首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Both TGF-β and myocardin (MYOCD) are important for smooth muscle cell (SMC) differentiation, but their precise role in regulating the initiation of SMC development is less clear. In TGF-β-induced SMC differentiation of pluripotent C3H10T1/2 progenitors, we found that TGF-β did not significantly induce Myocd mRNA expression until 18 h of stimulation. On the other hand, early SMC markers such as SM α-actin, SM22α, and SM calponin were detectable beginning 2 or 4 h after TGF-β treatment. These results suggest that Myocd expression is blocked during the initiation of TGF-β-induced SMC differentiation. Consistent with its endogenous expression, Myocd promoter activity was not elevated until 18 h following TGF-β stimulation. Surprisingly, Smad signaling was inhibitory to Myocd expression because blockade of Smad signaling enhanced Myocd promoter activity. Overexpression of Smad3, but not Smad2, inhibited Myocd promoter activity. Conversely, shRNA knockdown of Smad3 allowed TGF-β to activate the Myocd promoter in the initial phase of induction. Myocd was activated by PI3 kinase signaling and its downstream target Nkx2.5. Interestingly, Smad3 did not affect PI3 kinase activity. However, Smad3 physically interacted with Nkx2.5. This interaction blocked Nkx2.5 binding to the Myocd promoter in the early stage of TGF-β induction, leading to inhibition of Myocd mRNA expression. Moreover, Smad3 inhibited Nkx2.5-activated Myocd promoter activity in a dose-dependent manner. Taken together, our results reveal a novel mechanism for Smad3-mediated inhibition of Myocd in the initiation phase of SMC differentiation.  相似文献   

4.
5.
6.
Transforming growth factor-beta (TGF-β) is a pleiotropic cytokine with important effects on processes such as fibrosis, angiogenesis, and immunosupression. Using bioinformatics, we identified SMAD2, one of the mediators of TGF-β signaling, as a predicted target for a microRNA, microRNA-155 (miR-155). MicroRNAs are a class of small non-coding RNAs that have emerged as an important class of gene expression regulators. miR-155 has been found to be involved in the regulation of the immune response in myeloid cells. Here, we provide direct evidence of binding of miR-155 to a predicted binding site and the ability of miR-155 to repress SMAD2 protein expression. We employed a lentivirally transduced monocyte cell line (THP1-155) containing an inducible miR-155 transgene to show that endogenous levels of SMAD2 protein were decreased after sustained overexpression of miR-155. This decrease in SMAD2 led to a reduction in both TGF-β-induced SMAD-2 phosphorylation and SMAD-2-dependent activation of the expression of the CAGA(12)LUC reporter plasmid. Overexpression of miR-155 altered the cellular responses to TGF-β by changing the expression of a set of genes that is involved in inflammation, fibrosis, and angiogenesis. Our study provides firm evidence of a role for miR-155 in directly repressing SMAD2 expression, and our results demonstrate the relevance of one of the two predicted target sites in SMAD2 3'-UTR. Altogether, our data uncover an important role for miR-155 in modulating the cellular response to TGF-β with possible implications in several human diseases where homeostasis of TGF-β might be altered.  相似文献   

7.
8.
9.
Transforming growth factor-β (TGF-β) signaling is controlled by a variety of regulators, of which Smad7, c-Ski, and SnoN play a pivotal role in its negative regulation. Arkadia is a RING-type E3 ubiquitin ligase that targets these negative regulators for degradation to enhance TGF-β signaling. In the present study we identified a candidate human tumor suppressor gene product RB1CC1/FIP200 as a novel positive regulator of TGF-β signaling that functions as a substrate-selective cofactor of Arkadia. Overexpression of RB1CC1 enhanced TGF-β signaling, and knockdown of endogenous RB1CC1 attenuated TGF-β-induced expression of target genes as well as TGF-β-induced cytostasis. RB1CC1 down-regulated the protein levels of c-Ski but not SnoN by enhancing the activity of Arkadia E3 ligase toward c-Ski. Substrate selectivity is primarily attributable to the physical interaction of RB1CC1 with substrates, suggesting its role as a scaffold protein. RB1CC1 thus appears to play a unique role as a modulator of TGF-β signaling by restricting substrate specificity of Arkadia.  相似文献   

10.
11.
12.
The immunesuppressive cytokine TGF-β plays crucial regulatory roles in the induction and maintenance of immunologic tolerance and prevention of immunopathologies. However, it remains unclear how circulating T-cells can escape from the quiescent state maintained by TGF-β. Here, we report that the T-cell integrin leukocyte function-associated antigen-1 (LFA-1) interaction with its ligand intercellular adhesion molecule-1 (ICAM-1) induces a genetic signature associated with reduced TGF-β responsiveness via up-regulation of SKI, E3 ubiquitin-protein ligase SMURF2, and SMAD7 (mothers against decapentaplegic homolog 7) genes and proteins. We confirmed that the expression of these TGF-β inhibitory molecules was dependent on STAT3 and/or JNK activation. Increased expression of SMAD7 and SMURF2 in LFA-1/ICAM-1 cross-linked T-cells resulted in impaired TGF-β-mediated phosphorylation of SMAD2 and suppression of IL-2 secretion. Expression of SKI caused resistance to TGF-β-mediated suppression of IL-2, but SMAD2 phosphorylation was unaffected. Blocking LFA-1 by neutralizing antibody or specific knockdown of TGF-β inhibitory molecules by siRNA substantially restored LFA-1/ICAM-1-mediated alteration in TGF-β signaling. LFA-1/ICAM-1-stimulated human and mouse T-cells were refractory to TGF-β-mediated induction of FOXP3(+) (forkhead box P3) and RORγt(+) (retinoic acid-related orphan nuclear receptor γt) Th17 differentiation. These mechanistic data suggest an important role for LFA-1/ICAM-1 interactions in immunoregulation concurrent with lymphocyte migration that may have implications at the level of local inflammatory response and for anti-LFA-1-based therapies.  相似文献   

13.
The periodontal ligament (PDL) is a fibrous connective tissue that attaches the tooth to the alveolar bone. We previously demonstrated the ability of PDL fibroblast-like cells to construct an endothelial cell (EC) marker-positive blood vessel-like structure, indicating the potential of fibroblastic lineage cells in PDL tissue as precursors of endothelial progenitor cells (EPCs) to facilitate the construction of a vascular system around damaged PDL tissue. A vascular regeneration around PDL tissue needs proliferation of vascular progenitor cells and the subsequent differentiation of the cells. Transforming growth factor-β (TGF-β) is known as an inducer of endothelial-mesenchymal transition (EndMT), however, it remains to be clarified what kinds of TGF-β signals affect growth and mesenchymal differentiation of PDL-derived EPC-like fibroblastic cells. Here, we demonstrated that TGF-β1 not only suppressed the proliferation of the PDL-derived EPC-like fibroblastic cells, but also induced smooth muscle cell (SMC) markers expression in the cells. On the other hand, TGF-β1 stimulation suppressed EC marker expression. Intriguingly, overexpression of Smad7, an inhibitor for TGF-β-induced Smad-dependent signaling, suppressed the TGF-β1-induced growth inhibition and SMC markers expression, but did not the TGF-β1-induced downregulation of EC marker expression. In contrast, p38 mitogen-activated protein kinase (MAPK) inhibitor SB 203580 suppressed the TGF-β1-induced downregulation of EC marker expression. In addition, the TGF-β1-induced SMC markers expression of the PDL-derived cells was reversed upon stimulation with fibroblast growth factor (FGF), suggesting that the TGF-β1 might not induce terminal SMC differentiation of the EPC-like fibroblastic cells. Thus, TGF-β1 not only negatively controls the growth of PDL-derived EPC-like fibroblastic cells via a Smad-dependent manner but also positively controls the SMC-differentiation of the cells possibly at the early stage of the translineage commitment via Smad- and p38 MAPK-dependent manners.  相似文献   

14.
He Y  Huang C  Sun X  Long XR  Lv XW  Li J 《Cellular signalling》2012,24(10):1923-1930
Activation of hepatic stellate cells (HSC) plays a pivotal role in the development of hepatic fibrosis. Transforming growth factor-β1 (TGF-β1) is considered to be the main stimuli factor responsible for the activation of HSC. MicroRNAs (miRNAs) have recently been shown to regulate cell proliferation, differentiation, and apoptosis. The involvement of miRNAs and their roles in TGF-β1-induced HSC activation remains largely unknown. Our study found that the expression of miR-146a was downregulated in HSC in response to TGF-β1 stimulation in dose-dependent manner by one-step real-time quantitative PCR. Moreover, we sought to examine whether miR-146a became dysregulated in CCl(4)-induced hepatic fibrosis in rats. Our study revealed that miR-146a was downregulated in liver fibrotic tissues. In addition, The HSC transfected with miR-146a mimics exhibited attendated TGF-β1-induced α-smooth muscle actin (α-SMA) expression compared with the control. Furthermore, overexpression of miR-146a suppressed TGF-β-induced HSC proliferation, and increased HSC apoptosis. Bioinformatics analyses predict that SMAD4 is the potential target of miR-146a. MiR-146a overexpression in TGF-β1-treated HSC did not decrease target mRNA levels, but significantly reduced target protein expression. These results suggested that miR-146a may function as a novel regulator to modulate HSC activation during TGF-β1 induction by targeting SMAD4.  相似文献   

15.
Pulmonary fibrosis (PF), characterized by the destruction of lung tissue architecture and the abnormal deposition of extracellular matrix (ECM) proteins, currently has no satisfactory treatment. The role of microRNA (miR)‐21 in PF has been reported; the current study attempted to investigate a novel molecular mechanism by which miR‐21 exerted its function. Consistent with previous studies, miR‐21 inhibition reduced ECM protein levels in bleomycin (BLM)‐induced mouse model of PF. In human pulmonary fibroblast (IMR‐90), miR‐21 inhibition reduced transforming growth factor β1 (TGFβ1)–induced ECM protein expression. Regarding a novel molecular mechanism, TGFβ1 combined with TGFβ1 receptor 1 (TGFβ1RI) to activate SMAD2/3, promote SMAD4 nucleus transformation, and thus regulate miR‐21 expression and ECM. SMAD3 and SMADs complex could bind to the promoter region of miR‐21 to promote miR‐21 expression. In conclusion, miR‐21 exerts promotive effects on BLM‐induced PF and TGFβ1‐induced ECM in IMR‐90; TGFβ1 combines with TGFβ1RI to activate SMAD2/3, promote SMAD4 nucleus transformation, promote miR‐21 expression, and thus to promote BLM‐induced PF and TGFβ1‐induced ECM in IMR‐90 cells.  相似文献   

16.
17.
18.
Transforming growth factor-β1 (TGF-β1) regulates the cell cycle and the differentiation of mesenchymal cells into smooth muscle cells (SMCs). However, the precise intracellular signaling pathways involved in these processes have not been fully clarified. It has also been shown that there is an increase in TGF-β1 expression in human atherosclerotic plaques. Furthermore, peroxisome proliferator-activated receptors (PPARs) and their agonists have recently gained more attention in the study of the pathogenesis of atherosclerosis. In this study, we examined the role of PPARs in the TGF-β1-mediated cell cycle control and SMC phenotypic modulation of C3H10T1/2 (10T1/2) mesenchymal cells. The results showed the following: (1) the PI3K/Akt/p70S6K signaling cascade is involved in TGF-β1-induced differentiation of 10T1/2 cells into cells with a SMC phenotype. (2) PPAR-α agonists (i.e., WY14,643 and clofibrate), but not a PPAR-δ/β agonist (GW501516) or PPAR-γ agonist (troglitazone), inhibit TGF-β1-induced SMC markers and the DNA binding activity of serum response factor (SRF) in 10T1/2 cells. (3) WY14,643 and clofibrate inhibit the TGF-β1 activation of the Smad3/Akt/P70S6K signaling cascade. (4) TGF-β1-induced cell cycle arrest at the G0/G1 phases is mediated by Smad3 in 10T1/2 cells. (5) The PPAR-α-mediated 10T1/2 cell cycle arrest at the G0/G1 phases is TGF-β receptor independent. These results suggest that PPAR-α mediates cell cycle control and TGF-β1-induced SMC phenotypic changes in 10T1/2 cells.  相似文献   

19.
Matricellular proteins play a critical role in the development of tubulointerstitial fibrosis and renal disease progression. Connective tissue growth factor (CTGF/CCN2), a CCN family member of matricellular proteins, represents an important mediator during development of glomerular and tubulointerstitial fibrosis in progressive kidney disease. We have recently reported that oncostatin M (OSM) is a potent inhibitor of TGF-β1-induced CTGF expression in human proximal tubular cells (PTC). In the present study we examined the role of TGF-β1- and OSM-induced signaling mechanisms in the regulation of CTGF mRNA expression in human proximal tubular HK-2 cells. Utilizing siRNA-mediated gene silencing we found that TGF-β1-induced expression of CTGF mRNA after 2h of stimulation at least partially depends on SMAD3 but not on SMAD2. In contrast to TGF-β1, OSM seems to exert a time-dependent dual effect on CTGF mRNA expression in these cells. While OSM led to a rapid and transient induction of CTGF mRNA expression between 15min and 1h of stimulation it markedly suppressed basal and TGF-β1-induced CTGF mRNA levels thereafter. Silencing of STAT1 or STAT3 attenuated basal CTGF mRNA levels indicating that both STAT isoforms may be involved in the regulation of basal CTGF mRNA expression. However, knockdown of STAT3 but not STAT1 prevented OSM-mediated suppression of basal and TGF-β1-induced upregulation of CTGF mRNA expression. Together these results suggest that the inhibitory effect of OSM on TGF-β1-induced CTGF mRNA expression is mainly driven by STAT3, thereby providing a signaling mechanism whereby OSM may contribute to tubulointerstitial protection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号