首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Insulin promotes hepatic apolipoprotein B100 (apoB100) degradation, whereas insulin resistance is a major cause of hepatic apoB100/triglyceride overproduction in type 2 diabetes. The cellular trafficking receptor sortilin 1 (Sort1) was recently identified to transport apoB100 to the lysosome for degradation in the liver and thus regulate plasma cholesterol and triglyceride levels. Genetic variation of SORT1 was strongly associated with cardiovascular disease risk in humans. The major goal of this study is to investigate the effect and molecular mechanism of insulin regulation of Sort1. Results showed that insulin induced Sort1 protein, but not mRNA, in AML12 cells. Treatment of PI3K or AKT inhibitors decreased Sort1 protein, whereas expression of constitutively active AKT induced Sort1 protein in AML12 cells. Consistently, hepatic Sort1 was down-regulated in diabetic mice, which was partially restored after the administration of the insulin sensitizer metformin. LC-MS/MS analysis further revealed that serine phosphorylation of Sort1 protein was required for insulin induction of Sort1 in a casein kinase 2-dependent manner and that inhibition of PI3K signaling or prevention of Sort1 phosphorylation accelerated proteasome-dependent Sort1 degradation. Administration of a PI3K inhibitor to mice decreased hepatic Sort1 protein and increased plasma cholesterol and triglyceride levels. Adenovirus-mediated overexpression of Sort1 in the liver prevented PI3K inhibitor-induced Sort1 down-regulation and decreased plasma triglyceride but had no effect on plasma cholesterol in mice. This study identified Sort1 as a novel target of insulin signaling and suggests that Sort1 may play a role in altered hepatic apoB100 metabolism in insulin-resistant conditions.  相似文献   

6.
7.
The hypothalamic-pituitary-gonadal endocrine axis regulates reproduction through estrous phase-dependent release of the heterodimeric gonadotropic glycoprotein hormones, LH and FSH, from the gonadotropes of the anterior pituitary. Gonadotropin synthesis and release is dependent upon pulsatile stimulation by the hypothalamic neuropeptide GnRH. Alterations in pulse frequency and amplitude alter the relative levels of gonadotropin synthesis and release. The mechanism of interpretation of GnRH pulse frequency and amplitude by gonadotropes is not understood. We have examined gene expression in LbetaT2 gonadotropes under various pulse regimes in a cell perifusion system by microarray and identified 1127 genes activated by tonic or pulsatile GnRH. Distinct patterns of expression are associated with each pulse frequency, but the greatest changes occur at a 60-min or less interpulse interval. The immediate early gene mRNAs encoding early growth response (Egr)1 and Egr2, which activate the gonadotropin LH beta-subunit gene promoter, are stably induced at high pulse frequency. In contrast, mRNAs for the Egr corepressor genes Ngfi-A binding protein Nab1 and Nab2 are stably induced at low pulse frequency. We show that Ngfi-A binding protein members inhibit Egr-mediated frequency-dependent induction of the LH beta-subunit promoter. This pattern of expression suggests a model of pulse frequency detection that acts by suppressing activation by Egr family members at low frequency and allowing activation at sustained high-frequency pulses.  相似文献   

8.
9.
10.
11.
12.
Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic reticulum is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other or with the activity of the COPII machinery, which transports endoplasmic reticulum cargo to the Golgi. The Sar1B component of this machinery is mutated in chylomicron retention disorder, indicating that this Sar1 isoform secures delivery of dietary lipids into the circulation. However, it is not known why some patients with chylomicron retention disorder develop hepatic steatosis, despite impaired intestinal fat malabsorption, and why very severe hypocholesterolemia develops in this condition. Here, we show that Sar1B also promotes hepatic apolipoprotein (apo) B lipoprotein secretion and that this promoting activity is coordinated with the processes regulating apoB expression and the transfer of triglycerides/cholesterol moieties onto this large lipid transport protein. We also show that although Sar1A antagonizes the lipoprotein secretion-promoting activity of Sar1B, both isoforms modulate the expression of genes encoding cholesterol biosynthetic enzymes and the synthesis of cholesterol de novo. These results not only establish that Sar1B promotes the secretion of hepatic lipids but also adds regulation of cholesterol synthesis to Sar1B''s repertoire of transport functions.  相似文献   

13.
14.
15.
16.
17.
18.
Atherosclerosis in inbred mouse strains has been widely studied by using an atherogenic (Ath) diet containing cholesterol, cholic acid, and fat, but the effect of these components on gene expression has not been systematically examined. We employed DNA microarrays to interrogate gene expression levels in liver of C57BL/6J mice fed the following five diets: mouse chow, the Ath diet, or modified versions of the Ath diet in which either cholesterol, cholate, or fat were omitted. Dietary cholesterol and cholate produced discrete gene expression patterns. Cholesterol was required for induction of genes involved in acute inflammation, including three genes of the serum amyloid A family, three major histocompatibility class II antigen genes, and various cytokine-related genes. In contrast, cholate induced expression of genes involved in extracellular matrix deposition in hepatic fibrosis, including five collagen family members, collagen-interacting proteins, and connective tissue growth factor. The gene expression findings were confirmed by biochemical measurements showing that cholesterol was required for elevation of circulating serum amyloid A, and cholate was required for accumulation of collagen in the liver. The possibility that these gene expression changes are relevant to atherogenesis in C57BL/6J mice was supported by the observation that the closely related, yet atherosclerosis-resistant, C57BL/6ByJ strain was largely resistant to dietary induction of the inflammatory and fibrotic response genes. These results establish that cholesterol and cholate components of the Ath diet have distinct proatherogenic effects on gene expression and suggest a strategy to study the contribution of acute inflammatory response and fibrogenesis independently through dietary manipulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号