首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.  相似文献   

2.
Climate and land‐use change jointly affect the future of biodiversity. Yet, biodiversity scenarios have so far concentrated on climatic effects because forecasts of land use are rarely available at appropriate spatial and thematic scales. Agent‐based models (ABMs) represent a potentially powerful but little explored tool for establishing thematically and spatially fine‐grained land‐use scenarios. Here, we use an ABM parameterized for 1,329 agents, mostly farmers, in a Central European model region, and simulate the changes to land‐use patterns resulting from their response to three scenarios of changing socio‐economic conditions and three scenarios of climate change until the mid of the century. Subsequently, we use species distribution models to, first, analyse relationships between the realized niches of 832 plant species and climatic gradients or land‐use types, respectively, and, second, to project consequent changes in potential regional ranges of these species as triggered by changes in both the altered land‐use patterns and the changing climate. We find that both drivers determine the realized niches of the studied plants, with land use having a stronger effect than any single climatic variable in the model. Nevertheless, the plants' future distributions appear much more responsive to climate than to land‐use changes because alternative future socio‐economic backgrounds have only modest impact on land‐use decisions in the model region. However, relative effects of climate and land‐use changes on biodiversity may differ drastically in other regions, especially where landscapes are still dominated by natural or semi‐natural habitat. We conclude that agent‐based modelling of land use is able to provide scenarios at scales relevant to individual species distribution and suggest that coupling ABMs with models of species' range change should be intensified to provide more realistic biodiversity forecasts.  相似文献   

3.
Climate change may alter the genetic diversity of plants. However, the relationship between genetic diversity in clonal plant species and climate change is unclear. To address this, we examined a representative clonal plant species, Duchesnea indica. We used microsatellite markers to analyze the genetic diversity of the species and used a correlation analysis to infer the relationship between climatic suitability and genetic diversity by using Maxent modeling. Then, we used a geographical information system approach to evaluate the change in genetic diversity of D. indica under climate change scenarios. There was a significantly negative relationship between climatic suitability and the genetic diversity of the clonal plant species. Using a proxy of genetic diversity, we found that climate change may alter the genetic diversity and even lead to a reduction in regional genetic diversity in D. indica. Annual precipitation, in particular, contributes to these changes in genetic diversity. Hence, climatic factors can be used as indicators of genetic diversity for clonal plant species, and studies should examine the impact of climate change on the maintenance of genetic diversity in plant species.  相似文献   

4.
Verschuren  Dirk 《Hydrobiologia》2003,500(1-3):315-330
Lake sediments are and will continue to be the principal source of information on the climate history of tropical Africa. However, unequivocal interpretation of the various sedimentological, biological, and geochemical climate-proxy data extracted from lake sediments with respect to past variations in temperature, rainfall, and wind is an extremely complex and challenging exercise. Outstanding problems are: (1) the inherent conflict between a lake's sensitivity to climate change (its ability to respond to and record relatively modest, short-lived climatic anomalies) and its persistence as an archive of climate change (the probability that it survived the most arid events without desiccation or erosion, allowing it to preserve a continuous record of climate history); (2) the scarcity of annually laminated sediment records, which in other regions can provide superior chronological precision to lake-based climate reconstructions; (3) lack of a quantitative (sometimes even qualitative) mechanistic understanding of the chain of cause and effect linking sedimentary climate-proxy indicators to particular climatic variables; and (4) lack of a proxy indicator for past temperature changes unaffected by simultaneous changes in moisture balance. Clearly, a climate-proxy record with high stratigraphic resolution does not represent a high-resolution record of past climate change without demonstration that the sedimentary archive is continuous and undisturbed; that the lake system responds to climate variability at the appropriate time scale; and that any threshold effects in the relationship between the proxy indicator and climate are accounted for. Calibration and validation of climate-proxy indicators is tantamount to establishing accurate reconstructions, but in Africa historical validation of proxy indicators is handicapped by the scarcity of long-term lake-monitoring data. The reliability of lake-based climate reconstructions is enhanced when inferences derived from several proxy indicators (sedimentological, biological, or geochemical), that each have an independent mechanistic link to climate, show a high level of coherence. Given the scarcity of annually-resolved sediment records in tropical Africa, we may have to accept the limitations of 210Pb- and 14C-based chronologies when evaluating the synchrony of reconstructed climate events between sites and regions; however, careful site selection and detailed lithostratigraphic analyses can go a long way to optimise depth-age models and reduce uncertainty in the timing of past climate changes.  相似文献   

5.
The relationships among species'' physiological capacities and the geographical variation of ambient climate are of key importance to understanding the distribution of life on the Earth. Furthermore, predictions of how species will respond to climate change will profit from the explicit consideration of their physiological tolerances. The climatic variability hypothesis, which predicts that climatic tolerances are broader in more variable climates, provides an analytical framework for studying these relationships between physiology and biogeography. However, direct empirical support for the hypothesis is mostly lacking for endotherms, and few studies have tried to integrate physiological data into assessments of species'' climatic vulnerability at the global scale. Here, we test the climatic variability hypothesis for endotherms, with a comprehensive dataset on thermal tolerances derived from physiological experiments, and use these data to assess the vulnerability of species to projected climate change. We find the expected relationship between thermal tolerance and ambient climatic variability in birds, but not in mammals—a contrast possibly resulting from different adaptation strategies to ambient climate via behaviour, morphology or physiology. We show that currently most of the species are experiencing ambient temperatures well within their tolerance limits and that in the future many species may be able to tolerate projected temperature increases across significant proportions of their distributions. However, our findings also underline the high vulnerability of tropical regions to changes in temperature and other threats of anthropogenic global changes. Our study demonstrates that a better understanding of the interplay among species'' physiology and the geography of climate change will advance assessments of species'' vulnerability to climate change.  相似文献   

6.
Species richness of migratory birds is influenced by global climate change   总被引:2,自引:2,他引:0  
Aim  Global climate change is increasingly influencing ecosystems. Long-term effects on the species richness and composition of ecological communities have been predicted using modelling approaches but, so far, hardly demonstrated in the field. Here, we test whether changes in the composition of bird communities have been influenced by recent climate change.
Location  Europe.
Methods  We focus on the proportion of migratory and resident bird species because these groups are expected to respond differently to climatic change. We used the spatial relationship between climatic factors and bird communities in Europe to predict changes in 21 European bird communities under recent climate change.
Results  Observed changes corresponded significantly to predicted changes and could not be explained by the effects of spatial autocorrelation. Alternative factors such as changes in land use were tested in a first approximation as well but no effects were found.
Main conclusions  This study demonstrates that global climate change has already influenced the species richness and composition of European bird communities.  相似文献   

7.
Aim In this study we use a modelling approach to identify: (1) the factors responsible for the differences in ape biogeography, (2) the effects that global warming might have on distribution patterns of African apes, (3) the underlying mechanisms for these effects, and (4) the implications that behavioural flexibility might be expected to have for ape survival. All African apes are highly endangered, and the need for efficient conservation methods is a top priority. The expected changes in world climate are likely to further exacerbate the difficulties they face. Our study aims to further understand the mechanisms that link climatic conditions to the behaviour and biogeography of ape species. Location Africa. Method We use an existing validated time budgets model, derived from data on 20 natural populations of gorillas (Gorilla beringei and Gorilla gorilla) and chimpanzees (Pan troglodytes and Pan paniscus), which specifies the relationship between climate, group size, body weight and time available for various activities, to predict ape distribution across Africa under a uniform worst‐case climate change scenario. Results We demonstrate that a worst‐case global warming scenario is likely to alter the delicate balance between different time budget components. Our model points to the importance of annual temperature variation, which was found to have the strongest impact on ape biogeography. Our simulation indicates that rising temperatures and changes in rainfall patterns are likely to have strong effects on ape survival and distribution, particularly for gorillas. Even if they behaved with maximum flexibility, gorillas may not be able to survive in most of their present habitats if the climate was to undergo extreme changes. The survival of chimpanzees was found to be strongly dependent on the minimum viable group size required. Main conclusions Our model allows us to explore how climatic conditions, individual behaviour and morphological traits may interact to limit the biogeographical distributions of these species, thereby allowing us to predict the effects of climate change on African ape distributions under different climate change regimes. The model suggests that climate variability (i.e. seasonality) plays a more important role than the absolute magnitude of the change, but these data are not normally provided by climate models.  相似文献   

8.
The North China Plain (NCP) is the most important agricultural production area in China. Crop production in the NCP is sensitive to changes in both climate and management practices. While previous studies showed a negative impact of climatic change on crop yield since 1980s, the confounding effects of climatic and agronomic factors have not been separately investigated. This paper used 25 years of crop data from three locations (Nanyang, Zhengzhou and Luancheng) across the NCP, together with daily weather data and crop modeling, to analyse the contribution of changes in climatic and agronomic factors to changes in grain yields of wheat and maize. The results showed that the changes in climate were not uniform across the NCP and during different crop growth stages. Warming mainly occurred during the vegetative (preflowering) growth stage of wheat and maize, while there was a cooling trend or no significant change in temperatures during the postflowering stage of wheat (spring) or maize (autumn). If varietal effects were excluded, warming during vegetative stages would lead to a reduction in the length of the growing period for both crops, generally leading to a negative impact on crop production. However, autonomous adoption of new crop varieties in the NCP was able to compensate the negative impact of climatic change. For both wheat and maize, the varietal changes helped stabilize the length of preflowering period against the shortening effect of warming and, together with the slightly reduced temperature in the postflowering period, extend the length of the grain‐filling period. The combined effect led to increased wheat yield at Zhengzhou and Luancheng; increased maize yield at Nanyang and Luancheng; stabilized wheat yield at Nanyang, and a slight reduction in maize yield at Zhengzhou, compared with the yield change caused entirely by climatic change.  相似文献   

9.
中国土地利用空间格局动态变化模拟——以规划情景为例   总被引:5,自引:0,他引:5  
孙晓芳  岳天祥  范泽孟 《生态学报》2012,32(20):6440-6451
土地利用变化研究在环境可持续发展研究领域中具有重要的地位,其空间分布格局的变化影响到生物地球化学循环、气候变化、生物多样性等。采用土地利用动态变化模型Dyna-CLUE模拟了在规划情景下中国土地利用变化未来空间分布格局。将土地利用类型分为六大类,即耕地、草地、林地、建设用地、水域和其它用地。驱动因子包括地形地貌、气候、社会交通等方面,对动态驱动因子如气温、降水、人口交通等,考虑了其在未来情景下的发展趋势。基于土地利用类型与驱动因子之间的定量关系和土地利用类型之间的转换规则等,模拟出至2020年中国土地利用分布格局。结果表明,至2020年,中国东南部、黄淮海平原、四川盆地等地区耕地面积将增加,东北、西北等农牧交错区、农林交错区和沙漠边缘耕地面积将会呈轻度减少趋势;林地面积将增加1417.91万hm2,主要发生在中国东北部以及西南部水热条件好的地区;中国草地在面积上保持稳定,空间上中东部、东南地区草地面积减少,内蒙古中部,青海东部,四川盆地北缘区和青藏高原等地面积增加;建设用地增加531.76万hm2,主要发生在中国的东部地区。  相似文献   

10.
Pathogens that are maintained by wild birds occasionally jump to human hosts, causing considerable loss of life and disruption to global commerce. Preliminary evidence suggests that climate change and human movements and commerce may have played a role in recent range expansions of avian pathogens. Since the magnitude of climate change in the coming decades is predicted to exceed climatic changes in the recent past, there is an urgent need to determine the extent to which climate change may drive the spread of disease by avian migrants. In this review, we recommend actions intended to mitigate the impact of emergent pathogens of migratory birds on biodiversity and public health. Increased surveillance that builds upon existing bird banding networks is required to conclusively establish a link between climate and avian pathogens and to prevent pathogens with migratory bird reservoirs from spilling over to humans.  相似文献   

11.
Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of ‘generations’ based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new ‘generation’ of climate change experiments using down‐scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments.  相似文献   

12.
Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee.  相似文献   

13.
Abstract Two factors will determine the rate at which CO2 levels in the atmosphere increase in the future: the rate of input to the atmosphere, primarily from fossil fuel burning, and the way in which this CO2 is partitioned between atmosphere, ocean and biosphere. A brief review is given of the current state of knowledge of these aspects of the CO2 issue prior to a discussion of the changes in climate that might be expected from increased levels of CO2, whenever these might occur. The basis of climate modelling upon which our expectations rest is explained, indicating the nature of the uncertainty that currently exists in the model results. While some of the gross features of the likely climatic change seem reasonably well established qualitatively, considerable model development will be needed before reliable information on the likely regional effects is forthcoming. Observations have yet to confirm the occurrence of temperature change attributable to CO2 increases. Nevertheless, the possibility exists of a change in climate during the coming century that may be substantial relative to past experience. Although direct measures to control CO2 emissions would certainly be premature, long-term planning of infrastructures, closely tuned to present climatic conditions, should ensure their robustness in the face of the uncertain climatic changes that may lie ahead.  相似文献   

14.
Climate is predicted to change rapidly in the current century, which may lead to shifts of species' ranges, reduced populations and extinctions. Predicting the responses of species abundance to climate change can provide valuable information to quantify climate change impacts and inform their management and conservation, but most studies have been limited to changes in habitat area due to a lack of abundance data. Here, we use generalized linear model and Bayesian information criteria to develop a predictive model based on the abundance of the grey‐headed robin (GHR) and the data of climatic environmental variables. The model is validated by leave‐one‐out cross‐validation and equivalence tests. The responses of GHR abundance, population size and habitat area by elevation are predicted under the current climate and 15 climate change scenarios. The model predicts that when temperature increases, abundance of GHR displays a positive response at high elevation, but a negative response at low elevation. High precipitation at the higher elevations is a limiting factor to GHR and any reduction in precipitation at high elevation creates a more suitable environment, leading to an increase in abundance of GHR, whereas changes in precipitation have little impact at low elevation. The loss of habitat is much more than would otherwise be assumed in response to climate change. Temperature increase is the predominant factor leading to habitat loss, whereas changes in precipitation play a secondary role. When climate changes, the species not only loses part of its habitat but also suffers a loss in its population size in the remaining habitat. Population size declines more than the habitat area under all considered climate change scenarios, which implies that the species might become extinct long before the complete loss of its habitat. This study suggests that some species might experience much more severe impacts from climate change than predicted from models of habitat area alone. Management policies based on predictions of habitat area decline using occurrence data need to be re‐evaluated and alternative measures need to be developed to conserve species in the face of rapid climate change.  相似文献   

15.
The hovering flight of hummingbirds is one of the most energetically demanding forms of animal locomotion and is influenced by both atmospheric oxygen availability and air density. Montane Neotropical hummingbirds are expected to shift altitudinally upwards in response to climate change to track their ancestral climatic regime, which is predicted to influence their flight performance. In this study, we use the climate envelope approach to estimate upward elevational shifts for five Andean hummingbird species under two climate change scenarios. We then use field‐based data on hummingbird flight mechanics to estimate the resulting impact of climate change on aerodynamic performance in hovering flight. Our results show that in addition to significant habitat loss and fragmentation, projected upwards elevational shifts vary between 300 and 700 m, depending on climate change scenario and original mean elevation of the target species. Biomechanical analysis indicates that such upwards elevational shifts would yield a~2–5° increase in wing stroke amplitude with no substantial effect on wingbeat frequency. Overall, the physiological impact of elevational shifts of <1000 m in response to climate change is likely to be small relative to other factors such as habitat loss, changes in floristic composition, and increased interspecific competition.  相似文献   

16.
Most agricultural pests are poikilothermic species expected to respond to climate change. Currently, they are a tremendous burden because of the high losses they inflict on crops and livestock. Smallholder farmers in developing countries of Africa are likely to suffer more under these changes than farmers in the developed world because more severe climatic changes are projected in these areas. African countries further have a lower ability to cope with impacts of climate change through the lack of suitable adapted management strategies and financial constraints. In this study we are predicting current and future habitat suitability under changing climatic conditions for Tuta absoluta, Ceratitis cosyra, and Bactrocera invadens, three important insect pests that are common across some parts of Africa and responsible for immense agricultural losses. We use presence records from different sources and bioclimatic variables to predict their habitat suitability using the maximum entropy modelling approach. We find that habitat suitability for B. invadens, C. cosyra and T. absoluta is partially increasing across the continent, especially in those areas already overlapping with or close to most suitable sites under current climate conditions. Assuming a habitat suitability at three different threshold levels we assessed where each species is likely to be present under future climatic conditions and if this is likely to have an impact on productive agricultural areas. Our results can be used by African policy makers, extensionists and farmers for agricultural adaptation measures to cope with the impacts of climate change.  相似文献   

17.
This paper addresses the use of impact indicators with respect to climate change in the 2007–2013 Rural Development Programme (RDP) of the European Union, with particular reference to the Scotland Rural Development Programme (SRDP). It concludes that the policy context has highlighted the need for the rural land use sector to respond to climate change but that the associated Common Monitoring and Evaluation Framework (CMEF) did not develop suitable indicators to assess the impact of SDRP measures on GHG emission mitigation. It suggests improved impact indicators based on the relationship between rural land use and greenhouse gas (GHG) emissions: first, an indicator based on net GHG emissions per holding; and a second based on net GHG emissions per unit volume of output. The paper points out the challenges in measuring land-based emissions accurately. It further proposes screening of RDP measures to ensure that climate change mitigation impacts are properly appraised. It is recognised that climate change policy in relation to rural land use is still at an early stage of development but greater sophistication of policy instrument design and evaluation will be required if the RDP is to contribute significantly to climate change policy objectives.  相似文献   

18.
At the interface between atmosphere and vegetation, epiphytic floras have been largely used as indicators of air quality. The recovery of epiphytes from high levels of SO2 pollution has resulted in major range changes, whose interpretation has, however, been challenged by concomitant variation in other pollutants as well as climate change. Here, we combine historical and contemporary information on epiphytic bryophyte species distributions, climatic conditions, and pollution loads since the 1980s in southern Belgium to disentangle the relative impact of climate change and air pollution on temporal shifts in species composition. The relationship between the temporal variation of species composition, climatic conditions, SO2, NO2, O3, and fine particle concentrations, was analyzed by variation partitioning. The temporal shift in species composition was such, that it was, on average, more than twice larger than the change in species composition observed today among communities scattered across the study area. The main driver, contributing to 38% of this temporal shift in species composition, was the variation of air quality. Climate change alone did not contribute to the substantial compositional shifts in epiphytic bryophyte communities in the course of the last 40 years. As a consequence of the substantial drop of N and S loads over the last decades, present-day variations of epiphytic floras were, however, better explained by the spatial variation of climatic conditions than by extant pollution loads. The lack of any signature of recolonization delays of formerly polluted areas in the composition of modern floras suggests that epiphytic bryophytes efficiently disperse at the landscape scale. We suggest that a monitoring of epiphyte communities at 10-year intervals would be desirable to assess the impact of raising pollution sources, and especially pesticides, whose impact on bryophytes remains poorly documented.  相似文献   

19.
Sediment cores from tributaries, marshes and the main stem of Chesapeake Bay were analyzed for paleoecological indicators of climate change and land use. Indicators include pollen and seeds of terrestrial and aquatic plants, diatoms, charcoal, nutrients, and trace metals. Two major events, one climatic and the other anthropogenic, occurred within the last millennium. The Medieval Climatic Anomaly and the Little Ice Age are recorded in Chesapeake sediments by terrestrial indicators of dry conditions for 200 years, beginning about 1000 years ago, followed by increases in wet indicators from about 800 to 400 years ago. There were no corresponding shifts in estuarine diatoms and seeds of submerged macrophytes. During the last few centuries following European settlement, deforestation and agriculture have resulted in the transport of large sediment and nutrient loads to estuarine waters. The terrestrial flora shifted from arboreal to herbaceous, and much of the estuarine benthic biota was replaced by pelagic species. These changes had a profound effect on the Chesapeake fishery. In assessing risks associated with climate change, it must be recognized that changes wrought by human activity are likely to influence effects of future climate change, in ways not evident from the fossil record.  相似文献   

20.
Diatoms have been often used to track trophic changes from sedimentary records: recent studies demonstrated that these organisms can even be valuable indicators of climatic variability, although it is often difficult to discriminate the role of trophic and climatic drivers. Moving from the hypothesis that oligotrophication and climate affected the composition of the diatom assemblages by changing the resource ratio, we analysed the vernal diatoms succession in Lake Maggiore, between 1984 and 2007, using multivariate techniques (cluster analysis, canonical correspondence analysis, multivariate regression trees), in order to single out the oligotrophication effects from those attributable to climatic variability. Our results point out that Si, TP, temperature and wind emerged as key explanatory variables in species selection, with a stronger link between trophic and climatic drivers after the lake reached a stable oligotrophic status. Peculiar climate-driven events (deep mixing and floods) affected the in-lake Si:P ratio, giving an advantage to diatoms that are excellent P, but poor Si competitors. The classical role of Fragilaria and Tabellaria as early-warning indicators of eutrophication should be reconsidered, taking into account that both can be useful indicators of climate change, when links between their physiological resource needs and environmental data coming from robust limnological investigations can be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号