首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tapetal cells of Pinus sylvesiris L. underwent one hypersecretory cycle during early pachytene and entered a second cycle by the time of mid pachytene in microspore mother cells. Initially in each cycle tapetal cells became papillaform then dome-shaped and thereafter, in conjunction with radial narrowing of the cells, dilation of the ER system was intensive throughout the cytoplasm. Recovery from hyperactivity culminated with the presence of plasmodesma-like connections between tapetal cells and a period of mitosis in tapetal cells. The differentiation of tapetal cells occurred asynchronously within a microsporangium and their dedifferentiation began nonuni-formly, becoming synchronous coincidental with the presence of "plasmodesmata". Microsporangia increased in size and tapetal cells were laterally wide before "plasmodesmata" receded and tapetal cells again differentiated asynchronously.  相似文献   

2.
The tapetal layer becomes distinct from the other layers of parietal cells about three days prior to the meiosis in the microspore mother cells. Differentiation of the tapetal cells includes an increased relative volume for dictyosomes, mitochondria and plas–tids, the appearance of autophagic vacuoles in the cytoplasm, and periplasmic spaces between the plasma membrane and the cell wall. About one day before the meiosis the basophilia in tapetal cells is elevated; there are numerous nonaggregated ribo–somes, nuclei are intensely stainable, and the rough ER is dilated. There is also a partial digestion of the cell walls around microspore mother cells and tapetal cells including the adaxial wall of the adjacent parietal cell layer. A wedge–shaped portion of the wall system between this parietal cell layer and tapetal cells is not lysed. A lamellation in the middle lamellar position is also spared. That lamellation remains prominent as the extratapetal lamellation. By the initiation of meiosis the surfaces of both tapetal and microspore mother cells are entirely free of cell walls. During that period the intense basophilia of tapetal cells recedes and there are many polyribosomes, an extensive system of rough ER, dictyosomes with vesicles containing fibrils, multivesicular bodies, and autophagic vacuoles. Microtubules occur close to the plasma membrane. The plasma membrane–glycocalyx differs in portions of the surface facing the extratapetal lamellation from the Iocular facing surface. We presume that the abaxial portion of tapetal cells with cavations containing glycocalyx–like filaments is a region of uptake and that the adaxial surface with detached glycocalyx is secretory.  相似文献   

3.
Summary The development of sporogenous and tapetal cells in the anthers of male-fertile and cytoplasmic male-sterile sugar beet (Beta vulgaris L.) plants was studied using light and transmission electron microscopy. In general, male-sterile anthers showed a much greater variability in developmental pattern than male-fertile anthers. The earliest deviation from normal anther development was observed to occur in sterile anthers at meiotic early prophase: there was a degeneration or irregular proliferation of the tapetal cells. Other early aberrant events were the occurrence of numerous small vesicles in the microspore mother cells (MMC) and a disorganized chromatin condensation. Deviations that occurred in sterile anthers at later developmental stages included: (1) less distinct inner structures in the mitochondria of both MMC and tapetal cells from middle prophase onwards. (2) dilated ER and nuclear membranes at MMC prophase, in some cases associated with the formation of protein bodies. (3) breakdown of cell walls in MMCs and tapetal cells at late meiotic prophase. (4) no massive increase in tapetal ER at the tetrad stage. (5) a general dissolution of membranes, first in the MMC, then in the tapetum. (6) abortion of microspores and the occurrence of a plasmodial tapetum in anthers reaching the microspore stage. (7) no distinct degeneration of tapetal cells after microspore formation. Thus, it seems that the factors that lead to abortive microsporogenesis are structurally expressed at widely different times during anther development. Aberrant patterns are not restricted to the tetrad stage but occur at early prophase.  相似文献   

4.
In work with Nymphaea colorata Peter three distinct intervals were recorded during which tapetal cells (protoplasts) protruded into anther locules either as bridges and partitions or as invasive cells between or around tetrads of microspores. Before these intervals and between and after them, tapetal cells, while variable in shape, were noninvasive. Observations were based on sections of over 60 fixed and epoxy-embedded anthers covering the relatively brief interval from the end of meiosis through the vacuolate microspore stage. The progression of development, from early microspore stages through the microspore vacuolate period, is illustrated by transmission electron micrographs showing change in proexine and exine size and complexity. Our results indicate cycles of tapetal cell differentiation and dedifferentiation in this species.  相似文献   

5.
扁豆绒毡层发育的超微结构研究   总被引:1,自引:0,他引:1  
应用透射电镜对扁豆绒毡层发育过程进行了研究,主要结果如下:1)首次发现扁豆绒毡层在发育过程中,经历了二交胞质重组(第一次始于减数分裂末期Ⅱ,第二次始于小孢子发育早期),使绒毡层细胞的活动呈现3个高峰期(即小孢子母细胞减数分裂期、小孢子四分体期一小孢子早期、小孢子晚期-二胞花粉中期)。2绒毡层细胞的分泌作用有3种形式(渗透分泌、胞吐分泌和自溶)。3.首次观察到绒毡层细胞的内切向壁和径向壁经历了两个周  相似文献   

6.
杉木雄性不育株与可育株小孢子囊发育的电镜研究   总被引:3,自引:0,他引:3  
杉木雄性不育属“无花粉型”,败育从无孢原细胞到四分体时期,中层细胞增生,压迫小孢子母细胞,使之养分更加缺乏并引起减数分裂异常。其表皮层和药室内壁细胞中具大量蛋白体,影响了绒毡层对小孢子发育的外源蛋白的供应;表皮层具膜状溶酶体,引起淀粉粒缺乏和酶系统代谢异常;绒毡层发育后期,缺少包被小泡、乌氏体及绒毡层膜,内质同少、短而光滑,严重影响了绒毡层对小孢子母细胞或小孢子养分和合成细胞壁物质的供给;线粒体发育异常,能量代谢减弱,导致小孢子母细胞或小孢子一系列生理活动紊乱及其原生质体解体。  相似文献   

7.
白菜核雄性不育花药超微结构的研究   总被引:3,自引:0,他引:3  
对白菜核雄性不育两用系的可育与不育花药进行了超微结构的比较观察。结果显示不育花药的造孢细胞核仁靠边分布;包裹小孢子母细胞的胼胝质厚薄不均匀,不完整等早期异常现象。减数分裂后.四分体细胞中常有多个细胞核。从四分体释放出的小孢子外壁的孢粉素物质不均匀沉积,呈不连续的单层异常结构。最后小孢子通过细胞质收缩方式败育。在可育花药中.绒毡层细胞在小孢子发育后期已显示出退化迹象,同时在细胞中开始积累脂类物质。但在同时期的不育花药中.绒毡层细胞没有显示出退化的迹象,也不合成脂类物质。从时间上看,败育花药中小孢子母细胞及小孢子的异常在先,绒毡层细胞的异常在后。本研究揭示了白菜核雄性不育花药的超微结构特征.对我们以前的光学显微镜观察结果予以补充和修正。  相似文献   

8.
对白菜核雄性不育两用系的可育与不育花药进行了超微结构的比较观察。结果显示不育花药的造孢细胞核仁靠边分布:包裹小孢子母细胞的胼胝质厚薄不均匀,不完整等早期异常现象。减数分裂后,四分体细胞中常有多个细胞核。从四分体释放出的小孢子外壁的孢粉素物质不均匀沉积.呈不连续的单层异常结构。最后小孢子通过细胞质收缩方式败育。在可育花药中,绒毡层细胞在小孢子发育后期已显示出退化迹象,同时在细胞中开始积累脂类物质。但在同时期的不育花药中, 绒毡层细胞没有显示出退化的迹象,也不合成脂类物质。从时间上看,败育花药中小孢子母细胞及小孢子的异常在先,绒毡层细胞的异常在后。本研究揭示了白菜核雄性不育花药的超微结构特征, 对我们以前的光学显微镜观察结果予以补充和修正。  相似文献   

9.
芡实绒毡层细胞发育的超微结构变化   总被引:1,自引:0,他引:1  
芡实( Euryaleferox Salisb) 绒毡层细胞在小孢子母细胞时期, 质体出现明显的变形期,细胞中二核常相互贴近或呈嵌合状态, 细胞壁间层中胞间连丝发达。减数分裂期, 绒毡层细胞壁融解消失, 胞间连丝断离, 细胞间发育出现不同步现象。质体开始积累淀粉, 部分质体呈空泡状, 并出现质体膜内陷, 这与液泡具相似的功能。四分体时期, 绒毡层细胞内部结构开始解体。单核小孢子时期, 绒毡层细胞解体消失, 使小孢子后期发育的营养来源受到影响,作者认为这是生产上成熟花粉囊中花粉粒少而且发育不正常的主要原因之一。  相似文献   

10.
Anther and pollen development in male-fertile and male-sterile green onions was studied. In the male-fertile line, both meiotic microspore mother ceils and tetrads have a callose wall. Mature pollen grains are 2-celled. The elongated generative cell with two bended ends displays a PAS positive cell wall. The tapetum has the character of both secretory and invasive types. From microspore stage onwards, many oil bodies or masses accumulate in the cytoplasm of the tapetal cells. The tapetum degenerates at middle 2-celled pollen stage. In male-sterile line, meiosis in microspore mother cells proceeds normally to form the tetrads. Pollen abortion occurs at microspore with vacuole stage. Two types of pollen abortion were observed. In type I, the protoplasts of the microspores contract and gradually disintegrate. At the same time the cytoplasm of microspores accumulates oil bodies which remain in the empty pollen. The tapetal cells behave normally up to the microspore stage and early stage of microspore abortion, but contain fewer oil bodies or masses than those in the male-fertilt line. At late stage of microspore abortion, three forms of the tapetal ceils can be observed: (1) the tapetal cells with degenerating protoplasts become flattened, (2) the tapetal cells enlarge but protoplasts retractor, (3) the cells break down and tile middle layer enlarges. In type Ⅱ, the cytoplasm degenerates earlier than the nucleus of the microspores and no protoplast is found in the anther locule. There are fibrous thickenings iii the endothecium of both types. It is difficult to verify whether the tapetum behavior and pollen abortion is the cause or the effect.  相似文献   

11.
Microsporogenesis in dwarf Phaseolus vulgaris was studied under the electron microscope. Before meiosis the microspore mother cell had a lot of organelles especially plastids and ER in its cytoplasm. There were many osmiophilic granules adhering to the membranes of the plastids and vesicular ER until meiosis began. Some cytoplasmic channels were present between adjacent microsporocytes from pachytene to telophase Ⅱ. The organelles were at early stage in the early rnlcrospore, the plastids and mitochondria of which showed regional distribution. Original vacou[es were produced by smooth ER. The organelles in the tapetum cells were mainly mitochondria, plastids and ER. The ER was concentric circles in shape in transverse section.  相似文献   

12.
白菜细胞核雄性不育花药的细胞化学观察   总被引:12,自引:1,他引:11  
对一种由一对隐性基因控制的白菜细胞核雄性不育和可育株的花药进行了细胞学和组织化学研究。种子播种后,有1/4植株为不育株,其余的为可育株。通过对不育株和可育株花药发育的细胞学观察,确认不育花粉的败育发生在小孢子发育时期。用组织化学的方法研究了可育株和不育株花药发育过程中的多糖和脂类的分布动态,发现在减数分裂前,可育花药和不育花药的药隔细胞中都储藏了大量的淀粉粒。二者的差异仅是不育花药的绒毡层细胞液泡化明显。在减数分裂后的小孢子发育时期,可育花药的绒毡层细胞具有将药隔细胞中的淀粉粒多糖吸收并转化成脂类的功能,小孢子及以后的二胞花粉中也积累了大量的脂类储藏物质。在不育花药中,虽然减数分裂后药隔细胞中的淀粉粒也都消失,但绒毡层细胞中的脂类物质相比很少,同时绒毡层细胞显示了明显的多糖反应,表明不育花药的绒毡层细胞将糖类转化为脂类的功能受阻。在小孢子的表面有些脂类物质,但在细胞质中却没有脂类积累。这一结果暗示在该种白菜细胞核雄性不育株中,由于花药绒毡层细胞转换多糖为脂类的功能失常,导致了小孢子的败育。  相似文献   

13.
 The ratio of loculus volume to the volume of the entire anther began to increase from the microspore mother cell stage and reached 32.3% at anthesis. The content of the loculus was examined in Lilium during pollen development and two waves could be distinguished. From the premeiotic stage until the vacuolated microspore stage, the loculus consisted of neutral polysaccharides, pectins and proteins. These substances originated from tapetal activity from the premeiotic stage until the young microspore stage. Dictyosomes and rough endoplasmic reticulum seemed to be involved in tapetal secretion, although, in some mitochondria, vesicles progressively developed as early as premeiosis and increased until the young microspore stage, which could reveal their involvement in the secretion process. At this stage, numerous cytoplasmic vesticles containing material similar to the locular material fused with the plasma membrane of the tapetum so that vesicle content was in contact with the loculus. It seems that tapetal and callose wall degradation at the late tetrad stage may also have contributed to the production of material in the loculus. From pollen mitosis to anthesis, the anther loculus contained mainly the pollenkitt which was synthesized in the tapetum between the young microspore stage and the vacuolated microspore stage. At the young microspore stage, proplastids divided and developed into elaioplasts and smooth endoplasmic reticulum (SER) increased dramatically. Pollenkitt had a double origin: some droplets were extruded directly from the plastid stroma through the plastid envelopes; the others were unsaturated lipid globules, which presumably derived from the interaction between SER saccules and plastids. Received: 2 September 1997 / Revision accepted: 12 March 1998  相似文献   

14.
高等植物花药结构复杂,其发育更是一个迅速、多变的过程,如小孢子母细胞减数分裂期间的细胞质改组、胼胝质壁的形成与降解、大液泡的形成与消失、花粉内外壁的形成、绒毡层细胞的降解、营养物质的积累与转化等。除了上述花药组成细胞的形态和结构发生明显变化外。花药发育的另一个显著特点是以花粉为中心的营养物质单向运输和转化,尤其是小孢子有丝分裂形成二胞花粉后开始积累大量的营养储存物以供成熟花粉萌发时利用。  相似文献   

15.
Summary Male cones ofPodocarpus macrophyllus D. Don enter a period of dormancy lasting almost a year after the differentiation of archesporial tissue. The cell walls of the sporogenous and tapetal cells are different in composition from those of the cells comprising the wall of the microsporangium. The walls of tapetal cells undergo complete dissolution but the naked protoplasts do not invade the cavity of the microsporangium, and eventually degeneratein situ. Sporopollenin-containing bodies are formed on the tapetal plasmalemma although no specific tapetal organelles can be singled out as sites of synthesis of sporopollenin precursors. The original walls of the microspore mother cells are broken down completely and replaced by a thin callose-like wall. No cytomictic channels are formed prior to or during early meiosis. The outer nuclear membrane of the sporogenous cells forms numerous vesicles which likely play an important role in preparing the cell for meiosis and in the breakdown of the original sporogenous cell wall and the formation of the new wall. Pronounced evaginations and invaginations of the nuclear envelope during the tetrad stage are seen which again indicate vital nucleo-cytoplasmic exchange at the time when species specific sexine layer is being laid down. The microspore protoplast synthesizes a portion of sporopollenin precursors. Sexine and part of nexine I are laid down during the tetrad stage on lamellae of unit membrane dimensions while nexines II and III are formed after the dissolution of the tetrads by the coalescence of small, electron dense particles. Cells of the male gametophyte are initially separated from each other by distinct cell walls often traversed by plasmodesmata. Mature pollen grains have appreciable reserves of protein, lipid and starch. Results of histochemical and scanning electron microscopical observations are also reported and discussed.  相似文献   

16.
巴戟天花药发育过程中多糖和脂滴分布特征   总被引:1,自引:0,他引:1  
巴戟天花药发育中多糖和脂滴类物质的分布呈现一定的规律:减数分裂之前,花药壁的绒毡层细胞中有少量脂滴,其他细胞中脂滴和淀粉粒都很少。四分体时期,四分体小孢子中开始出现脂滴,绒毡层细胞中的脂滴较以前增加,其他细胞中的脂滴和淀粉粒仍然很少。小孢子早期,游离小孢子在其表面形成了花粉外壁,靠外壁下方有一层周缘分布的多糖物质。绒毡层细胞中的脂滴明显减少。发育晚期的小孢子中形成一个大液泡,细胞质中出现淀粉粒;同时在药壁和药隔组织中也出现了淀粉粒。此时绒毡层退化。在二胞花粉早期,花粉中积累了大量淀粉粒和一些脂滴。但在成熟的花粉中(二胞花粉晚期),淀粉粒消失,只有一定数量的脂滴保留。巴戟天成熟花粉中积累的营养物质主要为脂滴。  相似文献   

17.
采用超薄切片技术,在透射电镜下观察麻疯树(Jatropha curcasL.)花药发育过程中Ca2 的分布特征。在孢原细胞时期的花药中几乎看不到Ca2 沉淀,但花药维管束周围的细胞中有较多的Ca2 沉淀;到小孢子母细胞时期,细胞质中Ca2 沉淀依然较少,绒毡层壁上Ca2 沉淀明显增多;四分体形成时,小孢子细胞质和绒毡层细胞质中出现了较多的Ca2 沉淀;在小孢子发育早期,细胞质中Ca2 沉淀增加不明显,花粉壁部位累积有很多的Ca2 沉淀,绒毡层中Ca2 沉淀数量达到最多;到小孢子发育晚期,小孢子大液泡的液泡膜上有大量的Ca2 沉淀,绒毡层中Ca2 沉淀明显减少;随着二胞花粉中的大液泡消失,细胞质中积累淀粉粒以后,花粉中看到的Ca2 沉淀极少,同时,在花药维管束周围的薄壁细胞中,又出现了较多的Ca2 沉淀,表明花粉对Ca2 的需求可能降低。麻疯树花药发育过程中钙的动态分布特征暗示着钙参与了调控花粉发育过程,Ca2 的运输途径是由药隔薄壁组织运输到绒毡层,再进一步转移到小孢子表面和细胞质中,整个花药发育过程中,Ca2 沉淀表现为少—增加—减少的变化趋势。  相似文献   

18.
Summary The ultrastructure of the secretory, binucleate tapetum of Brassica oleracea in the micro spore mother cell (MMC) stage through to the mature pollen stage is reported. The tapetal cells differentiate as highly specialized cells whose development is involved in lipid accumulation in their final stage. They start breaking down just before anther dehiscence. Nuclei with dispersed chromatin, large nucleoli and many ribosomes in the cytoplasm characterize the tapetal cells. The wall-bearing tapetum phase ends at the tetrade stage. The dissolution of tapetal walls begins from the inner tangential wall oriented towards the loculus and proceeds gradually along the radial walls to the outer tangential one. The plasmodesmata transversing the radial walls between tapetal cells persist until the mature microspore, long after loss of the inner tangential wall. After wall dissolution, the tapetal protoplasts retain their integrity and position within the anther locule. The tapetal cell membrane is in direct contact with the exine of the microspores/pollen grains and forms tubular evaginations that increase its surface area and appear to be involved in the translocation of solutes from the tapetal cells to the microspores/ pollen grains. The tapetal cells exhibit a polarity expressed by spatial differentiation in the radial direction.  相似文献   

19.
西瓜S351-1雄性不育材料的细胞学观察表明:与对照的同系可育株相比,败育发生在次级造孢细胞到小孢子母细胞或小孢子四分体阶段,多数不育雄花花药中绒毡层始终未分化,药壁常由7-8层细胞组成,少数不育花药中出现绒毡层徒长现象;次级造孢细胞败育不同步,出现多核及多核仁现象,败育后期,药壁细胞逐渐解体,药室瓦解,花粉囊收缩变形。由此可见:其雄性不育与绒毡层的发育异常有直接联系。  相似文献   

20.
The mitogen-activated protein kinase (MAPK) cascade is important in stress signal transduction and plant development. In the present study, we identified a rice (Oryza sativa L.) mutant with reduced fertility, Oryza sativa mitogen-activated protein kinase 6 (osmapk6), which harbored a mutated MAPK gene. Scanning and transmission electron microscopy, quantitative RT-PCR analysis, TUNEL assays, RNA in situ hybridization, longitudinal and transverse histological sectioning, and map-based cloning were performed to characterize the osmapk6 mutant. The gene OsMAPK6 was expressed throughout the plant but predominantly in the microspore mother cells, tapetal cells, and microspores in the anther sac. Compared with the wild type, the total number of microspores was reduced in the osmapk6 mutant. The formation of microspore mother cells was reduced in the osmapk6 anther sac at an early stage of anther development, which was the primary reason for the decrease in the total number of microspores. Programmed cell death of some tapetal cells was delayed in osmapk6 anthers and affected exine formation in neighboring microspores. These results suggest that OsMAPK6 plays pivotal roles in microspore mother cell formation and tapetal cell degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号