sensitivity with increasing Mg2+. At [Mg2+] = 4.0 mM the half-maximum tension was found at [Ca2+] = 0.43 microM, decreasing to 0.20 microM at [Mg2+] = 0.43 mM. At both Mg2+ concentrations studied, plots of log Prel/(1--Prel) vs. log [Ca2+] were nonlinear with a shape indicating a rather complicated model for cooperativity, probably involving four sites for Ca2+. These Ca2+--Mg2+ interactions are most probably taking place at the myosin head itself because troponin is absent in this myosin-regulated muscle.  相似文献   

6.
The observed equilibrium constants (Kobs) of the creatine kinase (EC 2.7.3.2), myokinase (EC 2.7.4.3), glucose-6-phosphatase (EC 3.1.3.9), and fructose-1,6-diphosphatase (EC 3.1.3.11) reactions have been determined at 38 degrees C, pH 7.0, ionic strength 0.25, and varying free magnesium concentrations. The equilibrium constant (KCK) for the creatine kinase reaction defined as: KCK = [sigma ATP] [sigma creatine] divided by ([sigma ADP] [sigma creatine-P] [H+]) was measured at 0.25 ionic strength and 38 degrees C and was shown to vary with free [Mg2+]. The value was found to be 3.78 x 10(8) M-1 at free [Mg2+] = 0 and 1.66 x 10(9) M-1 at free [Mg2+] = 10(-3) M. Therefore, at pH 7.0, the value of Kobs, defined as Kobs = KCK[H+] = [sigma ATP] [sigma creatine] divided by ([sigma ADP] [sigma creatine-P] was 37.8 at free [Mg2+] = 0 and 166 at free [Mg2+] = 10(-3) M. The Kobs value for the myokinase reaction, 2 sigma ADP equilibrium sigma AMP + sigma ATP, was found to vary with free [Mg2+], being 0.391 at free [Mg2+] = 0 and 1.05 at free [Mg2+] = 10(-3) M. Taking the standard state of water to have activity equal to 1, the Kobs of glucose-6-P hydrolysis, sigma glucose-6-P + H2O equilibrium sigma glucose + sigma Pi, was found not to vary with free [Mg2+], being 110 M at both free [Mg2+] = 0 and free [Mg2+] = 10(-3) M. The Kobs of fructose-1,6-P2 hydrolysis, sigma fructose-1,6-P2 equilibrium sigma fructose-6-P + sigma Pi, was found to vary with free [Mg2+], being 272 M at free [Mg2+] = 0 and 174 M at free [Mg2+] = 0.89 x 10(-3) M.  相似文献   

7.
Ryanodine receptor (RyR) channels from mammalian cardiac and amphibian skeletal muscle were incorporated into planar lipid bilayers. Unitary Ca2+ currents in the SR lumen-to-cytosol direction were recorded at 0 mV in the presence of caffeine (to minimize gating fluctuations). Currents measured with 20 mM lumenal Ca2+ as exclusive charge carrier were 4.00 and 4.07 pA, respectively, and not significantly different. Currents recorded at 1-30 mM lumenal Ca2+ concentrations were attenuated by physiological [K+] (150 mM) and [Mg2+] (1 mM), in the same proportion (approximately 55%) in mammalian and amphibian channels. Two amplitudes, differing by approximately 35%, were found in amphibian channel studies, probably corresponding to alpha and beta RyR isoforms. In physiological [Mg2+], [K+], and lumenal [Ca2+] (1 mM), the Ca2+ current was just less than 0.5 pA. Comparison of this value with the Ca2+ flux underlying Ca2+ sparks suggests that sparks in mammalian cardiac and amphibian skeletal muscles are generated by opening of multiple RyR channels. Further, symmetric high concentrations of Mg2+ substantially reduced the current carried by 10 mM Ca2+ (approximately 40% at 10 mM Mg2+), suggesting that high Mg2+ may make sparks smaller by both inhibiting RyR gating and reducing unitary current.  相似文献   

8.
This study was undertaken to determine the impact of sarcomere length (SL) on the level of cooperative activation of the cardiac myofilament at physiological [Mg2+]. Active force development was measured in skinned rat cardiac trabeculae as a function of free [Ca2+] at five SLs (1.85-2.25 microm; 1 mM free [Mg2+]; 15 degrees C). Only muscle preparations with minimal force rundown during the entire protocol were included in the analysis (average 7.2 +/- 1.7%). Median SL was measured by on-line computer video micrometry and controlled within 0.01 microm. Care was taken to ensure a sufficient number of data points in the steep portion of the [Ca2+]-force relationship at every SL to allow for accurate fit of the data to a modified Hill equation. Multiple linear regression analysis of the fit parameters revealed that both maximum, Ca2+-saturated force and Ca2+ sensitivity were a significant function of SL (P < 0.001), whereas the level of cooperativity did not depend on SL (P = 0.2). Further analysis of the [Ca2+]-force relationships revealed a marked asymmetry that, also, was not affected by SL (P = 0.2-0.6). Finally, we found that the level of cooperativity in isolated skinned myocardium was comparable to that reported for intact, nonskinned myocardium. Our results suggest that an increase in SL induces an increase in the Ca2+ responsiveness of the cardiac sarcomere without affecting the level of cooperativity.  相似文献   

9.
The block of rabbit skeletal ryanodine receptors (RyR1) and dog heart RyR2 by cytosolic [Mg2+], and its reversal by agonists Ca2+, ATP and caffeine was studied in planar bilayers. Mg2+ effects were tested at submaximal activating [Ca2+] (5 microM). Approximately one third of the RyR1s had low open probability ("LA channels") in the absence of Mg2+. All other RyR1s displayed higher activity ("HA channels"). Cytosolic Mg2+ (1 mM) blocked individual RyR1 channels to varying degrees (32 to 100%). LA channels had residual P(o) <0.005 in 1 mM Mg2+ and reactivated poorly with [Ca2+] (100 microM), caffeine (5 mM), or ATP (4 mM; all at constant 1 mM Mg2+). HA channels had variable activity in Mg2+ and variable degree of recovery from Mg2+ block with Ca2+, caffeine or ATP application. Nearly all cardiac RyR2s displayed high activity in 5 microM [Ca2+]. They also had variable sensitivity to Mg2+. However, the RyR2s consistently recovered from Mg2+ block with 100 microM [Ca2+] or caffeine application, but not when ATP was added. Thus, at physiological [Mg2+], RyR2s behaved as relatively homogeneous Ca2+/caffeine-gated HA channels. In contrast, RyR1s displayed functional heterogeneity that arises from differential modulatory actions of Ca2+ and ATP. These differences between RyR1 and RyR2 function may reflect their respective roles in muscle physiology and excitation-contraction coupling.  相似文献   

10.
A microprocessor-controlled system of microinjections and microaspirations has been developed to change, within approximately 1 ms, the [free Ca2+] at the outer surface of the sarcoplasmic reticulum (SR) wrapped around individual myofibrils (0.3-0.4 micron radius) of a skinned canine cardiac Purkinje cell (2.5-4.5 micron overall radius) at different phases of a Ca2+ transient. Simultaneously monitoring tension and aequorin bioluminescence provided two methods for estimating the peak myoplasmic [free Ca2+] reached during the spontaneous cyclic Ca2+ release from the SR obtained in the continuous presence of a bulk solution [free Ca2+] sufficiently high to overload the SR. These methods gave results in excellent agreement for the spontaneous Ca2+ release under a variety of conditions of pH and [free Mg2+], and of enhancement of Ca2+ release by calmodulin. Disagreement was observed, however, when the Ca2+ transient was modified during its ascending phase. The experiments also permitted quantification of the aequorin binding within the myofibrils and determination of its operational apparent affinity constant for Ca2+ at various [free Mg2+] levels. An increase of [free Ca2+] at the outer surface of the SR during the ascending phase of the Ca2+ transient induced further release of Ca2+. In contrast, an increase of [free Ca2+] during the descending phase of the Ca2+ transient did not cause further Ca2+ release. Varying [free H+], [free Mg2+], or the [Na+]/[K+] ratio had no significant effect on the Ca2+ transient during which the modification was applied, but it altered the subsequent Ca2+ transient. Therefore, Ca2+ appears to be the major, if not the only, ion controlling Ca2+ release from the SR rapidly enough to alter a Ca2+ transient during its course.  相似文献   

11.
The steady-state level of phosphorylated intermediate (EP) of (Mg2+ + Ca2+)-ATPase is influenced by magnesium and calcium concentration in the Ca2+-transporting system of sarcoplasmic reticulum vesicles. At micromolar [Ca2+], the level of EP is increased by Mg2+, depending on its concentration. The effect of Mg2+ is less pronounced at lower Ca2+ concentration. At low [Mg2+], the EP formation increases at millimolar concentrations of Ca2+, suggesting, in accordance with earlier results, that the substrate may also be CaATP instead of MgATP. LaCl3 (1 mM) enhanced the EP formation at low Mg2+ concentration. Surprisingly, 10 microM LaCl3 caused a marked decrease in EP formation at high [Mg2+] and had little or no effect on the level of EP at low Mg2+ concentration. The inducing effect of 1 mM LaCl3 on the EP formation at low [Mg2+] and the inhibitory effect of 10 microM LaCl3 at high Mg2+ concentration draw attention to the involvement of divalent cation-binding sites with different affinity in phosphorylation and to the particular role of Mg2+ in the EP formation and EP decomposition.  相似文献   

12.
During partial Ca2+ activation, skinned cardiac cells with sarcoplasmic reticulum destroyed by detergent developed spontaneous tension oscillations consisting of cycles (0.1-1 Hz) of rapid decrease of tension corresponding to the yield of some sarcomeres and slow redevelopment of tension corresponding to the reshortening of these sarcomeres. Such myofilament-generated tension oscillations were never observed during the full activation induced by a saturating [free Ca2+] or during the rigor tension induced by decreasing [MgATP] in the absence of free Ca2+ or when the mean sarcomere length (SL) of the preparation was greater than 3.10 microm during partial Ca2+ activation. A stiff parallel elastic element borne by a structure that could be digested by elastase hindered the study of the SL--active tension diagram in 8-13-microm-wide skinned cells from the rat ventricle, but this study was possible in 2-7-microm-wide myofibril bundles from the frog or dog ventricle. During rigor the tension decreased linearly when SL was increased from 2.35 to 3.80 microm. During full Ca2+ activation the tension decreased by less than 20% when SL was increased from 2.35 to approximately 3.10 microm. During partial Ca2+ activation the tension increased when SL was increased from 2.35 to 3.00 microm. From this observation of an apparent increase in the sensitivity of the myofilaments to Ca2+ induced by increasing SL during partial Ca2+ activation, a model was proposed that describes the tension oscillations and permits the derivation of the maximal velocity of shortening (Vmax). Vmax was increased by increasing [free Ca2+] or decreasing [free Mg2+] but not by increasing SL.  相似文献   

13.
Magnesium effects on activation of skinned fibers from striated muscle   总被引:2,自引:0,他引:2  
The intracellular Ca movements that control contraction and relaxation of striated muscle are regulated by the membrane potential and influenced by Mg2+. In skinned fibers, the internal composition can be manipulated directly by Ca movements estimated from isometric force transients, net changes in sarcoplasmic reticulum (SR) Ca, and 45Ca flux between fiber and bath. Stimulated Ca release, unlike unstimulated 45Ca efflux at low external [Ca2+], is highly [Mg2+]-sensitive at 20 C. Force and tracer measurements indicate three major sites of Mg2+-Ca2+ interaction in situ: Mg2+ can stimulate the SR active Ca transport system, inhibit a Ca2+-dependent Ca efflux pathway of SR, and shift the force-[Ca2+] relation, presumably by reducing Ca2+ binding to myofilament regulatory sites. These mechanisms constrain the resting Ca flux and are adaptive during relaxation. However, analysis of CI-stimulated 45Ca release and reaccumulation suggests that the depolarization process may inhibit Mg2+-dependent Ca influx, the membrane potential controlling both efflux and influx; recent studies on voltage-clamped cut fibers support this hypothesis. The Ca2+ and Mg2+ dependence of caffeine-stimulated 45Ca efflux suggests that Mg2+ inhibition of the Ca2+-dependent efflux pathway is small during rapid Ca2+ efflux. Therefore, both Mg2+ mechanisms, which minimize net release, may be reversed during normal activation.  相似文献   

14.
Ca2+ dependence of stimulated 45Ca efflux in skinned muscle fibers   总被引:7,自引:4,他引:3       下载免费PDF全文
Stimulation of sarcoplasmic reticulum Ca release by Mg reduction of caffeine was studied in situ, to characterize further the Ca2+ dependence observed previously with stimulation by Cl ion. 45Ca efflux and isometric force were measured simultaneously at 19 degrees C in frog skeletal muscle fibers skinned by microdissection; EGTA was added to chelate myofilament space Ca either before or after the stimulus. Both Mg2+ reduction (20 or 110 microM to 4 microM) and caffeine (5 mM) induced large force responses and 45Ca release, which were inhibited by pretreatment with 5 mM EGTA. In the case of Mg reduction, residual efflux stimulation was undetectable, and 45Ca efflux in EGTA at 4 microM Mg2+ was not significantly increased. Residual caffeine stimulation at 20 microM Mg2+ was substantial and was reduced further in increased EGTA (10 mM); at 600 microM Mg2+, residual stimulation in 5 mM EGTA was undetectable. Caffeine appears to initiate a small Ca2+-insensitive efflux that produces a large Ca2+-dependent efflux. Additional experiments suggested that caffeine also inhibited influx. The results suggest that stimulated efflux is mediated mainly or entirely by a channel controlled by an intrinsic Ca2+ receptor, which responds to local [Ca2+] in or near the channel. Receptor affinity for Ca2+ probably is influenced by Mg2+, but inhibition is weak unless local [Ca2+] is very low.  相似文献   

15.
High-conductance K+ channels are known to be activated by internal Ca2+ and membrane depolarization. The effects of changes in internal Mg2+ concentration have now been investigated in patch-clamp single-channel current experiments on excised membrane fragments from mouse acinar cells. It is shown that Mg2+ in the concentration range 10(-6)-10(-3) M evokes a dose-dependent K+ channel activation at a constant Ca2+ concentration of 10(-8) M. The demonstration that changes in [Mg2+]i between 2.5 X 10(-4) and 1.13 X 10(-3) M has effects on the channel open-state probability indicates that fluctuations in [Mg2+]i in intact cells may influence the control of channel opening.  相似文献   

16.
Fast disassembly of microtubules induced by Mg2+ or Ca2+   总被引:2,自引:0,他引:2  
The extent and rate of disassembly of microtubules induced by the addition of high concentrations of magnesium and calcium have been measured. At 25 degrees C, the rate constant for microtubule disassembly increases more than ten-fold on increasing [Mg2+] from 4.0 to 20 mM. The process is even more sensitive to [Ca2+], showing similar enhancement on increasing [Ca2+] from 0.5 to 8 mM. Electron microscopy indicates that the disassembly is an end-dependent process. Complete microtubule disassembly occurs at concentrations in excess of 10 and 2 mM for Mg2+ and Ca2+, respectively; this suggests the importance of binding to weak sites for both ions. The sensitivity to ionic composition explains the wide variations in the published values for k-, under varying conditions. The results indicate the potential range of microtubule disassembly rates which may be encountered under different conditions in vitro and in vivo. The highest values of k- (ca. 3000 s-1) would imply microtubule shortening rates in excess of 100 um per minute.  相似文献   

17.
Intact cardiac cells from the adult rat or rabbit ventricle were isolated by enzymatic digestion with a progressive increase of the [free Ca2+] in the solution. These cells were electrically stimulated in the presence of 2.50 mM free Ca2+, and a twitch of maximum amplitude was elicited by the positive inotropic interventions that were found to be optimum. Then the cells were chemically skinned, and the maximum tension induced by a saturating [free Ca2+] was used as a reference to express the tension developed during the twitch of the intact cells. The myoplasmic [free Ca2+] reached during the twitch was inferred from the tension-pCa curve. In mechanically skinned cells of the same animal species, the myoplasmic [free Ca2+] reached during Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum (SR) was inferred by two methods using (a) the tension-pCa curve and (b) a direct calibration of the transients of aequorin bioluminescence. The induction of a maximum Ca2+ release from the SR required a larger Ca2+ preload of the SR and a higher [free Ca2+] trigger in the rabbit than in the rat skinned cells. However, the results obtained with the two methods of inference of the myoplasmic [free Ca2+] suggest that in both animal species a maximum myoplasmic [free Ca2+] of pCa approximately 5.40 was reached during both the optimum Ca2+-induced release of Ca2+ from the SR of the skinned cells and the optimum twitch of the intact cells. This was much lower than the [free Ca2+] necessary for the full activation of the myofilaments (pCa approximately 4.90).  相似文献   

18.
We studied the effect of maturation on potassium-induced parasympathetic activation and Ca2+ entry in tracheal smooth muscle (TSM) from fifteen 2-wk-old (2ws) and sixteen 10-wk-old (10ws) male domestic farm swine. Atropine (10(-7) M) caused inhibition of the maximal contraction elicited by potassium to 50.3 +/- 2.6% maximum of control response (P less than 0.001) in TSM from 2ws but had no significant effect in TSM from 10ws (94.6 +/- 4.2% maximum; P = NS vs. control). Verapamil (10(-7) M) plus 10(-7) M atropine reduced contraction elicited by potassium in both 2ws (23.7 +/- 5.8% maximum; P less than 0.001 vs. control) and 10ws (50.6 +/- 6.3% maximum; P less than 0.001 vs. control, P less than 0.05 vs. 2ws); 10(-6)M verapamil caused greater than 95% blockade of contraction caused by potassium in both 2ws and 10ws. In separate studies, atropine-treated strips were equilibrated with extracellular Ca2+ concentrations ([Ca2+]o) ranging from normal (1X [Ca2+]o) to four times normal (4x [Ca2+]o). Increasing [Ca2+]o increased maximal contractile response in atropine-treated TSM strips from 68.7 +/- 3.8% maximum for 1x [Ca2+]o to 100.8 +/- 4.8% maximum for 4x [Ca2+]o (P less than 0.001) in 2ws. Neither atropine nor [Ca2+]o affected maximal responses of TSM in 10ws (103.5 +/- 3.0% maximum for 1x [Ca2+]o; P = NS vs. control). However, in the presence of atropine and verapamil, 4x [Ca2+]o augmented KCl-elicited contraction of TSM from both 2ws (46.9 +/- 6.3% maximum; P less than 0.01 vs. control) and 10ws (78.6 +/- 2.3% maximum; P less than 0.005 vs. control).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effect of varying concentrations of Pi and Ca2+ on isometric force and on the rate of force development in skinned rabbit psoas muscle fibers has been investigated. Steady-state results show that the three parameters that define the force-pCa relation (Po, pK, and n) all vary linearly with log [Pi]. As [Pi] increases, Po and pK decrease while n increases. The kinetics of force generation in isometrically contracting fibers were studied by laser flash photolysis of caged phosphate. The observed rate of the resulting tension transient, kPi, is 23.5 +/- 1.7 s-1 at 10 degrees C, 0.7 mM Pi, and is independent of [Ca2+] over the range pCa 4.5-7.2. By contrast, kTR, the rate of tension redevelopment following a period of isotonic shortening, is sensitive to [Ca2+] and is slower than kPi (kTR = 13.6 +/- 0.2 s-1 at pCa 4.5, 0.7 mM Pi). The results show that [Ca2+] does not directly affect the Pi release or force-generating steps of the cross-bridge cycle and show that the observed rate of force development depends on how the measurement is made. The data can be interpreted in terms of a model in which strong cross-bridges activate the thin filament, this activation being modulated by Ca2+ binding to troponin.  相似文献   

20.
In skeletal and cardiac muscle cells, specific isoforms of the Ryanodine receptor channels mediate Ca2+ release from the sarcoplasmic reticulum. These channels are highly susceptible to redox modifications, which regulate channel activity. In this work, we studied the effects of Ca2+ (endogenous agonist) and Mg2+ (endogenous inhibitor) on the kinetics of Ca2+ release from sarcoplasmic reticulum vesicles isolated from skeletal or cardiac mammalian muscle. Native skeletal vesicles exhibited maximal stimulation of release kinetics by 10-20 microM [Ca2+], whereas in native cardiac vesicles, maximal stimulation of release required only 1 microM [Ca2+]. In 10 microM [Ca2+], free [Mg2+] < 0.1 mM produced marked inhibition of release from skeletal vesicles but free [Mg2+] < or = 0.8 mM did not affect release from cardiac vesicles. Incubation of skeletal or cardiac vesicles with the oxidant thimerosal increased their susceptibility to stimulation by Ca2+ and decreased the inhibitory effect of Mg2+ in skeletal vesicles. Sulfhydryl-reducing agents fully reversed the effects of thimerosal. The endogenous redox species, glutathione disulfide and S-nitrosoglutathione, also stimulated release from skeletal sarcoplasmic reticulum vesicles. In 10 microM [Ca2+], 35S-nitrosoglutathione labeled a protein fraction enriched in release channels through S-glutathiolation. Free [Mg2+] 1 mM or decreasing free [Ca2+] to the nM range prevented this reaction. Possible physiological and pathological consequences of redox modification of release channels on Ca2+ signaling in heart and muscle cells are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号