首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In short-term water culture experiments with different 15N labeled ammonium or nitrate concentrations, citrus seedlings absorbed NH4 + at a higher rate than NO3 . Maximum NO3 uptake by the whole plant occurred at 120 mg L–1 NO3 -N, whereas NH4 + absorption was saturated at 240 mg L–1 NH4 +-N. 15NH4 + accumulated in roots and to a lesser degree in both leaves and stems. However, 15NO3 was mostly partitioned between leaves and roots.Adding increasing amounts of unlabeled NH4 + (15–60 mg L–1 N) to nutrient solutions containing 120 mg L–1 N as 15N labeled nitrate reduced 15NO3 uptake. Maximum inhibition of 15NO3 uptake was about 55% at 2.14 mM NH4 + (30 mg L–1 NH4 +-N) and it did not increase any further at higher NH4 + proportions.In a long-term experiment, the effects of concentration and source of added N (NO3 or NH4 +) on nutrient concentrations in leaves from plants grown in sand were evaluated. Leaf concentration of N, P, Mg, Fe and Cu were increased by NH4 + versus NO3 nutrition, whereas the reverse was true for Ca, K, Zn and Mn.The effects of different NO3 -N:NH4 +-N ratios (100:0, 75:25, 50:50, 25:75 and 0:100) at 120 mg L–1 total N on leaf nutrient concentrations, fruit yield and fruit characteristics were investigated in another long-term experiment with plants grown in sand cultures. Nitrogen concentrations in leaves were highest when plants were provided with either NO3 or NH4 + as a sole source of N. Lowest N concentration in leaves was found with a 75:25 NO3 -N/NH4 +-N ratio. With increasing proportions of NH4 + in the N supply, leaf nutrients such as P, Mg, Fe and Cu increased, whereas Ca, K, Mn and Zn decreased. Yield in number of fruits per tree was increased significantly by supplying all N as NH4 +, although fruit weight was reduced. The number of fruits per tree was lowest with the 75:25 NO3 -N:NH4 +-N ratio, but in this treatment fruits reached their highest weight. Rind thickness, juice acidity, and colour index of fruits decreased with increasing NH4 + in the N supply, whereas the % pulp and maturity index increased. Percent of juice in fruits and total soluble solids were only slightly affected by NO3 :NH4 + ratio.  相似文献   

2.
Owen  Jeffrey S.  Wang  Ming Kuang  Sun  Hai Lin  King  Hen Biau  Wang  Chung Ho  Chuang  Chin Fang 《Plant and Soil》2003,251(1):167-174
We used the buried bag incubation method to study temporal patterns of net N mineralization and net nitrification in soils at Ta-Ta-Chia forest in central Taiwan. The site included a grassland zone, (dominant vegetation consists of Yushania niitakayamensis and Miscanthus transmorrisonensis Hayata) and a forest zone (Tsuga chinensis var. formosana and Yushania niitakamensis). In the grassland, soil concentration NH4 + in the organic horizon (0.1–0.2 m) ranged from 1.0 to 12.4 mg N kg–1 soil and that of NO3 varied from 0.2 to 2.1 mg N kg–1 soil. In the forest zone, NH4 + concentration was between 2.8 and 25.0 mg N kg–1 soil and NO3 varied from 0.2 to 1.3 mg N kg–1 soil. There were lower soil NH4 + concentrations during the summer than other seasons. Net N mineralization was higher during the summer while net nitrification rates did not show a distinct seasonal pattern. In the grassland, net N mineralization and net nitrification rates were between –0.1 and 0.24 and from –0.04 to 0.04 mg N kg–1 soil day–1, respectively. In the forest zone, net N mineralization rates were between –0.03 and 0.45 mg N kg–1 soil day–1 and net nitrification rates were between –0.01 and 0.03 mg N kg–1 soil day–1. These differences likely result from differing vegetation communities (C3 versus C4 plant type) and soil characteristics.  相似文献   

3.
Knowledge of the preferred source of N for Eucalyptus nitens will lead to improved fertiliser management practices in plantations. Ion selective microelectrodes were used non-invasively to measure simultaneously net fluxes of NH4 +, NO3 and H+ along the tap root of solution-cultured E. nitens. Measurements were conducted in solutions containing 100 m NH4NO3. The pattern of fluxes was such that there was a large influx of NH4 +, a smaller influx of NO3 and large H+ efflux. The ratio of these fluxes was constant, according to the ratio 3:1:–6 (NH4 +:NO3 :H+). Within the region 20–60 mm from the root apex of E. nitens seedlings there was spatial and temporal variation in fluxes but flux patterns remained constant. Root hair density did not affect fluxes nor did proximity to lateral roots. Variation was less than that found in previous studies of localised root fluxes using similar high-resolution measurement techniques. It was concluded that small-scale spatial variation in fluxes may have confounded previous studies. There were associations between fluxes of all three ions, the strongest associations being between NH4 + and H+, and NH4 + and NO3 . Overall, these results are consistent with NH4 + being the preferred source N for E. nitens.  相似文献   

4.
Loubet  Benjamin  Milford  Celia  Hill  Paul W.  Sim Tang  Y.  Cellier  Pierre  Sutton  Mark A. 《Plant and Soil》2002,238(1):97-110
The stomatal compensation point of ammonia (s) is a major factor controlling the exchange of atmospheric ammonia (NH3) with vegetation. It is known to depend on the supply of nitrogen and to vary among plant species, but its seasonal variation has not yet been reported for grassland. In this study, we present the temporal variation of apoplastic NH4 + concentration ([NH4 +]apo) and pH (pHapo) measured in leaves of Lolium perenne L. in a grassland, through two periods of cutting / fertilisation, followed by a livestock grazing period. The total free NH4 + concentration measured in foliage ([NH4 +]fol), and soil mineral NH4 + and NO3 concentration are also presented. The value of [NH4 +]apo varied from less than 0.01 mM to a maximum of 0.5 mM occurring just after fertilisation, whereas the apoplastic pH ranged from pH 6 to 6.5 for most of the time and increased up to pH 7.8, 9 days after the second fertilisation, when grazing started. [NH4 +]fol varied between 20 and 50 g N-NH4 + g–1 f.w. The compensation point at 20°C, ranged from 0.02 g NH3 m–3 between the fertilisations to 10 g NH3 m–3 just after the second fertilisation. The reasons for these seasonal changes are discussed, with respect to plant metabolism and the concentration of ammonium and nitrate in the soil.  相似文献   

5.
The results of the experiments discussed here present changes in the chemical composition of xylem sap of tomato seedlings cultivated in hydroponics on media containing 5 mmol HCO3 and an N-source given as NO3 , NH4 + or these two forms in different proportions. The occurrence of free NH4 + in the xylem sap of NH4 +-seedlings and in NO3 -seedlings indicates that the process of N-assimilation was not only confined to roots. The application of HCO3 to the medium effected a decrease in the concentration of NH4 + in the xylem sap of NH4 +-seedlings, having no effect on changes in the concentration of NO3 or NH4 + in NO3 -seedlings. Malate, citrate, fumarate, and succinate were identified in the xylem sap. The concentration of carboxylates in NO3 -seedlings exceeded by about 50% that recorded in NH4 +-seedlings. The highest concentration of malate constituting from 80% to 93.5% of this fraction, was determined in this group of compounds. The enrichment of the medium with HCO3 ions induced an increase in the content of carboxylates, chiefly of malate. In these experimental conditions an increase in the malate concentration in the xylem sap of NO3 and NH4 +-seedlings reached relative values of 100% and 36%, respectively. The total concentration of amides and amino acids was about 2.6 times higher in the xylem sap of NH4 +-seedlings than in NO3 -seedlings. Amide glutamine was the main component of this fraction in xylem sap and its total concentration was about 3.3 times higher in NH4 +-seedlings than that determined in NO3 -seedlings. Glutamine, glutamate, aspargine, and aspartate constituted from 69% to 77% of this fraction. The concentration of the remaining amino acids varied from 0.6% to 7%. The enrichment of the medium with HCO3  ions also effected an increase in the concentration of amides and amino acids in the xylem sap by about 17% and 56% in the case of NO3 and NH4 +-seedlings, respectively, in comparison with the respective controls (without HCO3 ). Abbreviations: DAG – days after germination; DIC – dissolved inorganic carbon; GOGAT – glutamine:2-oxoglutarate aminotransferase; GS – glutamine synthetase; PAR – photosynthetically active radiation; PEPc – phosphoenolpyruvate carboxylase  相似文献   

6.
Panigatti  M. C.  Maine  M. A. 《Hydrobiologia》2003,492(1-3):151-157
Water – Salvinia herzogii – sediment systems were exposed to different phosphorus and nitrogen combinations in outdoor experiments. The aim was to estimate the amounts of P immobilized in macrophytes and sediments, as well as to elucidate whether or not the presence of N affects the retention of P. The following components were added: o-P, o-P + NH4 +, o-P + NO3 + NH4 +, o-P + NO3 . The concentration of nutrients was periodically determined throughout the experiment (28 days). The concentrations of P and N in plant tissues and sediments were determined at the beginning and the end of the experiment. Sequential extractions of P-fractions in sediment were performed using the EDTA method (Golterman, 1996). The removal efficiency of P in water was 95–99%. The removal of NH4 + (97–98%) was more effective than that of NO3 (44–86%). The presence of nitrogen species increased the removal velocity of o-P from water, NH4 + was the most effective species. Sediments not only had higher P removal rates than macrophytes but, in the control treatment without macrophytes, they reached the values obtained by macrophytes plus sediments in the other treatments. The adsorption of P takes place at the surface layer of the sediment (1 cm). Most of the P incorporated into the sediment during the experiment was sorbed by the fraction Fe(OOH)P. The addition of nutrients to water modified the leaves/lacinias weight ratio.  相似文献   

7.
Field studies to examine the in situ assimilation and production of ammonium (NH4 +) by bacterial assemblages were conducted in the northern Gerlache Strait region of the Antarctic Peninsula. Short term incubations of surface waters containing 15N-NH4 + as a tracer showed the bacterial population taking up 0.041–0.128 g-atoms Nl–1d–1, which was 8–25% of total NH4 + uptake rates. The large bacterial uptake of NH4 + occurred even at low bacterial abundance during a rich phytoplankton bloom. Estimates of bacterial production using 3H-leucine and -adenine were l.0gCl–1 d–1 before the bloom and 16.2 g Cl–1 d–1 at the bloom peak. After converting bacterial carbon production to an estimate of nitrogen demand, NH4 + was found to supply 35–60% of bacterial nitrogen requirements. Bacterial nitrogen demand was also supported by dissolved organic nitrogen, generally in the form of amino acids. It was estimated, however, that 20–50% of the total amino acids taken up were mineralized to NH4 +. Bacterial production of NH4 + was occurring simultaneously to its uptake and contributed 27–55% of total regenerated NH4 + in surface waters. Using a variety of 15N-labelled amino acids it was found that the bacteria metabolized each amino acid differently. With their large mineralization of amino acids and their relatively low sinking rates, bacteria appear to be responsible for a large portion of organic matter recycling in the upper surface waters of the coastal Antarctic ecosystem.  相似文献   

8.
A study was conducted to elucidate the effect of N form, either NH4 + or NO3 , on growth and solute composition of the salt-tolerant kallar grass [Leptochloa fusca (L.) Kunth] grown under 10 mM or 100 mM NaCl in hydroponics. Shoot biomass was not affected by N form, whereas NH4 + compared to NO3 nutrition caused an almost 4-fold reduction in the root biomass at both salinity levels. Under NH4 + nutrition, salinity had no effect on the biomass yield, whereas under NO3 nutrition, increasing salinity from 10 mM to 100 mM caused 23% and 36% reduction in the root and shoot biomass, respectively. The reduced root growth under NH4 + nutrition was not attributable to impaired shoot to root C allocation since N form did not affect the overall root sugar concentration and the starch concentration was even higher under NH4 + compared to NO3 nutrition. The low NH4 + (2 mM) and generally higher amino-N concentrations in NH4 +- compared to NO3 -fed plants indicated that the grass was able to effectively detoxify NH4 +. Salinity had no effect on Ca2+ and Mg2+ levels, whereas their concentration in shoots was lower under NH4 + compared to NO3 nutrition (over 66% reduction in Ca2+; over 20% reduction in Mg2+), but without showing deficiency symptoms. Ammonium compared to NO3 nutrition did not inhibit K+ uptake, and the K+-Na+ selectivity either remained unaffected or it was higher under NH4 + than under NO3 nutrition. Results suggested that while NH4 + versus NO3 nutrition substantially reduced root growth, and also strongly modified anion concentrations and to a minor extent concentrations of divalent cations in shoots, it did not influence salt tolerance of kallar grass.  相似文献   

9.
Young saplings of Pinus sylvestris L. were exposed to gaseous NH3 at 53 or 105 g m–3 for one year in open-top chambers. Saplings received 15N-labelled (NH4)2SO4 via the soil. To examine the importance of foliar N uptake, changes in the concentration of total and labelled N in the needles were followed. Increase in needle biomass and N concentration were found in trees exposed to NH3, confirming that atmospheric NH3 acted as a N fertilizer. NH3 had a greater and quicker effect than (NH4)2SO4: compared with the growth in ambient air, the N concentration in the needles exposed to NH3 had increased by 49% in four months, while the increase after highest N-fertilization (200 kg N ha–1 y–1) was only 8%. The small contribution of NH4 + fertilization to the total N concentration was not due to a deficient N uptake: the 15N concentration in the needles increased significantly with time. On the other hand, NH3 uptake in shoots may have a negative effect on the NH4 + root uptake. The relation between plant N and atmospheric NH3 concentration was non-linear and possible reasons for this observation are discussed. Fumigation with NH3 significantly decreased the ratios of K/N and P/N, showing that fumigation disrupted the nutrient balance.  相似文献   

10.
The effects of fluff deposit on benthic biota,NH4 + fluxes and nitrification was studied in thelaboratory using waterlogged and reflooded intertidal sediments fromMarennes-Oléron Bay, France. The fluff deposit was enriched inNH4 + compared to underlying sediments, and promotedchanges of the sediment pH, Eh, C:N ratio, C:chla ratio and the NH4 + efflux tooverlying water. Statistical analysis showed that pore waterNH4 + concentrations were strongly influenced byinteractions between fluff, drying, depth and bioturbation. The fluff depositresulted in anoxia in the top sediments and moved the nitrification zone tosurface layers in fluff. However, the NH4 + enrichment influff did not significantly change actual nitrification rates (range 0–1mmol m–2 d–1) or potentialnitrification rates (range 3–11 mmolNO3 m–2d–1).  相似文献   

11.
Summary Soybean plants were grown in nutrient culture solutions containing 150 ppm of N either as an equal concentration of NH4 + or NO3 , or all NO3 . At the R2 stage of growth for some plants, the N form was changed to either all NO3 or all NH4 +, but at the same total N concentration as before. Highest seed yield was obtained with all NO3 over the entire growth period, the poorest when the N form was switched from an equal ratio of NH4 + and NO3 to all NH4 + at the R2 stage. Kjeldahl N concentrations in the plant leaves and seed were highest when NH4 + was part or all of the N source in the nutrient solution. These results may partially explain why the literature is inconsistent on the effect of added fertilizer N on soybean seed yield, and may pose a problem in using leaf Kjeldahl N concentration to determine plant N sufficiency.  相似文献   

12.
Sub-arctic Lake Myvatn is one of the most productive lakes in the Northern Hemisphere, despite an ice cover of 190 days per year. In situ, transparent and dark flux chambers were used for direct measurements of benthic fluxes of dissolved oxygen, nutrients, silica and certain metals, taking into account primary production and mineral precipitation. The range of benthic flux observed for dissolved oxygen (DO), dissolved inorganic carbon (DIC), ammonium, ortho-P, silica, calcium, and magnesium was –45.89 to 187.03, –99.32 to 50.96, –1.30 to 1.27, –0.51 to 0.39, –62.3 to 9.3, –33.82 to 16.83, and –23.93 to 7.52 mmol m–2 d–1, respectively (negative value indicating flux towards the lake bottom). Low benthic NH4 + and ortho-P fluxes were likely related to benthic algal production, and aerobic bottom water. Ortho-P fluxes could also be controlled by the dissolution/precipitation of ferrihydrite, calcite, and perhaps hydroxyapatite. The negative silica fluxes were caused by diatom frustule synthesis. Benthic calcium and magnesium fluxes could be related to algal production and dissolution/precipitation of calcium and/or Ca,Mg-carbonates. Fluxes of DO, DIC, pH and alkalinity were related to benthic biological processes. It is likely that some of the carbon precipitates as calcite at the high pH in the summer and dissolves at neutral pH in the winter. Mean of the ratio of gross benthic DIC consumption and gross benthic DO production was 0.94 ± 0.18, consistent with algal production using NH4 + as N source. During the summer weeks the water column pH remains above 10. This high pH is caused by direct and indirect utilisation of CO2, HCO3 , CO3 –2, H4SiO4 ° and H3SiO4 by primary producers. This study shows that in shallow lakes at high latitudes, where summer days are long and the primary production is mostly by diatoms, the pH is forced to very high values. The high pH could lead to a positive feedback for the Si flux, but negative feedback for the NH4 + flux.  相似文献   

13.
Britto DT  Ruth TJ  Lapi S  Kronzucker HJ 《Planta》2004,218(4):615-622
The first analysis of chloride fluxes and compartmentation in a non-excised plant system is presented, examining ten ecologically pertinent conditions. The short-lived radiotracer couple 38Cl/39Cl was used as a Cl tracer in intact barley (Hordeum vulgare L. cv. Klondike) seedlings, which were cultured and investigated under four external [Cl], from abundant (0.1 mM) to potentially toxic (100 mM). Chloride–nitrogen interactions were investigated by varying N source (NO3 or NH4 +) and strength (0.1 or 10 mM), in order to examine, at the subcellular compartmentation level, the antagonism, previously documented at the influx level, between Cl and NO3 , and the potential role of Cl as a counterion for NH4 + under conditions in which cytosolic [NH4 +] is excessive. Cytosolic [Cl] increased with external [Cl] from 6 mM to 360 mM. Cl influx, fluxes to vacuole and shoot, and, in particular, efflux to the external medium, also increased along this gradient. Efflux reached 90% of influx at the highest external [Cl]. Half-times of cytosolic Cl exchange decreased between high-affinity and low-affinity influx conditions. The relationship between cytosolic [Cl] and shoot flux indicated the presence of a saturable low-affinity transport system (SLATS) responsible for xylem loading of Cl. N source strongly influenced Cl flux to the vacuole, and moderately influenced Cl influx and shoot flux, whereas efflux and half-time were insensitive to N source. Cytosolic pool sizes were not strongly or consistently influenced by N source, indicating the low potential for Cl to act as a counterion to hyperaccumulating NH4 +. We discuss our results in relation to salinity responses in cereals.Abbreviations [Cl]cyt cytosolic chloride concentration - [Cl]o external chloride concentration  相似文献   

14.
Summary In ammonium-limitation (4.55 mM NH4 +) at a dilution rate (D)=0.081 h–1,Clostridium butyricum produced 2 mol H2 per mol glucose consumed at pH 5.0, but at a low fermentation rate. At higher pH, important amounts of extracellular protein were produced. Phosphatelimitation (0.5 mM PO4 –3) at D=0.061 h–1 and pH 7.0 were the best conditions tested for hydrogen gas production (2.22 mol H2 per mol glucose consumed) at a high fermentation rate. Steady-state growth at lower pH and with 0.1 mM PO4 –3 resulted in proportional higher glucose incorporation into biomass and lower H2 production. C. pasteurianum in NH4 + limitation showed higher fermentation rates thanC. butyricum and a stabilized H2 production around 2.08 (±0.06) mol per mol glucose consumed at various defined pH conditions, although the acetate/butyrate ratio increased to 1 at pH 7.0. The latter was also observed in phosphate-limitation, but here H2 production was maximal (1.90 mol. per mol glucose consumed) at the lowest pH (5.5) tested.  相似文献   

15.
The production of extracellular enzymes by the thermophilic fungus Thermomyces lanuginosus was studied in chemostat cultures at a dilution rate of 0.08 h–1 in relation to variation in the ammonium concentration in the feed medium. Under steady state conditions, three growth regimes were recognised and the production of several extracellular enzymes from T. lanuginosus was recorded under different nutrient limitations ranging from nitrogen limitation to carbon/energy limitation. The range and the production of carbohydrate hydrolysing enzymes and lipase increased from Regime I (NH4Cl 600 mg l–1) to Regime III (NH4CI 1200 mg l–1), whereas production of protease was highest in Regime II (600 mg l–1 < NH4Cl <1200 mg l–1).  相似文献   

16.
Carl F. Cerco 《Hydrobiologia》1989,174(3):185-194
Empirical models of sediment-water fluxes of NH4 +, NO3 were and PO4 3– were formed based on published reports. The models were revised and parameters evaluated based on laboratory incubations of sediments collected from Gunston Cove, VA. Observed fluxes ranged from — 18 (sediments uptake) to 276 (sediment release) mg NH4 + m–2 day–1, –17 to –509 mg NO3 m–2 day–1, and –16.4 to 8.9 mg PO4 3– m–2 day–1. The model and observations indicated release of NH4 + was enhanced by high temperature and by low DO. Uptake of NO3 was enhanced primarily by high NO3 concentration and to a lesser extent by high temperature and by low DO. Direction of PO4 3– flux depended on concentration in the water. Release was enhanced by low DO. No effect of temperature on PO4 3– flux was observed.  相似文献   

17.
To study the impact of high atmospheric nitrogen deposition on the leaching of NO3 and NH4+ beneath forest and heathland vegetation, investigations were carried out in adjacent forest and heathland ecosystems in Northwest Germany. The study area is subjected to high deposition of nitrogen ranging from 15.9 kg ha–1 yr–1 in bulk precipitation to 65.3 kg ha–1 yr–1 beneath a stand of Pinus sylvestris L. with NH4–N accounting for 70–80% of the nitrogen deposited. Considerable leaching of nitrogen compounds from the upper horizons of the soil, mostly as nitrate, occurred at most of the forest sites and below a mixed stand of Calluna vulgaris (L.) Hull. and Erica tetralix, but was low in a Betula pubescens Ehrh. swamp forest as well as beneath Erica tetralix L. wet heath and heath dominated by Molinia caerulea(L.) Moench. Ground water concentrations of both NO3–N and NH4–N did not exceed 1 mg L–1 at most of the sites investigated.  相似文献   

18.
Volatile compounds exuded from axenically grown free-living nematodes were determined with gas chromatographic and mass spectrometric techniques. Carbon dioxide evolved from 5–200 nematodes was determined with an ampoule technique, whereas total ammonia (NH3 + NH4 +) and acetic and propionic acids were determined by direct injection of water in which nematodes had been suspended for 1–3 days. CO2 amounted to about 80 ng nematode–1 d–1, total ammonia to 1–5 ng, and acetic and propionic acids to 0.5 and 1.0 pg nematode–1 d–1.The effects of these compounds on induction of trap formation in the nematodetrapping fungusArthrobotrys oligospora were tested. CO2 inhibited trap formation at 5–10% CO2 in air (v/v), whereas ammonia stimulated trap formation in a certain concentration range. No effects of acetic and propionic acids were noted for the concentrations tested. The combined effects of these volatiles in the aqueous environment are discussed on the basis of stoichiometric considerations.  相似文献   

19.
Nitrogen flux from sediment of a shallow lake and subsequent utilization by water hyacinth (Eichhornia crassipes [Mart] Solms) present in the water column were evaluated using an outdoor microcosm sediment-water column. Sediment N was enriched with 15N to quantitatively determine the movement of NH4-N from the sediment to the overlying water column. During the first 30 days. 48% of the total N uptake by water hyacinth was derived from sediment 15NH4-N. This had decreased to 14% after 183 days. Mass balance of N indicates that about 25% sediment NH4-N was released into the overlying water, but only 17% was assimilated by water hyacinth. NH4-N levels in the water column were very low, with very little or no concentration gradients. NH4-N levels in the interstitial water of the sediment were in the range of 30–35 mg L–1 for the lower depths (> 35 cm), while in the surface 5 cm of depth NH4-N levels decreased to 3.2 mg L–1. Simulated results also showed similar trends for the interstitial NH4-N concentration of the sediment. The overall estimated NH4-N flux from the sediment to the overlying water was 4.8 µg cm–2 day–1, and the soluble organic N flux was 5.8 µg N cm–2 day–1. Total N flux was 10.6 µg N cm–2 day–1.  相似文献   

20.
The study on 10 lakes within the Ethiopian Rift Valley during March–May 1991 covered a range of conductivity (K25) between 286 and 49100 µS cm–1. HCO3 — CO inf3 sup2– and Na+ were the dominant ions in all the lakes. Concentrations of K+, Cl and SO inf4 sup2– increased with increasing salinity and alkalinity, whereas Ca2+ and Mg2+ decreased. Comparison of these data with previous records showed that a ten-fold dilution of total ionic concentration occurred over 30 years in Lake Metahara and about three-fold increase occurred over 65 years in Lake Abijata. Concentrations of soluble silica were generally high (12–222 mg SiO2 1–1) and increased with increasing salinity, except for Lake Chamo which showed SiO2 depletion (to < 1 mg SiO2 1 –1) over the past three decades.The relationship between ionic concentration and phosphorus was irregular although high phosphorus concentrations generally corresponded with increasing salinity. Fitting data to the Dillon & Rigler (1974) chlorophyll a — total phosphorus relationship suggested that lakes Zwai, Awassa and Chamo are phosphorus-limited, whereas others have surplus phosphorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号