首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silica gel TLC methods were developed for the separation of 2,4,6-trinitrotoluene (TNT) in mixtures with possible reduction products. The methods employed repeated elutions with simple binary or ternary solvent systems in either one or two dimensional modes. The resolved analytes include TNT, selected amino derivatives (2-amino-4,6-di-nitrotoluene, 4-amino-2,6-dinitrotoluene, 2,4-diamino-6-nitrotoluene) and known hydroxylamino derivatives (2-hydroxyl-amino-4,6-dinitrotoluene, 4-hydroxylamino-2,6-dinitrotoluene and 2,4-dihydroxylamino-6-nitrotoluene).  相似文献   

2.
Effect of 2,4,6-trinitrotoluene (TNT) on callus cells of Tartar buckwheat (Fagopyrum tataricum (L.) Gaertn.) was accompanied by six-electron reduction of ortho- or para-nitro groups of the xenobiotic with the production of 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT). It was discovered that the xenobiotic TNT impairs integrity of cell membrane, which apparently results from its one-electron reduction coupled with production of nitro radical-anion and superoxide anion.  相似文献   

3.
Degradation of 2,4,6-trinitrotoluene by Serratia marcescens   总被引:1,自引:0,他引:1  
A strain of Serratia marcescens, isolated from the soil of a contaminated site, degraded 2,4,6-trinitrotoluene (TNT) as the sole source of carbon and energy. At an initial concentration of 50mg , TNT was totally degraded in 48h under aerobic conditions in a minimal salt medium. Reduction intermediates (4-amino-2,6-dinitrotoluene and 2-amino-4,6-dinitrotoluene) were observed. The presence of a surfactant (Tween 80) is essential to facilitate rapid degradation.  相似文献   

4.
The biotransformation of 2,4,6-trinitrotoluene (TNT) (175 μM) by Phanerochaete chrysosporium with molasses and citric acid at pH 4.5 was studied. In less than 2 weeks, TNT disappeared completely, but mineralization (liberated 14CO2) did not exceed 1%. A time study revealed the presence of several intermediates, marked by the initial formation of two monohydroxylaminodinitrotoluenes (2- and 4-HADNT) followed by their successive transformation to several other products, including monoaminodinitrotoluenes (ADNT). A group of nine acylated intermediates were also detected. They included 2-N-acetylamido-4,6-dinitrotoluene and its p isomer, 2-formylamido-4,6-dinitrotoluene and its p isomer (as acylated ADNT), 4-N-acetylamino-2-amino-6-nitrotoluene and 4-N-formylamido-2-amino-6-nitrotoluene (as acetylated DANT), 4-N-acetylhydroxy-2,6-dinitrotoluene and 4-N-acetoxy-2,6-dinitrotoluene (as acetylated HADNT), and finally 4-N-acetylamido-2-hydroxylamino-6-nitrotoluene. Furthermore, a fraction of HADNTs were found to rearrange to their corresponding phenolamines (Bamberger rearrangement), while another group dimerized to azoxytoluenes which in turn transformed to azo compounds and eventually to the corresponding hydrazo derivatives. After 30 days, all of these metabolites, except traces of 4-ADNT and the hydrazo derivatives, disappeared, but mineralization did not exceed 10% even after the incubation period was increased to 120 days. The biotransformation of TNT was accompanied by the appearance of manganese peroxidase (MnP) and lignin-dependent peroxidase (LiP) activities. MnP activity was observed almost immediately after TNT disappearance, which was the period marked by the appearance of the initial metabolites (HADNT and ADNT), whereas the LiP activity was observed after 8 days of incubation, corresponding to the appearance of the acyl derivatives. Both MnP and LiP activities reached their maximum levels (100 and 10 U/liter, respectively) within 10 to 15 days after inoculation.  相似文献   

5.
The fungus Fusarium oxysporum was isolated and identified from the aquatic plant M. aquaticum. The capability of this fungus to transform 2,4,6-trinitrotoluene (TNT) in liquid cultures was investigated TNT was added to shake flask cultures and transformed into 2-amino-4,6-dinitrotoluene (2-A-DNT), 4-amino-2,6-dinitrotoluene (4-A-DNT), and 2,4-diamino-6-nitrotoluene (2,4-DAT) via 2- and 4-hydroxylamino-dinitrotoluene derivatives, which could be detected as intermediate metabolites. Transformation of TNT, 2-A-DNT, and 4-A-DNT was observed by whole cultures and with isolated mycelium. Cell-free protein extracts from the extracellular, soluble, and membrane-bound fractions were prepared from this fungus and tested for TNT-reducing activity. The concentrated extracellular culture medium was unable to transform TNT; however, low levels of TNT transformation were observed by the membrane fraction in the presence of nicotinamide adenine dinucleotide phosphate in an argon atmosphere. A concentrated extract of soluble enzymes also transformed TNT, but to a lesser extent. When TNT toxicity was studied with this fungus, a 50% decrease in the growth of F. oxysporum mycelium was observed when exposed to 20 mg/L TNT.  相似文献   

6.
Bacteria readily transform 2,4,6-trinitrotoluene (TNT), a contaminant frequently found at military bases and munitions production facilities, by reduction of the nitro group substituents. In this work, the kinetics of nitroreduction were investigated by using a model nitroreductase, NAD(P)H:flavin mononucleotide (FMN) oxidoreductase. Under mediation by NAD(P)H:FMN oxidoreductase, TNT rapidly reacted with NADH to form 2-hydroxylamino-4,6-dinitrotoluene and 4-hydroxylamino-2,6-dinitrotoluene, whereas 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene were not produced. Progressive loss of activity was observed during TNT reduction, indicating inactivation of the enzyme during transformation. It is likely that a nitrosodinitrotoluene intermediate reacted with the NAD(P)H:FMN oxidoreductase, leading to enzyme inactivation. A half-maximum constant with respect to NADH, KN, of 394 μM was measured, indicating possible NADH limitation under typical cellular conditions. A mathematical model that describes the inactivation process and NADH limitation provided a good fit to TNT reduction profiles. This work represents the first step in developing a comprehensive enzyme level understanding of nitroarene biotransformation.  相似文献   

7.
The transformation of TNT and related aminated nitrotoluenes by Clostridium acetobutylicum was investigated. 2,4,6-trinitrotoluene (TNT) was rapidly reduced (537 nM min−1 mg protein−1) to undetermined end products via monohydroxylamino derivatives. TNT reduction was more rapid than that of 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene and 2,4-diamino-6-nitrotoluene. The metabolic phase of clostridial cultures affected rates and extents of transformation of TNT and its intermediates. Acidogenic cultures showed rapid transformation rates and the ability to transform TNT and its primary reduction products to below detection limits; solventogenic cultures did not transform TNT completely, and showed accumulation of its hydroxylamino derivatives. Carbon monoxide-induced solventogenesis was capable of slowing the transformation of TNT and intermediates. Studies employing [ring-U-14C]-TNT demonstrated that no significant mineralization occurred and that products of transformation were water-soluble. Received 06 November 1995/ Accepted in revised form 15 August 1996  相似文献   

8.
We have examined the sensing characteristics of a surface plasmon resonance (SPR) immunoassay for the detection of 2,4,6-trinitrotoluene (TNT) using an immunoreaction between 2,4,6-trinitrophenol-ovalbumin (TNP-OVA) conjugate and anti-2,4,6-trinitrophenol antibody (anti-TNP antibody). TNP-OVA conjugate was attached to a SPR-gold sensing surface by means of physical immobilization, which undergoes binding interaction with anti-TNP antibody. Both the immobilization and binding processes were studied from a change in the SPR-resonance angle. The quantification of TNT is based on the principle of indirect competitive immunoassay, in which the immunoreaction between the TNP-OVA conjugate and anti-TNP antibody was inhibited in the presence of free TNT in solution. The decrease in the resonance angle shift is proportional to an increase in concentration of TNT used for incubation. The immunoassay exhibited excellent sensitivity for the detection of TNT in the concentration range from 0.09 to 1000 ng/ml with good stability and reproducibility. The immunosensor developed could detect TNT as low as 0.09 ng/ml, within a response time of approximately 22 min. The sensor surface was regenerated by a brief flow of pepsin solution, which disrupts the antigen-antibody complex without destroying the conjugate biofilm. Cross-reactivity of the SPR sensor to some structurally related nitroaromatic derivative and the detection of TNT in the presence of these nitroaromatic compounds were investigated. The cross-reactivity of the SPR sensor to 2,4-dinitrotoluene (2,4-DNT), 1,3-dinitrobenzene (1,3-DNB), 2-amino-4,6-dinitrotoluene (2A-4,6-DNT) and 4-amino-2,6-dinitrotoluene (4A-2,6-DNT) were very low (< or =1.1%). The analytical characteristics of the proposed immunosensor are highly promising for the development of new field-portable sensors for on-site detection of landmines.  相似文献   

9.
The mutagenicity and toxicity of energetic compounds such as 2,4, 6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), hexahydro-1,3, 5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3, 5,7-tetrazocine (HMX), and of amino/nitro derivatives of toluene were investigated in vitro. Mutagenicity was evaluated with the Salmonella fluctuation test (FT) and the V79 Chinese hamster lung cell mutagenicity assay. Cytotoxicity was evaluated using V79 and TK6 human lymphoblastic cells. For the TK6 and V79 assays, TNB and 2, 4,6-triaminotoluene were more toxic than TNT, whereas RDX and HMX were without effect at their maximal aqueous solubility limits. The primary TNT metabolites (2-amino-4,6-dinitrotoluene, 4-amino-2, 6-dinitrotoluene, 2,4-diamino-6-nitrotoluene and 2, 6-diamino-4-nitrotoluene) were generally less cytotoxic than the parent compound. The FT results indicated that TNB, TNT and all the tested primary TNT metabolites were mutagenic. Except for the cases of 4-amino-2,6-dinitrotoluene and 2,4-diamino-6-nitrotoluene in the TA98 strain, addition of rat liver S9 resulted in either no effect, or decreased activity. None of the tested compounds were mutagenic for the V79 mammalian cells with or without S9 metabolic activation. Thus, the FT assay was more sensitive to the genotoxic effects of energetic compounds than was the V79 test, suggesting that the FT might be a better screening tool for the presence of these explosives. The lack of mutagenicity of pure substances for V79 cells under the conditions used in this study does not preclude that genotoxicity could actually exist in other mammalian cells. In view of earlier reports and this study, mutagenicity testing of environmental samples should be considered as part of the hazard assessment of sites contaminated by TNT and related products.  相似文献   

10.
The ability of the white rot fungus Phanerochaete chrysosporium to mineralize 2,4,6-trinitrotoluene (TNT) was studied in the concentration range of 0.36 to 20.36 mg/liter. The initial rate of 14CO2 formation was 30% in 4 days at 0.36 mg of [14C]TNT per liter and decreased to 5% in 4 days at 20.36 mg of [14C]TNT per liter. Such a pronounced inhibition was not observed when a mixture of [14C]2-amino-4,6-dinitrotoluene and [14C]4-amino-2,6-dinitrotoluene was used as a substrate. 2-Hydroxylamino-4,6-dinitrotoluene and its isomer 4-hydroxylamino-2,6-dinitrotoluene were identified as the first detectable degradation products of TNT. Their transient accumulation correlated with the inhibition of TNT degradation and of the veratryl alcohol oxidase activity of lignin peroxidase. With purified lignin peroxidase H8, it could be shown that the two isomers of hydroxylamino-dinitrotoluene were oxidized by lignin peroxidase. The corresponding nitroso-dinitrotoluenes apparently were formed, as indicated by the formation of azoxy-tetranitrotoluenes.  相似文献   

11.
A study of the metabolic pathway and the rate of 2,4,6-trinitrotoluene (TNT) transformation depending on the nature of the electron acceptor in the electron transport chain of Pseudomonas fluorescens B-3468 revealed that the first reaction of nitroreduction of TNT resulting in formation of 2-amino-4,6-dinitrotoluene (2A) and 4-amino-2,6-dinitrotoluene (4A) became more active in case of nitrate respiration as compared to oxygen respiration; a TNT decrease was 100 and 66%, respectively. The same tendency but much more pronounced was observed at the next stage of nitroreduction that lead to 2,4-diamino-6-nitrotoluene (2,4DA). On the contrary, aerobic conditions are more preferable for the subsequent destruction of 2,4DA. Thus monoamino derivatives, 2A and 4A, predominated under anaerobic conditions, whereas 2,4DA under anaerobic ones (85 and 69% of the total nitrogen-containing metabolites), respectively. Phloroglucinol and pyrogallol accumulated in the culture liquid when the bacteria were grown on a medium containing 2,4DA as a sole source of nitrogen. Their role as intermediates was proved by the results obtained by studying oxidative activity of the cells grown in the presence of 2,4DA and phloroglucinol.  相似文献   

12.
The formation of TNT-derived conjugates was investigated in hairy root tissue cultures of Catharanthus roseus and in aquatic plant systems of Myriophyllum aquaticum. The temporal profiles of four TNT-derived conjugates, TNT-1, 2A-1, TNT-2 and 4A-1, were determined over 3 to 16-day exposure durations. When axenic C. roseus roots were exposed separately to 2,4,6 trinitrotoluene, 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene, the array and levels of conjugates varied. Exposure of axenic roots to either 4-amino-2,6-dinitrotoluene or 2-amino-4,6-dinitrotoluene resulted in the formation of only 4A-1 and 2A-1, respectively, and not TNT-1 and TNT-2. However, amendment of previously unexposed roots with TNT produced all four conjugates. The conjugates were preferentially accumulated within the biomass phase of root cultures. Significantly, conjugates TNT-1 and TNT-2 were observed in the biomass phase of intact M. aquaticum plants exposed to TNT. The results clearly indicate the presence of common TNT transformation products in two diverse plants species and tissue type. The distribution of conjugates formed via monoamine derivatives of TNT, however, may be a function of several factors, including the starting xenobiotic type and/or level. Initial bulk rate constants for disappearance of 2,4,6 trinitrotoluene, 2-amino-4,6-dinitrotoluene, and 4-amino-2,6-dinitrotoluene were also determined. Their magnitude followed the order: TNT >> 4-A-2,6-DNT > 2-A-4,6-DNT.  相似文献   

13.
White-rot fungi are known to degrade a wide range of xenobiotic environmental pollutants, including the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT). TNT is first reduced by the fungal mycelium to aminodinitrotoluenes and diaminonitrotoluenes. In a second phase, reduced TNT metabolites are oxidatively transformed and mineralized. The extracellular oxidative enzyme of the ligninolytic system of these fungi includes the lignin peroxidases (LiP) and the manganese-dependent peroxidases (MnP). In the present study, we have shown that a cell-free enzymatic system containing fast protein liquid chromatography (FPLC)-purified LiP (H8) from the white-rot fungus Phanerochaete chrysosporium was able to completely transform 50 mg/L of 2,4-diamino-6-nitrotoluene (2,4-DA-6-NT) and 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT) in 1 and 48 h, respectively. Veratryl alcohol (VA), often described as a mediator in the LiP-catalyzed oxidative depolymerization of lignin, was not required for the enzymatic transformation of 2,4-DA-6-NT or 2-A-4,6-DNT. 2,4-DA-6-NT was also shown to be a competitive inhibitor of the LiP activity measured through the oxidation of VA. Experiments using 14C-U-ring labeled compounds showed that 2-A-4,6-DNT was converted to 2,2'-azoxy-4,4' ,6,6'-tetranitrotoluene. No significant mineralization, measured by the release of 14CO2, was observed over 5 d.  相似文献   

14.
Purified CO dehydrogenase (CODH) from Clostridium thermoaceticum catalyzed the transformation of 2,4,6-trinitrotoluene (TNT). The intermediates and reduced products of TNT transformation were separated and appear to be identical to the compounds formed by C. acetobutylicum, namely, 2-hydroxylamino-4,6-dinitrotoluene (2HA46DNT), 4-hydroxylamino-2,6-dinitrotoluene (4HA26DNT), 2,4-dihydroxylamino-6-nitrotoluene (24DHANT), and the Bamberger rearrangement product of 2,4-dihydroxylamino-6-nitrotoluene. In the presence of saturating CO, CODH catalyzed the conversion of TNT to two monohydroxylamino derivatives (2HA46DNT and 4HA26DNT), with 4HA26DNT as the dominant isomer. These derivatives were then converted to 24DHANT, which slowly converted to the Bamberger rearrangement product. Apparent Km and kcat values of TNT reduction were 165 ± 43 μM for TNT and 400 ± 94 s−1, respectively. Cyanide, an inhibitor for the CO/CO2 oxidation/reduction activity of CODH, inhibited the TNT degradation activity of CODH.  相似文献   

15.
The biotransformation of 2,4,6-trinitrotoluene (TNT) (175 microM) by Phanerochaete chrysosporium with molasses and citric acid at pH 4.5 was studied. In less than 2 weeks, TNT disappeared completely, but mineralization (liberated 14CO2) did not exceed 1%. A time study revealed the presence of several intermediates, marked by the initial formation of two monohydroxylaminodinitrotoluenes (2- and 4-HADNT) followed by their successive transformation to several other products, including monoaminodinitrotoluenes (ADNT). A group of nine acylated intermediates were also detected. They included 2-N-acetylamido-4,6-dinitrotoluene and its p isomer, 2-formylamido-4, 6-dinitrotoluene and its p isomer (as acylated ADNT), 4-N-acetylamino-2-amino-6-nitrotoluene and 4-N-formylamido-2-amino-6-nitrotoluene (as acetylated DANT), 4-N-acetylhydroxy-2,6-dinitrotoluene and 4-N-acetoxy-2, 6-dinitrotoluene (as acetylated HADNT), and finally 4-N-acetylamido-2-hydroxylamino-6-nitrotoluene. Furthermore, a fraction of HADNTs were found to rearrange to their corresponding phenolamines (Bamberger rearrangement), while another group dimerized to azoxytoluenes which in turn transformed to azo compounds and eventually to the corresponding hydrazo derivatives. After 30 days, all of these metabolites, except traces of 4-ADNT and the hydrazo derivatives, disappeared, but mineralization did not exceed 10% even after the incubation period was increased to 120 days. The biotransformation of TNT was accompanied by the appearance of manganese peroxidase (MnP) and lignin-dependent peroxidase (LiP) activities. MnP activity was observed almost immediately after TNT disappearance, which was the period marked by the appearance of the initial metabolites (HADNT and ADNT), whereas the LiP activity was observed after 8 days of incubation, corresponding to the appearance of the acyl derivatives. Both MnP and LiP activities reached their maximum levels (100 and 10 U/liter, respectively) within 10 to 15 days after inoculation.  相似文献   

16.
Bacteria readily transform 2,4,6-trinitrotoluene (TNT), a contaminant frequently found at military bases and munitions production facilities, by reduction of the nitro group substituents. In this work, the kinetics of nitroreduction were investigated by using a model nitroreductase, NAD(P)H:flavin mononucleotide (FMN) oxidoreductase. Under mediation by NAD(P)H:FMN oxidoreductase, TNT rapidly reacted with NADH to form 2-hydroxylamino-4,6-dinitrotoluene and 4-hydroxylamino-2,6-dinitrotoluene, whereas 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene were not produced. Progressive loss of activity was observed during TNT reduction, indicating inactivation of the enzyme during transformation. It is likely that a nitrosodinitrotoluene intermediate reacted with the NAD(P)H:FMN oxidoreductase, leading to enzyme inactivation. A half-maximum constant with respect to NADH, K(N), of 394 microM was measured, indicating possible NADH limitation under typical cellular conditions. A mathematical model that describes the inactivation process and NADH limitation provided a good fit to TNT reduction profiles. This work represents the first step in developing a comprehensive enzyme level understanding of nitroarene biotransformation.  相似文献   

17.
Pollutants are frequently found as mixtures yet it is difficult to engineer enzymes with broad substrate ranges on aromatics. Inspired by the archetypal nitroarene dioxygenase, which shares its electron transport with a salicylate monooxygenase, we have created an innovative and general approach to expand the substrate range of dioxygenase enzymes in a single cell. We have developed here a series of novel, hybrid dioxygenase enzymes that function with a single ferredoxin reductase and ferredoxin that are used to transport two electrons from nicotinamide adenine dinucleotide to the two independent terminal oxygenases. Each independent alpha-oxygenase may then be used simultaneously to create orthric enzymes that degrade mixtures of environmental pollutants. Specifically, we created a hybrid dioxygenase system consisting of naphthalene dioxygenase/dinitrotoluene dioxygenase to simultaneously degrade 2,4-dinitrotoluene and naphthalene (neither enzyme alone had significant activity on both compounds) and dinitrotoluene dioxygenase/nitrobenzene dioxygenase to simultaneously degrade the frequently encountered 2,4,6-trinitrotoluene reduction products 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene.  相似文献   

18.
Purified CO dehydrogenase (CODH) from Clostridium thermoaceticum catalyzed the transformation of 2,4,6-trinitrotoluene (TNT). The intermediates and reduced products of TNT transformation were separated and appear to be identical to the compounds formed by C. acetobutylicum, namely, 2-hydroxylamino-4,6-dinitrotoluene (2HA46DNT), 4-hydroxylamino-2,6-dinitrotoluene (4HA26DNT), 2, 4-dihydroxylamino-6-nitrotoluene (24DHANT), and the Bamberger rearrangement product of 2,4-dihydroxylamino-6-nitrotoluene. In the presence of saturating CO, CODH catalyzed the conversion of TNT to two monohydroxylamino derivatives (2HA46DNT and 4HA26DNT), with 4HA26DNT as the dominant isomer. These derivatives were then converted to 24DHANT, which slowly converted to the Bamberger rearrangement product. Apparent K(m) and k(cat) values of TNT reduction were 165 +/- 43 microM for TNT and 400 +/- 94 s(-1), respectively. Cyanide, an inhibitor for the CO/CO(2) oxidation/reduction activity of CODH, inhibited the TNT degradation activity of CODH.  相似文献   

19.
Under nitrate-reducing, nongrowth conditions, a Pseudomonas fluorescens species reduced 2,4,6-trinitrotoluene to aminodinitrotoluenes, which were then further reduced to diaminonitrotoluenes. 2,4-Diamino-6-nitrotoluene (2,4-DANT) was further transformed to a novel metabolite, 4-N-acetylamino-2-amino-6-nitrotoluene (4-N-AcANT), while 2,6-diamino-4-nitrotoluene (2,6-DANT) was persistent. Efforts to further degrade 2,4-DANT and 2,6-DANT under aerobic, nitrogen-limited conditions were unsuccessful; 2,6-DANT remained persistent, and 2,4-DANT was again transformed to the 4-N-AcANT compound.  相似文献   

20.
Pseudomonas pseudoalcaligenes JS52 grows on nitrobenzene via partial reduction of the nitro group and enzymatic rearrangement of the resultant hydroxylamine. Cells and cell extracts of nitrobenzene-grown JS52 catalyzed the transient formation of 4-hydroxylamino-2,6-dinitrotoluene (4HADNT), 4-amino-2,6-dinitrotoluene (4ADNT), and four previously unidentified metabolites from 2,4,6-trinitrotoluene (TNT). Two of the novel metabolites were identified by liquid chromatography/mass spectrometry and (sup1)H-nuclear magnetic resonance spectroscopy as 2,4-dihydroxylamino-6-nitrotoluene (DHANT) and 2-hydroxylamino-4-amino-6-nitrotoluene (2HA4ANT). A polar yellow metabolite also accumulated during transformation of TNT by cells and cell extracts. Under anaerobic conditions, extracts of strain JS52 did not catalyze the production of the yellow metabolite or release nitrite from TNT; moreover, DHANT and 2HA4ANT accumulated under anaerobic conditions, which indicated that their further metabolism was oxygen dependent. Small amounts of nitrite were released during transformation of TNT by strain JS52. Sustained transformation of TNT by cells required nitrobenzene, which indicated that TNT transformation does not provide energy. Transformation of TNT catalyzed by enzymes in cell extracts required NADPH. Transformation experiments with (sup14)C-TNT indicated that TNT was not mineralized; however, carbon derived from TNT became associated with cells. Nitrobenzene nitroreductase purified from strain JS52 transformed TNT to DHANT via 4HADNT, which indicated that the nitroreductase could catalyze the first two steps in the transformation of TNT. The unusual ability of the nitrobenzene nitroreductase to catalyze the stoichiometric reduction of aromatic nitro compounds to the corresponding hydroxylamine provides the basis for the novel pathway for metabolism of TNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号