首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Polyamines are known to play important roles in the proliferation and differentiation of many types of cells. Although considerable amounts of polyamines are synthesized and stored in the testes, their roles remain unknown. Ornithine decarboxylase antizymes (OAZs) control the intracellular concentration of polyamines in a feedback manner. OAZ1 and OAZ2 are expressed ubiquitously, whereas OAZ-t/OAZ3 is expressed specifically in germline cells during spermiogenesis. OAZ-t reportedly binds to ornithine decarboxylase (ODC) and inactivates ODC activity. In a prior study, polyamines were capable of inducing a frameshift at the frameshift sequence of OAZ-t mRNA, resulting in the translation of OAZ-t. To investigate the physiological role of OAZ-t, we generated OAZ-t–disrupted mutant mice. Homozygous OAZ-t mutant males were infertile, although the polyamine concentrations of epididymides and testes were normal in these mice, and females were fertile. Sperm were successfully recovered from the epididymides of the mutant mice, but the heads and tails of the sperm cells were easily separated in culture medium during incubation. Results indicated that OAZ-t is essential for the formation of a rigid junction between the head and tail during spermatogenesis. The detached tails and heads were alive, and most of the headless tails showed straight forward movement. Although the tailless sperm failed to acrosome-react, the heads were capable of fertilizing eggs via intracytoplasmic sperm injection. OAZ-t likely plays a key role in haploid germ cell differentiation via the local concentration of polyamines.  相似文献   

3.
Polyamines are essential organic cations with multiple cellular functions. Their synthesis is controlled by a feedback regulation whose main target is ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. In mammals, ODC has been shown to be inhibited and targeted for ubiquitin-independent degradation by ODC antizyme (AZ). The synthesis of mammalian AZ was reported to involve a polyamine-induced ribosomal frameshifting mechanism. High levels of polyamine therefore inhibit new synthesis of polyamines by inducing ODC degradation. We identified a previously unrecognized sequence in the genome of Saccharomyces cerevisiae encoding an orthologue of mammalian AZ. We show that synthesis of yeast AZ (Oaz1) involves polyamine-regulated frameshifting as well. Degradation of yeast ODC by the proteasome depends on Oaz1. Using this novel model system for polyamine regulation, we discovered another level of its control. Oaz1 itself is subject to ubiquitin-mediated proteolysis by the proteasome. Degradation of Oaz1, however, is inhibited by polyamines. We propose a model, in which polyamines inhibit their ODC-mediated biosynthesis by two mechanisms, the control of Oaz1 synthesis and inhibition of its degradation.  相似文献   

4.
This review considers the role of antizyme, of amino acids and of protein synthesis in the regulation of polyamine biosynthesis.The ornithine decarboxylase of eukaryotic ceils and ofEscherichia coli coli can be non-competitively inhibited by proteins, termed antizymes, which are induced by di-and poly- amines. Some antizymes have been purified to homogeneity and have been shown to be structurally unique to the cell of origin. Yet, the E. c o l i antizyme and the rat liver antizyme cross react and inhibit each other's biosynthetic decarboxylases. These results indicate that aspects of the control of polyamine biosynthesis have been highly conserved throughout evolution.Evidence for the physiological role of the antizyme in mammalian cells rests upon its identification in normal uninduced cells, upon the inverse relationship that exists between antizyme and ornithine decarboxylase as well as upon the existence of the complex of ornithine decarboxylase and antizyme in vivo. Furthermore, the antizyme has been shown to be highly specific; its Keq for ornithine decarboxylase is 1.4 x 1011 M-1. In addition, mammalian ceils contain an anti-antizyme, a protein that specifically binds to the antizyme of an ornithine decarboxylase-antizyme complex and liberates free ornithine decarboxylase from the complex. In B. coli , in which polyamine biosynthesis is mediated both by ornithine decarboxylase and by arginine decarboxylase, three proteins (one acidic and two basic) have been purified, each of which inhibits both these enzymes. They do not inhibit the biodegradative ornithine and arginine decarboxylases nor lysine decarboxylase. The two basic inhibitors have been shown to correspond to the ribosomal proteins S20/L26 and L34, respectively. The relationship of the acidic antizyme to other known B. coli proteins remains to be determined.  相似文献   

5.
The antizyme protein, Oaz1, regulates synthesis of the polyamines putrescine, spermidine and spermine by controlling stability of the polyamine biosynthetic enzyme, ornithine decarboxylase. Antizyme mRNA translation depends upon a polyamine-stimulated +1 ribosomal frameshift, forming a complex negative feedback system in which the translational frameshifting event may be viewed in engineering terms as a feedback controller for intracellular polyamine concentrations. In this article, we present the first systems level study of the characteristics of this feedback controller, using an integrated experimental and modeling approach. Quantitative analysis of mutant yeast strains in which polyamine synthesis and interconversion were blocked revealed marked variations in frameshift responses to the different polyamines. Putrescine and spermine, but not spermidine, showed evidence of co-operative stimulation of frameshifting and the existence of multiple ribosome binding sites. Combinatorial polyamine treatments showed polyamines compete for binding to common ribosome sites. Using concepts from enzyme kinetics and control engineering, a mathematical model of the translational controller was developed to describe these complex ribosomal responses to combinatorial polyamine effects. Each one of a range of model predictions was successfully validated against experimental frameshift frequencies measured in S-adenosylmethionine-decarboxylase and antizyme mutants, as well as in the wild-type genetic background.  相似文献   

6.
Selective degradation by proteasomes of ornithine decarboxylase, the initial enzyme in polyamine biosynthesis, is mediated by the polyamine-inducible protein antizyme. Antizyme binds to a region near the N terminus of ornithine decarboxylase (X. Li and P. Coffino, Mol. Cell. Biol. 12:3556-3562, 1992). This interaction induces a conformational change in ornithine decarboxylase that exposes its C terminus and inactivates the enzyme (X. Li and P. Coffino, Mol. Cell. Biol. 13:1487-1492, 1993). Here we show that the C-terminal half of antizyme alone can inactivate ornithine decarboxylase and alter its conformation, but it cannot direct degradation of the enzyme, either in vitro or in vivo. A portion of the N-terminal half of antizyme must be present to promote degradation.  相似文献   

7.
A. Salzberg  K. Golden  R. Bodmer    H. J. Bellen 《Genetics》1996,144(1):183-196
The gutfeeling (guf) gene was uncovered in a genetic screen for genes that are required for proper development of the embryonic peripheral nervous system. Mutations in guf cause defects in growth cone guidance and fasciculation and loss of expression of several neuronal markers in the embryonic peripheral and central nervous systems. guf is required for terminal differentiation of neuronal cells. Mutations in guf also affect the development of muscles in the embryo. In the absence of guf activity, myoblasts are formed properly, but myoblast fusion and further differentiation of muscle fibers is severely impaired. The guf gene was cloned and found to encode a 21-kD protein with a significant sequence similarity to the mammalian ornithine decarboxylase antizyme (OAZ). In mammals, OAZ plays a key regulatory role in the polyamine biosynthetic pathway through its binding to, and inhibition of, ornithine decarboxylase (ODC), the first enzyme in the pathway. The elaborate regulation of ODC activity in mammals still lacks a defined developmental role and little is known about the involvement of polyamines in cellular differentiation. GUF is the first antizyme-like protein identified in invertebrates. We discuss its possible developmental roles in light of this homology.  相似文献   

8.
Zhang J  Wang Y  Zhou Y  Cao Z  Huang P  Lu B 《FEBS letters》2005,579(2):559-566
Gametogenetin (Ggn) is a testicular germ cell-specific gene specifically expressed from late pachytene spermatocytes through round spermatids. The function of gametogenetin protein 1 (GGN1) remains unknown. Here, we used the yeast two-hybrid approach to look for more GGN1 interacting proteins. We found that gametogenetin binding protein 1 (GGNBP1), gametogenetin binding protein 2 (GGNBP2) and ornithine decarboxylase antizyme 3 (OAZ3) were potential GGN1 interaction partners. We determined the regions mediating the interactions and further showed the interactions between the proteins in mammalian cells by colocalization and coimmunoprecipitation experiments. Our work suggested that GGN1, GGNBP1, GGNBP2 and OAZ3 could be involved in a common process associated with spermatogenesis.  相似文献   

9.
10.
Ornithine decarboxylase (ODC), a homodimeric enzyme with a rate-limiting function in polyamine biosynthesis, is subject to a feedback control involving its selective proteolysis. Targeting of ODC monomers to the proteasome is mediated by ODC antizyme (OAZ), the expression of which is induced by high levels of polyamines. Here, we report our analysis of the N-terminal degron in Saccharomyces cerevisiae ODC and the mechanism of its antizyme-dependent targeting. This ∼ 45-residue domain of ODC [termed ODC degradation signal (ODS)] is essential for degradation of ODC. Extensive mutagenesis indicated that it is not a specific sequence within ODS that is important but, rather, its unstructured nature. Consistent with this conclusion, ODS could be functionally replaced by an unrelated unstructured domain. We show that increasing the distance of ODS to the rest of the ODC protein reduced the dependence on Oaz1 for targeting, indicating that exposure of ODS is critical for its function. Disruption of ODC dimers by introducing interface mutations, in contrast, was insufficient for targeting. Binding of Oaz1 to ODC monomers is thus required to activate ODS. Fusion of ODS to the N terminus of Ura3 was sufficient to convert it into a ubiquitin-independent substrate of the proteasome. By contrast, ODS failed to destabilize maltose-binding protein or dihydrofolate reductase, indicating that this degron only operates in an appropriate structural context that enables rapid unfolding.  相似文献   

11.
Degradation of ornithine decarboxylase, the rate-limiting enzyme of polyamine biosynthesis, is promoted by the protein antizyme. Expression of antizyme is positively regulated by rising polyamine concentrations that induce a +1 translational frameshift required for production of the full-length protein. Antizyme itself is negatively regulated by the antizyme inhibitor. In our study, the regulation of Caenorhabditis elegans antizyme was investigated, and the antizyme inhibitor was identified. By applying a novel GFP-based method to monitor antizyme frameshifting in vivo, we show that the induction of translational frameshifting also occurs under stressful conditions. Interestingly, during starvation, the initiation of frameshifting was independent of polyamine concentrations. Because frameshifting was also prevalent in a polyamine auxotroph double mutant, a polyamine-independent regulation of antizyme frameshifting is suggested. Polyamine-independent induction of antizyme expression was found to be negatively regulated by the peptide transporter PEPT-1, as well as the target of rapamycin, but not by the daf-2 insulin signaling pathway. Stress-dependent expression of C. elegans antizyme occurred morely slowly than expression in response to increased polyamine levels, pointing to a more general reaction to unfavorable conditions and a diversion away from proliferation and reproduction toward conservation of energy. Interestingly, antizyme expression was found to drastically increase in aging individuals in a postreproductive manner. Although knockdown of antizyme did not affect the lifespan of C. elegans, knockdown of the antizyme inhibitor led to a significant reduction in lifespan. This is most likely caused by an increase in antizyme-mediated degradation of ornithine decarboxylase-1 and a resulting reduction in cellular polyamine levels.  相似文献   

12.
Ma JM  He JT  Ning QJ 《生理科学进展》2007,38(2):106-110
抗酶(antizyme)是当细胞内多胺水平升高时刺激机体合成的一种小分子量调节蛋白,能特异性地与鸟氨酸脱羧酶(omithine decarboxylase,ODC)结合,经泛素非依赖途径被26S蛋白酶体降解,从而使多胺合成减少;抗酶还可以调节多胺转运,以稳定细胞内多胺水平。近年来随着生物技术的不断发展,对抗酶的认识也逐步深入,本文综述了抗酶家族、合成、作用及定位等方面的研究进展。  相似文献   

13.
14.
A protein inhibiting a protein inhibitor (antizyme) to ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) (ODC), antizyme inhibitor, was purified from the liver cytosol of thioacetamide-treated rats by procedures including antizyme affinity chromatography. Overall purification was roughly estimated to be about 17,000,000-fold and recovery was about 2.4%. The purified preparation showed one major protein band and a faint band corresponding in mobility to molecular weights of 51,000 and 53,500, respectively, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Judging from the ornithine decarboxylase activity of the final preparation, the faint band may be ornithine decarboxylase. The apparent molecular weight of antizyme inhibitor estimated by gel filtration on Sephacryl S-200 was approx. 62,000, indicating that antizyme inhibitor may be composed of a single polypeptide chain. In order to examine the question of whether antizyme inhibitor is a protein derived from ornithine decarboxylase, an inactive ornithine decarboxylase, in an immunotitration study and analysis of the binding to antizyme were investigated. The results indicate that antizyme inhibitor may be a protein distinct from ornithine decarboxylase.  相似文献   

15.
蔡富强  王艳林 《生命科学》2011,(10):1002-1008
鸟氨酸脱羧酶抗酶I(ornithine decarboxylase antizyme 1,OAZ1)是调节细胞内多胺含量的重要因子,参与细胞生长与分化、胚胎发育、基因表达调控等重要生理过程,也是抗肿瘤治疗的潜在分子靶点。简要综述鸟氨酸脱羧酶抗酶I在结构与功能,及其调控多胺代谢机制方面的研究进展。  相似文献   

16.
Contrary to previous findings, ornithine decarboxylase (ODC) was stabilized by treatment of cells with DL-alpha-difluoromethylornithine, an enzyme-activated irreversible inhibitor of ODC. Both this inhibitor and cyclohexylamine, a spermidine synthase inhibitor known to stabilize ODC, caused decreases in the antizyme/ODC ratio by increasing ODC content and conversely decreasing antizyme content. The relationship between cellular polyamine levels and antizyme content indicated that spermidine is the most important polyamine for antizyme induction. These results suggest that antizyme is involved in the mechanism underlying the stabilization of ODC by inhibitors of polyamine synthesis and support the hypothesis that cellular polyamines regulate ODC degradation via antizyme.  相似文献   

17.
Escherichia coli ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) was found to be inhibited by several basic proteins. When ribosomal proteins were tested, major ribosomal proteins, with the exceptions of S1, S5, S6, S8, S10, L3, L5, L6, L7/L12, L8, L9 and L10 proteins, showed antizyme activity in addition to the recognized antizymes (S20/L26 and L34 proteins). Furthermore, it was found that L20 protein and a new ribosomal protein, tentatively named X1 protein and bound to 50 S ribosomal subunits, showed stronger antizyme activity than S20/L26 and L34 proteins. The antizyme activity of S20/L26 and L34 proteins was at most 10% of the total antizyme activity of ribosomal proteins. Several basic polypeptides also showed antizyme activity in the order polyarginine greater than protamine greater than histone greater than polylysine. Ribosomal proteins and basic polypeptides inhibited ornithine decarboxylase activity competitively. Ribosome-bound antizymes were inactive as antizymes, and antizyme inhibition of ornithine decarboxylase was eliminated by ribosomes. When E. coli extracts were separated into ribosomes and 100,000 X g supernatant fraction, no significant antizyme activity was observed in the supernatant fraction. Results of these in vitro experiments infer that basic antizymes may not function as inhibitors of ornithine decarboxylase in vivo.  相似文献   

18.
Overproduction of the ornithine decarboxylase (ODC) regulatory protein ODC-antizyme has been shown to correlate with cell growth inhibition in a variety of different cell types. Although the exact mechanism of this growth inhibition is not known, it has been attributed to the effect of antizyme on polyamine metabolism. Antizyme binds directly to ODC, targeting ODC for ubiquitin-independent degradation by the 26 S proteasome. We now show that antizyme induction also leads to degradation of the cell cycle regulatory protein cyclin D1. We demonstrate that antizyme is capable of specific, noncovalent association with cyclin D1 and that this interaction accelerates cyclin D1 degradation in vitro in the presence of only antizyme, cyclin D1, purified 26 S proteasomes, and ATP. In vivo, antizyme up-regulation induced either by the polyamine spermine or by antizyme overexpression causes reduction of intracellular cyclin D1 levels. The antizyme-mediated pathway for cyclin D1 degradation is independent of the previously characterized phosphorylation- and ubiquitination-dependent pathway, because antizyme up-regulation induces the degradation of a cyclin D1 mutant (T286A) that abrogates its ubiquitination. We propose that antizyme-mediated degradation of cyclin D1 by the proteasome may provide an explanation for the repression of cell growth following antizyme up-regulation.  相似文献   

19.
Detection of Ornithine Decarboxylase Antizyme in Mouse Brain   总被引:5,自引:4,他引:1  
Ornithine decarboxylase, the rate-limiting enzyme in polyamine synthesis, is known to be regulated by a macromolecular inhibitor, termed antizyme, in a number of cellular systems. The present results show that the antizyme is also a functional component of polyamine metabolism in the brain. It could be demonstrated both in normal randomly selected mice and in animals which had been subjected either to intracerebroventricular injection of saline, which is known to cause a transient activation of ornithine decarboxylase, or to 1,3-diamino-2-propanol, an antizyme-inducing agent. When compared to tissues or cell systems studied so far, the cytosol fraction from mouse brain homogenate appeared to contain an exceptionally high amount of antizyme, that was bound to some material other than active ornithine decarboxylase. This feature was seen in all the animal groups studied, being most prominent after saline injection, when the amount of dissociable antizyme exceeded 14-fold the corresponding released ornithine decarboxylase activity. In untreated animals the excess was about eightfold and after 1,3-diamino-2-propanol about fivefold.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号