首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed model for the crystal structure of the fibrous polysaccharide chitin is proposed. The structure determination has been carried out by using an optical analogue instrument which proved to be an adequate and rapid tool for the derivation of Fourier transforms, signs of amplitudes and the production of optical Fourier syntheses. The new model of chitin accounts properly for known chemical and physical properties, including the infrared absorption as well as for x-ray data, but because of the limited resolution of the diffraction patterns it can only be regarded as a good approximation. The stereochemical configuration of the polysaccharide chains has certain implications for the structure of cellulose.  相似文献   

2.
Cryptococcus neoformans is an opportunistic fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. The fungal cell wall is an excellent target for antifungal therapies as it is an essential organelle that provides cell structure and integrity, it is needed for the localization or attachment of known virulence factors, including the polysaccharide capsule, melanin, and phospholipase, and it is critical for host-pathogen interactions. In C. neoformans, chitosan produced by the enzymatic removal of acetyl groups from nascent chitin polymers has been implicated as an important component of the vegetative cell wall. In this study, we identify four putative chitin/polysaccharide deacetylases in C. neoformans. We have demonstrated that three of these deacetylases, Cda1, Cda2, and Cda3, can account for all of the chitosan produced during vegetative growth in culture, but the function for one, Fpd1, remains undetermined. The data suggest a model for chitosan production in vegetatively growing C. neoformans where the three chitin deacetylases convert chitin generated by the chitin synthase Chs3 into chitosan. Utilizing a collection of chitin/polysaccharide deacetylase deletion strains, we determined that during vegetative growth, chitosan helps to maintain cell integrity and aids in bud separation. Additionally, chitosan is necessary for maintaining normal capsule width and the lack of chitosan results in a "leaky melanin" phenotype. Our analysis indicates that chitin deacetylases and the chitosan made by them may prove to be excellent antifungal targets.  相似文献   

3.
Considerable amounts of water-soluble polysaccharides were found in the test of the tunicate Halocynthia roretzi. After fractionation with ethanol, a chitin sulfate-like polysaccharide was isolated. From the results of chemical analysis, optical rotation, infrared spectrum and alkaline treatment, it is suggested that the predominant structure for this polysaccharide is (1→4)-2-acetamido-2-deoxy-6-O-sulfo-β-D-glucopyranan.  相似文献   

4.
NaOH/urea aqueous solution has been used as a solvent for chitin for the first time. Effects of this solvent composition and temperature on the solubility and stability of chitin solution were studied with an optical microscope, from which 8 wt% NaOH/4 wt% urea concentrations were deduced as suitable and −20 °C as the appropriate temperature. The original and regenerated chitin were characterized by viscosity, elemental analysis, FI-IR and X-RD analysis, and the effect of solvent composition and temperature on chitin structure was investigated. It was inferred that 8 wt% NaOH/4 wt% urea solvent under low temperature adventitiously has little effect on chitin structure and the urea is of benefit to the stability of chitin solution. In addition, the rheological properties suggested that chitin aqueous solution in high concentration is a pseudoplastic fluid and that chitin aqueous solution in low concentrations is a Newtonian fluid. This chitin aqueous solution is sensitive to temperature and will transform it to a gel when temperature increases.  相似文献   

5.
Chitin, a beta-1,4-linked polysaccharide of N-acetylglucosamine, is a major structural component of fungal cell walls. Fungi have multiple classes of chitin synthases that catalyse N-acetylglucosamine polymerization. Here, we demonstrate the requirement for a class V chitin synthase during host infection by the vascular wilt pathogen Fusarium oxysporum. The chsV gene was identified in an insertional mutagenesis screen for pathogenicity mutants. ChsV has a putative myosin motor and a chitin synthase domain characteristic of class V chitin synthases. The chsV insertional mutant and a gene replacement mutant of F. oxysporum display morphological abnormalities such as hyphal swellings that are indicative of alterations in cell wall structure and can be partially restored by osmotic stabilizer. The mutants are unable to infect and colonize tomato plants or to grow invasively on tomato fruit tissue. They are also hypersensitive to plant antimicrobial defence compounds such as the tomato phytoanticipin alpha-tomatine or H2O2. Reintroduction of a functional chsV copy into the mutant restored the growth phenotype of the wild-type strain. These data suggest that F. oxysporum requires a specific class V chitin synthase for pathogenesis, most probably to protect itself against plant defence mechanisms.  相似文献   

6.
The nature of the interaction of insect cuticular proteins and chitin is unknown even though about half of the cuticular proteins sequenced thus far share a consensus region that has been predicted to be the site of chitin binding. We previously predicted the preponderance of beta-pleated sheet in the consensus region and proposed its responsibility for the formation of helicoidal cuticle (Iconomidou et al., Insect Biochem. Mol. Biol. 29 (1999) 285). Consequently, we have also verified experimentally the abundance of antiparallel beta-pleated sheet in the structure of cuticle proteins (Iconomidou et al., Insect Biochem. Mol. Biol. 31 (2001) 877). In this work, based on sequence and secondary structure similarity of cuticle proteins, and especially that of the consensus motif, to that of bovine plasma retinol binding protein (RBP), we propose by homology modelling an antiparallel beta-sheet half-barrel structure as the basic folding motif of cuticle proteins. This folding motif may provide the template for elucidating cuticle protein-chitin interactions in detail and reveal the precise geometrical formation of cuticle's helicoidal architecture. This predicted motif is another example where nature utilizes an almost flat protein surface covered by aromatic side chains to interact with the polysaccharide chains of chitin.  相似文献   

7.
8.
几丁质是自然界中储存量仅次于纤维素的第二大天然多糖, 广泛存在于真菌、昆虫和甲壳类动物之中, 自然状态复杂, 刚性很强, 生物亲和性好, 在大多数溶剂中难溶解, 可衍生出多种衍生物, 并具有重要的应用价值。目前该多糖主要来源于海洋, 其研究技术也与一般多糖有较大的差别。本文论述几丁质的自然状态、结构性能、生物合成、提取方法和衍生物制备技术的研究状况及其基本性能, 使几丁质研究技术有一个较全面的了解。  相似文献   

9.
Sponges (Porifera) are presently gaining increased scientific attention because of their secondary metabolites and specific skeleton structures. In contrast to demosponges, whose skeletons are formed from biopolymer spongin, glass sponges (hexactinellids) possess silica-organic composites as the main natural material for their skeletal fibres. Chitin has a crystalline structure and it constitutes a network of organized fibres. This structure confers rigidity and resistance to organisms that contain it, including monocellular (yeast, amoeba, diatoms) and multicellular (higher fungi, arthropods, nematodes, molluscs) organisms. In contrast to different marine invertebrates whose exoskeletons are built of chitin, this polysaccharide has not been found previously as an endogenous biopolymer within glass sponges (Hexactinellida). We hypothesized that glass sponges, which are considered to be the most basal lineage of multicellular animals, must possess chitin. Here, we present a detailed study of the structural and physico-chemical properties of skeletal fragments of the glass sponge Farrea occa. We show that these fibres have a layered design with specific compositional variations in the chitin/silica composite. We applied an effective approach for the demineralization of glass sponge skeletal formations based on an etching procedure using alkali solutions. The results show unambiguously that alpha-chitin is an essential component of the skeletal structures of Hexactinellida. This is the first report of a silica-chitin's composite biomaterial found in nature. From this perspective, the view that silica-chitin scaffolds may be key templates for skeleton formation also in ancestral unicellular organisms, rather than silica-protein composites, emerges as a viable alternative hypothesis.  相似文献   

10.
Innate immunity is an important part of immune system, providing immediate defence for the host against various infections through phagocytes. Toll-like receptors (TLRs) are major proteins expressed on the cell membrane known as pattern recognition receptors (PRR) that recognise non-self molecules (pathogen-associated molecular patterns (PAMPs)). Because TLRs have been implicated in many inflammatory diseases and cancer, TLRs targeted therapeutics have drawn great attention in clinical application in wide range of conditions. Many of them are undergoing evaluation in clinical trials. Chitin is the second most abundant polysaccharide detected in many insects and fungi. Studies have shown that chitin, as major PAMPs in host-infection, can activate TLR2-dependent innate immunity pathway. Therefore, chitin has potential use as an important agonist or antagonist to control key processes in innate immunity. However, no direct evidence has shown that chitin is the direct target of TLR2. This study first demonstrates a binding model of chitin and TLR2 and then confirmed its stability by molecular dynamic simulation and MM/PBSA (molecular mechanics/Poisson?Boltzmann surface area) calculations. The binding between chitin and TLR2 was taken place inside the binding pocket. Two hydrogen bonds were formed between chitin and TLR2, including Ser320 and Lys321. The van der Waals interaction has the major contribution in stabilising the binding of the chitin molecule with the protein. This study also suggests six hot-spots for specific binding of chitin in the binding site of TLR2, namely, Phe296, Phe299, Leu302, Thr309, Ser320 and Val322. Molecular dynamics simulation demonstrates that the complex of chitin and TLR2 is very stable with a total binding affinity of ?27.2 kcal/mol from MM/PBSA calculation.  相似文献   

11.

Chitin is a long unbranched polysaccharide, made up of β-1,4-linked N-acetylglucosamine which forms crystalline fiber-like structure. It is present in the fungal cell walls, insect and crustacean cuticles, nematode eggshells, and protozoa cyst. We provide a critical appraisal on the chemical modifications of chitin and its derivatives in the context of their improved efficacy in medical applications without any side effect. Recent advancement in nanobiotechnology has helped to synthesize several chitin derivatives having significant biological applications. Here, we discuss the molecular diversity of chitin and its applications in enzyme immobilization, wound healing, packaging material, controlled drug release, biomedical imaging, gene therapy, agriculture, biosensor, and cosmetics. Also, we highlighted chitin and its derivatives as an antioxidant, antimicrobial agent, anticoagulant material, food additive, and hypocholesterolemic agent. We envisage that chitin and chitosan-based nanomaterials with their potential applications would augment nanobiotechnology and biomedical industries.

  相似文献   

12.
Along with β-glucans, chitin is the dominant component of the fungal cell wall. Chitosan, the deacetylated form of chitin, has found quite a number of biomedical and biotechnological applications recently. Mushroom chitin could be an important source for chitosan production. A direct determination of chitin and chitosan in mushrooms is of expedient interest. In this paper, a new method for the quantification of chitin and chitosan is described. This method is based on the specific reaction between polyiodide anions and chitosan and on measuring the optical density of the insoluble polyiodide–chitosan complex. After deacetylation, chitin can also be quantified. The specificity of the reaction is used to quantify the polymers in the presence of complex matrices. With this new spot assay, the chitin content of mycelia and fruiting bodies from several basidiomycetes and an ascomycete were analysed. The presented method could also be used for the determination in other samples as well. The chitin content of the analysed species varies between 0.4 and 9.8 g chitin per 100 g of dry mass. Chitosan could not be detected in our mushroom samples, indicating that the glucosamine units are mostly acetylated.  相似文献   

13.
Insect chitin synthases: a review   总被引:10,自引:0,他引:10  
Chitin is the most widespread amino polysaccharide in nature. The annual global amount of chitin is believed to be only one order of magnitude less than that of cellulose. It is a linear polymer composed of N-acetylglucosamines that are joined in a reaction catalyzed by the membrane-integral enzyme chitin synthase, a member of the family 2 of glycosyltransferases. The polymerization requires UDP–N-acetylglucosamines as a substrate and divalent cations as co-factors. Chitin formation can be divided into three distinct steps. In the first step, the enzymes‘ catalytic domain facing the cytoplasmic site forms the polymer. The second step involves the translocation of the nascent polymer across the membrane and its release into the extracellular space. The third step completes the process as single polymers spontaneously assemble to form crystalline microfibrils. In subsequent reactions the microfibrils combine with other sugars, proteins, glycoproteins and proteoglycans to form fungal septa and cell walls as well as arthropod cuticles and peritrophic matrices, notably in crustaceans and insects. In spite of the good effort by a hardy few, our present knowledge of the structure, topology and catalytic mechanism of chitin synthases is rather limited. Gaps remain in understanding chitin synthase biosynthesis, enzyme trafficking, regulation of enzyme activity, translocation of chitin chains across cell membranes, fibrillogenesis and the interaction of microfibrils with other components of the extracellular matrix. However, cumulating genomic data on chitin synthase genes and new experimental approaches allow increasingly clearer views of chitin synthase function and its regulation, and consequently chitin biosynthesis. In the present review, I will summarize recent advances in elucidating the structure, regulation and function of insect chitin synthases as they relate to what is known about fungal chitin synthases and other glycosyltransferases.  相似文献   

14.
In this study, sequential and simultaneous strategies of ultrasonication (ultrasonic bath) were investigated to enhance enzymatic production of N-acetyl glucosamine (GlcNAc) from chitin powder. For the sequential strategy, the ultrasonic caused chitin powder to a visible fleecy structure, and Scanning electron microscopy (SEM) showed the surface of the treated chitin had a fiber-like structure with a diameter of 50 − 200 nm. Moreover, Fourier transform infrared spectroscopy (FTIR), Element analysis (EA), and X-ray diffraction (XRD) revealed that the crystallinity of the chitin decreased with little deacetylation. The simultaneous strategy is a one-pot treatment and enzymatic hydrolysis of chitin. The concentration of GlcNAc was 2.65 g/L for the strategy, which was 1.18- and 5.0-fold higher than the sequential strategy (2.25 g/L) and untreated chitin (0.53 g/L), respectively. In conclusion, this approach provided an efficient and environmentally friendly method for reducing the crystallinity of chitin and enhancing its enzymatic hydrolysis.  相似文献   

15.
Chitin is an essential structural polysaccharide of fungal pathogens and parasites, but its role in human immune responses remains largely unknown. It is the second most abundant polysaccharide in nature after cellulose and its derivatives today are widely used for medical and industrial purposes. We analysed the immunological properties of purified chitin particles derived from the opportunistic human fungal pathogen Candida albicans, which led to the selective secretion of the anti-inflammatory cytokine IL-10. We identified NOD2, TLR9 and the mannose receptor as essential fungal chitin-recognition receptors for the induction of this response. Chitin reduced LPS-induced inflammation in vivo and may therefore contribute to the resolution of the immune response once the pathogen has been defeated. Fungal chitin also induced eosinophilia in vivo, underpinning its ability to induce asthma. Polymorphisms in the identified chitin receptors, NOD2 and TLR9, predispose individuals to inflammatory conditions and dysregulated expression of chitinases and chitinase-like binding proteins, whose activity is essential to generate IL-10-inducing fungal chitin particles in vitro, have also been linked to inflammatory conditions and asthma. Chitin recognition is therefore critical for immune homeostasis and is likely to have a significant role in infectious and allergic disease.

Authors Summary

Chitin is the second most abundant polysaccharide in nature after cellulose and an essential component of the cell wall of all fungal pathogens. The discovery of human chitinases and chitinase-like binding proteins indicates that fungal chitin is recognised by cells of the human immune system, shaping the immune response towards the invading pathogen. We show that three immune cell receptors– the mannose receptor, NOD2 and TLR9 recognise chitin and act together to mediate an anti-inflammatory response via secretion of the cytokine IL-10. This mechanism may prevent inflammation-based damage during fungal infection and restore immune balance after an infection has been cleared. By increasing the chitin content in the cell wall pathogenic fungi may influence the immune system in their favour, by down-regulating protective inflammatory immune responses. Furthermore, gene mutations and dysregulated enzyme activity in the described chitin recognition pathway are implicated in inflammatory conditions such as Crohn''s Disease and asthma, highlighting the importance of the discovered mechanism in human health.  相似文献   

16.
17.
Exoskeletons stabilize cell, tissue, and body morphology in many living organisms including fungi, plants, and arthropods. In insects, the exoskeleton, the cuticle, is produced by epidermal cells as a protein extracellular matrix containing lipids and the polysaccharide chitin, and its formation requires coordinated synthesis, distribution, and modification of these components. Eventually, the stepwise secretion and sorting of the cuticle material results in a layered structure comprising the envelope, the proteinaceous epicuticle, and the chitinous procuticle. To study the role of chitin during cuticle development, we analyzed the consequences of chitin absence in the embryo of Drosophila melanogaster caused by mutations in the Chitin Synthase-1 (CS-1) gene, called krotzkopf verkehrt (kkv). Our histological data confirm that chitin is essential for procuticle integrity and further demonstrate that an intact procuticle is important to assemble and to stabilize the chitin-less epicuticle. Moreover, the phenotype of CS-1/kkv mutant embryos indicates that chitin is required to attach the cuticle to the epidermal cells, thereby maintaining epidermal morphology. Finally, sclerotization and pigmentation, which are the last steps in cuticle differentiation, are impaired in tissues lacking CS-1/kkv function, suggesting that proper cuticle structure is crucial for the activity of the underlying enzymes.  相似文献   

18.
Bacillus thuringiensis is an insecticidal bacterium whose chitinolytic system may be exploited to improve the insecticidal system of Bt-crops. A nucleotide fragment of 1368 bp from B. thuringiensis serovar konkukian S4, containing the complete coding sequence of the chitin binding protein Cbp50, was cloned and sequenced. Analyses have shown the protein to contain a modular structure consisting of an N-terminal CBM33 domain, two copies of a fibronectin-like domain and a C-terminal chitin binding domain classified as CBM5. The Cbp50 protein was heterologously expressed in Escherichia coli, purified and assessed for chitin binding activity. A deletion mutant (CBD-N; containing only the N-terminal CBM33 domain) of Cbp50 was produced to determine the role of C-terminal domains in the binding activity of the protein. The full-length Cbp50 was shown to bind β-chitin most efficiently followed by α-chitin, colloidal chitin and cellulose. The polysaccharide binding activity of CBD-N was drastically decreased. The data demonstrate that both the N-terminal and C-terminal domains of Cbp50 are essential for the efficient binding of chitin. The purified Cbp50 showed antifungal activity against the phytopathogenic fungus Fusarium oxysporum and the opportunistic human pathogen Aspergillus niger. This is the first report of a modular chitin binding protein in bacteria.  相似文献   

19.
The discovery of oxidative cleavage of recalcitrant polysaccharides by lytic polysaccharide monooxygenases (LPMOs) has affected the study and industrial application of enzymatic biomass processing. Despite being widespread in fungi, LPMOs belonging to the auxiliary activity (AA) family AA11 have been understudied. While these LPMOs are considered chitin active, some family members have little or no activity toward chitin, and the only available crystal structure of an AA11 LPMO lacks features found in bacterial chitin-active AA10 LPMOs. Here, we report structural and functional characteristics of a single-domain AA11 LPMO from Aspergillus fumigatus, AfAA11A. The crystal structure shows a substrate-binding surface with features resembling those of known chitin-active LPMOs. Indeed, despite the absence of a carbohydrate-binding module, AfAA11A has considerable affinity for α-chitin and, more so, β-chitin. AfAA11A is active toward both these chitin allomorphs and enhances chitin degradation by an endoacting chitinase, in particular for α-chitin. The catalytic activity of AfAA11A on chitin increases when supplying reactions with hydrogen peroxide, showing that, like LPMOs from other families, AfAA11A has peroxygenase activity. These results show that, in stark contrast to the previously characterized AfAA11B from the same organism, AfAA11A likely plays a role in fungal chitin turnover. Thus, members of the hitherto rather enigmatic family of AA11 LPMOs show considerable structural and functional differences and may have multiple roles in fungal physiology.  相似文献   

20.
自然界中多糖类生物质资源十分丰富,然而其复杂的抗降解屏障限制了生物转化的进程.近年来,随着生物质多糖结构的快速解析以及大量多糖降解酶的鉴定研究,针对不同底物结构或产物需求,仿制高效微生物多糖代谢途径,精确定制多糖降解酶系,促进生物质高效转化已成为可能.本文分析中性多糖(纤维素和木聚糖)、碱性多糖(几丁质和壳聚糖)以及酸性多糖(褐藻胶)的精细结构组成与基团性质,总结3类多糖主要降解酶的活性架构特征及其底物精确结合模式.文章还阐述蛋白质工程设计与定制策略,针对酶分子不同功能区的分析,可为酶分子的功能快速设计与改造提供靶点,以获得适宜于工业应用的高效酶分子,此外,根据微生物胞外降解酶系的降解次序与协同关系,可基于应用需求精确定制复杂多糖降解酶系,实现生物质的高效与高值降解转化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号