首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arginine vasopressin (AVP) causes increase in intracellular Ca(2+) concentration with an oscillatory pattern. Ca(2+) mobilization is required for AVP-stimulated apical exocytosis in inner medullary collecting duct (IMCD). The mechanistic basis of these Ca(2+) oscillations was investigated by confocal fluorescence microscopy and flash photolysis of caged molecules in perfused IMCD. Photorelease of caged cAMP and direct activation of ryanodine receptors (RyRs) by photorelease of caged cyclic ADP-ribose (cADPR) both mimicked the AVP-induced Ca(2+) oscillations. Preincubation of IMCD with 100 μM 8-bromo-cADPR (a competitive inhibitor of cADPR) delayed the onset and attenuated the magnitude of AVP-induced Ca(2+) oscillations. These observations indicate that the cADPR/RyR pathway is capable of supporting Ca(2+) oscillations and endogenous cADPR plays a major role in the AVP-induced Ca(2+) oscillations in IMCD. In contrast, photorelease of caged inositol 1,4,5-trisphosphate (IP(3)) induced Ca(2+) release but did not maintain sustained Ca(2+) oscillations. Removal of extracellular Ca(2+) halted ongoing AVP-mediated Ca(2+) oscillation, suggesting that it requires extracellular Ca(2+) entry. AVP-induced Ca(2+) oscillation was unaffected by nifedipine. Intracellular Ca(2+) store depletion induced by 20 μM thapsigargin in Ca(2+)-free medium triggered store-operated Ca(2+) entry (SOCE) in IMCD, which was attenuated by 1 μM GdCl(3) and 50 μM SKF-96365. After incubation of IMCD with 1 nM AVP in Ca(2+)-free medium, application of extracellular Ca(2+) also triggered Ca(2+) influx, which was sensitive to GdCl(3) and SKF-96365. In summary, our observations are consistent with the notion that AVP-induced Ca(2+) oscillations in IMCD are mediated by the interplay of Ca(2+) release from RyRs and a Ca(2+) influx mechanism involving nonselective cation channels that resembles SOCE.  相似文献   

2.
We have previously demonstrated that vasopressin increases the water permeability of the inner medullary collecting duct (IMCD) by inducing trafficking of aquaporin-2 to the apical plasma membrane and that this response is dependent on intracellular calcium mobilization and calmodulin activation. Here, we address the hypothesis that this water permeability response is mediated in part through activation of the calcium/calmodulin-dependent myosin light chain kinase (MLCK) and regulation of non-muscle myosin II. Immunoblotting and immunocytochemistry demonstrated the presence of MLCK, the myosin regulatory light chain (MLC), and the IIA and IIB isoforms of the non-muscle myosin heavy chain in rat IMCD cells. Two-dimensional electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified two isoforms of MLC, both of which also exist in phosphorylated and non-phosphorylated forms. 32P incubation of the inner medulla followed by autoradiography of two-dimensional gels demonstrated increased 32P labeling of both isoforms in response to the V2 receptor agonist [deamino-Cys1,D-Arg8]vasopressin (DDAVP). Time course studies of MLC phosphorylation in IMCD suspensions (using immunoblotting with anti-phospho-MLC antibodies) showed that the increase in phosphorylation could be detected as early as 30 s after exposure to vasopressin. The MLCK inhibitor ML-7 blocked the DDAVP-induced MLC phosphorylation and substantially reduced [Arg8]vasopressin (AVP)-stimulated water permeability. AVP-induced MLC phosphorylation was associated with a rearrangement of actin filaments (Alexa Fluor 568-phalloidin) in primary cultures of IMCD cells. These results demonstrate that MLC phosphorylation by MLCK represents a downstream effect of AVP-activated calcium/calmodulin signaling in IMCD cells and point to a role for non-muscle myosin II in regulation of water permeability by vasopressin.  相似文献   

3.
4.
5.
6.
The effects of glucagon and vasopressin, singly or together, on cytosolic free Ca2+ concentration [( Ca2+]i) and on the 45Ca2+ efflux were studied in isolated rat liver cells. In the presence of 1 mM external Ca2+, glucagon and vasopressin added singly induced sustained increases in [Ca2+]i. The rate of the initial fast phase of the [Ca2+]i increase and the magnitude of the final plateau were dependent on the concentrations (50 pm-0.1 microM) of glucagon and vasopressin. Preincubating the cells with a low concentration of glucagon (0.1 nM) for 2 min markedly accelerated the fast phase and elevated the plateau of the [Ca2+]i increase caused by vasopressin. In the absence of external free Ca2+, glucagon and vasopressin transiently increased [Ca2+]i and stimulated the 45Ca2+ efflux from the cells, indicating mobilization of Ca2+ from internal store(s). Preincubating the cells with 0.1 nM-glucagon accelerated the rate of the fast phase of the [Ca2+]i rise caused by the subsequent addition of vasopressin. However, unlike what was observed in the presence of 1 mM-Ca2+, glucagon no longer enhanced the maximal [Ca2+]i response to vasopressin. In the absence of external free Ca2+, higher concentrations (1 nM-0.1 microM) of glucagon, which initiated larger increases in [Ca2+]i, drastically decreased the subsequent Ca2+ response to vasopressin (10 nM). At these concentrations, glucagon also decreased the vasopressin-stimulated 45Ca2+ efflux from the cells. It is suggested that, in the liver, glucagon accelerates the fast phase and elevates the plateau of the vasopressin-mediated [Ca2+]i increase respectively by releasing Ca2+ from the same internal store as that permeabilized by vasopressin, probably the endoplasmic reticulum, and potentiating the influx of extracellular Ca2+ caused by this hormone.  相似文献   

7.
Although the development of cellular hypertrophy is widely believed to involve Ca(2+) signaling, potential supporting roles for sequestered Ca(2+) in this process have not been explored. H9c2 cardiomyocytes respond to arginine vasopressin with an initial mobilization of Ca(2+) stores and reduced rates of mRNA translation followed by repletion of Ca(2+) stores, up-regulation of translation beyond initial rates, and the development of hypertrophy. Rates of synthesis of the endoplasmic reticulum (ER) chaperones, GRP78 and GRP94, were found to increase preferentially at early times of vasopressin treatment. Total GRP78 content increased 2- to 3-fold within 8 h after which the chaperone was subject to post-translational modification. Preferential synthesis of GRP78 and the increase in chaperone content both occurred at pM vasopressin concentrations and were abolished at supraphysiologic Ca(2+) concentrations. Co-treatment with phorbol myristate acetate decreased vasopressin-dependent Ca(2+) mobilization and slowed appearance of new GRP78 molecules in response to the hormone, whereas 24 h pretreatment with phorbol ester prolonged vasopressin-dependent Ca(2+) mobilization and further increased rates of GRP78 synthesis in response to the hormone. Findings did not support a role for newly synthesized GRP78 in translational up-regulation by vasopressin. However up-regulation, which does not depend on Ca(2+) sequestration, appeared to expedite chaperone expression. This report provides the first evidence that a Ca(2+)-mobilizing hormone at physiologic concentrations signals increased expression of GRP78. Translational tolerance to depletion of ER Ca(2+) stores, typifying a robust ER stress response, did not accompany vasopressin-induced hypertrophy.  相似文献   

8.
The biochemical mechanisms of adenylate cyclase desensitization in arginine vasopressin-responsive epithelial cells remain unclear. Preincubation of cultured rabbit renal cortical collecting tubular cells with arginine vasopressin leads to a 30-100% decline in arginine vasopressin-stimulated adenylate cyclase activity. This loss of adenylate cyclase activity is time- and arginine vasopressin concentration-dependent. Preincubation with arginine vasopressin does not result in significant changes in basal, NaF-, forskolin-, isoproterenol- or cholera toxin-stimulated adenylate cyclase activity. Preincubation of cells with chlorophenylthio-cAMP, forskolin, and cholera toxin does not result in loss of arginine vasopressin-stimulated adenylate cyclase activity. Since products of cyclo-oxygenase inhibit arginine vasopressin action, cells were preincubated with indomethacin. Arginine vasopressin-induced adenylate cyclase desensitization is not reversed by indomethacin. By contrast, incubation with pertussis toxin prevents arginine vasopressin-induced adenylate cycle desensitization. These data demonstrate that arginine vasopressin induces homologous desensitization in membranes from cultured rabbit cortical collecting tubular cells and suggest that this desensitization is mediated, at least in part, by pertussis toxin substrate. These observations provide a unifying mechanism for desensitization of adenylate cyclase-coupled hormone receptors.  相似文献   

9.
We examined P2X receptor expression and distribution in the mouse collecting duct (CD) and their functional role in Ca(2+) signaling. Both P2X(1) and P2X(4) were detected by RT-PCR and Western blot. Immunohistochemistry demonstrated apical P2X(1) and P2X(4) immunoreactivity in principal cells in the outer medullary CD (OMCD) and inner medullary CD (IMCD). Luminal ATP induced an increase in Ca(2+) signaling in native medullary CD (MCD) as measured by fluorescence imaging. ATP also induced an increase in Ca(2+) signaling in MCD cells grown in primary culture but not in the presence of P2XR antagonist PPNDS. Short circuit current (I(sc)) measurement with mouse IMCD cells showed that P2XR agonist BzATP induced a larger I(sc) than did P2YR agonist UTP in the apical membrane. Our data reveal for the first time that P2X(1) and P2X(4) are cell-specific with prominent immunoreactivity in the apical area of MCD cells. The finding that P2XR blockade inhibits ATP-induced Ca(2+) signaling suggests that activation of P2XR is a key step in Ca(2+)-dependent purinergic signaling. The result that activation of P2XR produces large I(sc) indicates the necessity of P2XR in renal CD ion transport.  相似文献   

10.
Adenosine triphosphate (ATP) and endothelin (ET)-1 inhibit vasopressin-stimulated water reabsorption in the inner medullary collecting duct (IMCD). Because both ATP and ET-1 are released by the IMCD and can act in an autocrine manner to regulate IMCD water transport, we sought to determine whether these factors can modulate the other's production. To begin such studies, the effect of ATP on IMCD ET-1 production was examined. ATP caused a dose-dependent inhibition of ET-1 release and inhibited ET-1 mRNA levels in primary cultures of rat IMCD cells. This effect was first evident after 4 hrs of exposure to ATP and persisted for at least 24 hrs. The 50% inhibitory concentration for ATP inhibition of ET-1 production was approximately 1 microM, and the maximal response was observed at 25-100 microM. ATP acted, at least in part, through the P2Y2 receptor because its effect was mimicked by UTP, but not by the P2X agonist, alpha,beta-methylene-ATP. N-methyl-L-arginine, or indomethacin, did not block the ATP inhibitory effect. In summary, these data demonstrate that ATP inhibits IMCD ET-1 protein and mRNA accumulation, that this is mediated via P2Y receptors, and that the ATP effect is independent of cyclooxygenase or nitric oxide synthase metabolites. These findings suggest that although ATP and ET-1 both antagonize vasopressin action in the IMCD, they may have a complex interaction that ultimately determines the degree to which they each participate in modulating collecting duct function.  相似文献   

11.
Neurons that synthesize melanin-concentrating hormone (MCH) colocalize GABA, regulate energy homeostasis, modulate water intake, and influence anxiety, stress, and social interaction. Similarly, vasopressin and oxytocin can influence the same behaviors and states, suggesting that these neuropeptides may exert part of their effect by modulating MCH neurons. Using whole cell recording in MCH-green fluorescent protein (GFP) transgenic mouse hypothalamic brain slices, we found that both vasopressin and oxytocin evoked a substantial excitatory effect. Both peptides reversibly increased spike frequency and depolarized the membrane potential in a concentration-dependent and tetrodotoxin-resistant manner, indicating a direct effect. Substitution of lithium for extracellular sodium, Na(+)/Ca(2+) exchanger blockers KB-R7943 and SN-6, and intracellular calcium chelator BAPTA, all substantially reduced the vasopressin-mediated depolarization, suggesting activation of the Na(+)/Ca(2+) exchanger. Vasopressin reduced input resistance, and the vasopressin-mediated depolarization was attenuated by SKF-96265, suggesting a second mechanism based on opening nonselective cation channels. Neither vasopressin nor oxytocin showed substantial excitatory actions on lateral hypothalamic inhibitory neurons identified in a glutamate decarboxylase 67 (GAD67)-GFP mouse. The primary vasopressin receptor was vasopressin receptor 1a (V1aR), as suggested by the excitation by V1aR agonist [Arg(8)]vasotocin, the selective V1aR agonist [Phe(2)]OVT and by the presence of V1aR mRNA in MCH cells, but not in other nearby GABA cells, as detected with single-cell RT-PCR. Oxytocin receptor mRNA was also detected in MCH neurons. Together, these data suggest that vasopressin or oxytocin exert a minimal effect on most GABA neurons in the lateral hypothalamus but exert a robust excitatory effect on presumptive GABA cells that contain MCH. Thus, some of the central actions of vasopressin and oxytocin may be mediated through MCH cells.  相似文献   

12.
This study investigated whether inflammation modulates the mobilization of Ca(2+) in canine colonic circular muscle cells. The contractile response of single cells from the inflamed colon was significantly suppressed in response to ACh, KCl, and BAY K8644. Methoxyverapamil and reduction in extracellular Ca(2+) concentration dose-dependently blocked the response in both normal and inflamed cells. The increase in intracellular Ca(2+) concentration in response to ACh and KCl was significantly reduced in the inflamed cells. However, Ca(2+) efflux from the ryanodine- and inositol 1,4, 5-trisphosphate (IP(3))-sensitive stores, as well as the decrease of cell length in response to ryanodine and IP(3), were not affected. Heparin significantly blocked Ca(2+) efflux and contraction in response to ACh in both conditions. ACh-stimulated accumulation of IP(3) and the binding of [(3)H]ryanodine to its receptors were not altered by inflammation. Ruthenium red partially inhibited the response to ACh in normal and inflamed states. We conclude that the canine colonic circular muscle cells utilize Ca(2+) influx through L-type channels as well as Ca(2+) release from the ryanodine- and IP(3)-sensitive stores to contract. Inflammation impairs Ca(2+) influx through L-type channels, but it may not affect intracellular Ca(2+) release. The impairment of Ca(2+) influx may contribute to the suppression of circular muscle contractility in the inflamed state.  相似文献   

13.
An intracellular mechanism activated by nicotinic acid adenine dinucleotide phosphate (NAADP(+)) contributes to intracellular Ca(2+) release alongside inositol 1,4,5-trisphosphate (Ins-P(3)) and ryanodine receptors. The NAADP(+)-sensitive mechanism has been shown to be operative in sea urchin eggs, ascidian eggs, and pancreatic acinar cells. Furthermore, most mammalian cell types can synthesize NAADP(+), with nicotinic acid and NADP(+) as precursors. In this contribution, NAADP(+)-induced Ca(2+) release has been investigated in starfish oocytes. Uncaging of injected NAADP(+) induced Ca(2+) mobilization in both immature oocytes and in oocytes matured by the hormone 1-methyladenine (1-MA). The role of extracellular Ca(2+) in NAADP(+)-induced Ca(2+) mobilization, which was minor in immature oocytes, was instead essential in mature oocytes. Thus, the NAADP(+)-sensitive Ca(2+) pool, which is known to be distinct from those sensitive to inositol 1,4,5-trisphosphate or cyclic ADPribose, apparently migrated closer to (or became part of) the plasma membrane during the maturation process. Inhibition of both Ins-P(3) and ryanodine receptors, but not of either alone, substantially inhibited NAADP(+)-induced Ca(2+) mobilization in both immature and mature oocytes. The data also suggest that NAADP(+)-induced Ca(2+) mobilization acted as a trigger for Ca(2+) release via Ins-P(3) and ryanodine receptors.  相似文献   

14.
Recently, synthetic HTH-I and HTH-II have been shown to increase the formation of free fatty acids in cockroach (Periplaneta americana) fat body. In this study we show that HTH-II increases PLA(2) activity in dispersed trophocytes, thus implying that phospholipid is a potential source of the fatty acids. The increase in HTH-induced PLA(2) activity is triggered by an increase in [Ca(2+)](i) but extracellular Ca(2+) is also required for a maximal Ca(2+) signal: an effect that can be blocked by the introduction of BAPTA into the trophocytes. Treating trophocytes with ryanodine blocks the increase in PLA(2) activity that follows treatment of the cells with HTH-II. This indicates that the Ca(2+) release channels are distinct from those that respond to inositol trisphosphate. Thapsigargin, which releases Ca(2+) to the cytosol from an intracellular store, increases PLA(2) activity. The data show that the enzyme is translocated from the cytosol to the plasma membrane.  相似文献   

15.
The role of Ca(2+) mobilization from intracellular stores and Ca(2+)-activated Cl(-) channels in caffeine- and histamine-induced depolarization and contraction of the rabbit middle cerebral artery has been studied by recording membrane potential and isometric force. Caffeine induced a transient contraction and a transient followed by sustained depolarization. The transient depolarization was abolished by ryanodine, DIDS, and niflumic acid, suggesting involvement of Ca(2+)-activated Cl(-) channels. Histamine-evoked transient contraction in Ca(2+)-free solution was abolished by ryanodine or by caffeine-induced depletion of Ca(2+) stores. Ryanodine slowed the development of depolarization induced by histamine in Ca(2+)-containing solution but did not affect its magnitude. In arteries treated with 1 mM Co(2+), histamine elicited a transient depolarization and contraction, which was abolished by ryanodine. DIDS and niflumic acid reduced histamine-evoked depolarization and contraction. Histamine caused a sustained depolarization and contraction in low-Cl(-) solution. These results suggest that Ca(2+) mobilization from ryanodine-sensitive stores is involved in histamine-induced initial, but not sustained, depolarization and contraction. Ca(2+)-activated Cl(-) channels contribute mainly to histamine-induced initial depolarization and less importantly to sustained depolarization, which is most likely dependent on activation of nonselective cation channels.  相似文献   

16.
Vasopressin controls water excretion through regulation of aquaporin-2 (AQP2) trafficking in renal collecting duct cells. Using mass spectrometry, we previously demonstrated four phosphorylated serines (Ser(256), Ser(261), Ser(264), and Ser(269)) in the carboxyl-terminal tail of rat AQP2. Here, we used phospho-specific antibodies and protein mass spectrometry to investigate the roles of vasopressin and cyclic AMP in the regulation of phosphorylation at Ser(269) and addressed the role of this site in AQP2 trafficking. The V2 receptor-specific vasopressin analog dDAVP increased Ser(P)(269)-AQP2 abundance more than 10-fold, but at a rate much slower than the corresponding increase in Ser(256) phosphorylation. Vasopressin-mediated changes in phosphorylation at both sites were mimicked by cAMP addition and inhibited by protein kinase A (PKA) antagonists. In vitro kinase assays, however, demonstrated that PKA phosphorylates Ser(256), but not Ser(269). Phosphorylation of AQP2 at Ser(269) did not occur when Ser(256) was replaced by an unphosphorylatable amino acid, as seen in both S256L-AQP2 mutant mice and in Madin-Darby canine kidney cells expressing an S256A mutant, suggesting that Ser(269) phosphorylation depends upon prior phosphorylation at Ser(256). Immunogold electron microscopy localized Ser(P)(269)-AQP2 solely in the apical plasma membrane of rat collecting duct cells, in contrast to the other three phospho-forms (found in both apical plasma membrane and intracellular vesicles). Madin-Darby canine kidney cells expressing an S269D "phosphomimic" AQP2 mutant showed constitutive localization at the plasma membrane. The data support a model in which vasopressin-mediated phosphorylation of AQP2 at Ser(269):(a) depends on prior PKA-mediated phosphorylation of Ser(256) and (b) enhances apical plasma membrane retention of AQP2.  相似文献   

17.
In renal collecting ducts, a vasopressin-induced cAMP increase results in the phosphorylation of aquaporin-2 (AQP2) water channels at Ser-256 and its redistribution from intracellular vesicles to the apical membrane. Hormones that activate protein kinase C (PKC) proteins counteract this process. To determine the role of the putative kinase sites in the trafficking and hormonal regulation of human AQP2, three putative casein kinase II (Ser-148, Ser-229, Thr-244), one PKC (Ser-231), and one protein kinase A (Ser-256) site were altered to mimic a constitutively non-phosphorylated/phosphorylated state and were expressed in Madin-Darby canine kidney cells. Except for Ser-256 mutants, seven correctly folded AQP2 kinase mutants trafficked as wild-type AQP2 to the apical membrane via forskolin-sensitive intracellular vesicles. With or without forskolin, AQP2-Ser-256A was localized in intracellular vesicles, whereas AQP2-S256D was localized in the apical membrane. Phorbol 12-myristate 13-acetate-induced PKC activation following forskolin treatment resulted in vesicular distribution of all AQP2 kinase mutants, while all were still phosphorylated at Ser-256. Our data indicate that in collecting duct cells, AQP2 trafficking to vasopressin-sensitive vesicles is phosphorylation-independent, that phosphorylation of Ser-256 is necessary and sufficient for expression of AQP2 in the apical membrane, and that PMA-induced PKC-mediated endocytosis of AQP2 is independent of the AQP2 phosphorylation state.  相似文献   

18.
Agonist stimulation of exocrine cells leads to the generation of intracellular Ca(2+) signals driven by inositol 1,4,5-trisphosphate receptors (IP(3)Rs) that rapidly become global due to propagation throughout the cell. In many types of excitable cells the intracellular Ca(2+) signal is propagated by a mechanism of Ca(2+)-induced Ca(2+) release (CICR), mediated by ryanodine receptors (RyRs). Expression of RyRs in salivary gland cells has been demonstrated immunocytochemically although their functional role is not clear. We used microfluorimetry to measure Ca(2+) signals in the cytoplasm, in the endoplasmic reticulum (ER) and in mitochondria. In permeabilized acinar cells caffeine induced a dose-dependent, transient decrease of Ca(2+) concentration in the endoplasmic reticulum ([Ca(2+)](ER)). This decrease was inhibited by ryanodine but was insensitive to heparin. Application of caffeine, however, did not elevate cytosolic Ca(2+) concentration ([Ca(2+)](i)) suggesting fast local buffering of Ca(2+) released through RyRs. Indeed, activation of RyRs produced a robust mitochondrial Ca(2+) transient that was prevented by addition of Ca(2+) chelator BAPTA but not EGTA. When mitochondrial Ca(2+) uptake was blocked, activation of RyRs evoked only a non-transient increase in [Ca(2+)](i) and substantially smaller Ca(2+) release from the ER. Upon simultaneous inhibition of mitochondrial Ca(2+) uptake and either plasmalemmal or ER Ca(2+) ATPase, activation of RyRs caused a transient rise in [Ca(2+)](i). Collectively, our data suggest that Ca(2+) released through RyRs is mostly "tunnelled" to mitochondria, while Ca(2+) ATPases are responsible for the fast initial sequestration of Ca(2+). Ca(2+) uptake by mitochondria is critical for maintaining continuous CICR. A complex interplay between RyRs, mitochondria and Ca(2+) ATPases is accomplished through strategic positioning of mitochondria close to both Ca(2+) release sites in the ER and Ca(2+) pumping sites of the plasmalemma and the ER.  相似文献   

19.
Dysregulation of urinary sodium chloride (NaCl) excretion can result in extracellular fluid (ECF) volume expansion and hypertension. Recent studies demonstrated that urinary nucleotide excretion increases in mice ingesting a high-salt diet and that these increases in extracellular nucleotides can signal through P2Y(2) receptors in the kidney collecting duct to inhibit epithelial Na(+) channels (ENaC). However, under conditions of ECF volume expansion brought about by high-dietary salt intake, ENaC activity should already be suppressed. We hypothesized that alternative pathways exist by which extracellular nucleotides control renal NaCl excretion. We used an inner medullary collecting duct (mIMCD-K2) cell line in an Ussing chamber system as a model to study additional ion transport pathways that are regulated by extracellular nucleotides. When ENaC was inhibited, the addition of adenosine triphosphate (ATP) to the basal side of cell sheets activated both P2Y(1) and P2Y(2) receptors, inducing a transient increase in short-circuit current (I(sc)); addition of ATP to the apical side activated only P2Y(2) receptors, inducing first a transient and then a sustained increase in I(sc). The ATP-induced increases in I(sc) were blocked by pretreatment with a phospholipase C (PLC) inhibitor, a calcium (Ca(2+)) chelator, or Ca(2+)-activated Cl(-) channel (CACC) inhibitors, suggesting that ATP signals through both PLC and intracellular Ca(2+) to activate CACC. We propose that P2Y(1) and P2Y(2) receptors operate in tandem in IMCD cells to provide an adaptive mechanism for enhancing urinary NaCl excretion in the setting of high-dietary NaCl intake.  相似文献   

20.
The present study was designed to determine whether the cADP-ribose-mediated Ca(2+) signaling is involved in the inhibitory effect of nitric oxide (NO) on intracellular Ca(2+) mobilization. With the use of fluorescent microscopic spectrometry, cADP-ribose-induced Ca(2+) release from sarcoplasmic reticulum (SR) of bovine coronary arterial smooth muscle cells (CASMCs) was determined. In the alpha-toxin-permeabilized primary cultures of CASMCs, cADP-ribose (5 microM) produced a rapid Ca(2+) release, which was completely blocked by pretreatment of cells with the cADP-ribose antagonist 8-bromo-cADP-ribose (8-Br-cADPR). In intact fura 2-loaded CASMCs, 80 mM KCl was added to depolarize the cells and increase intracellular Ca(2+) concentration ([Ca(2+)](i)). Sodium nitroprusside (SNP), an NO donor, produced a concentration-dependent inhibition of the KCl-induced increase in [Ca(2+)](i), but it had no effect on the U-46619-induced increase in [Ca(2+)](i). In the presence of 8-Br-cADPR (100 microM) and ryanodine (10 microM), the inhibitory effect of SNP was markedly attenuated. HPLC analyses showed that CASMCs expressed the ADP-ribosyl cyclase activity, and SNP (1-100 microM) significantly reduced the ADP-ribosyl cyclase activity in a concentration-dependent manner. The effect of SNP was completely blocked by addition of 10 microM oxygenated hemoglobin. We conclude that ADP-ribosyl cyclase is present in CASMCs, and NO may decrease [Ca(2+)](i) by inhibition of cADP-ribose-induced Ca(2+) mobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号