首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
* Documentation of the degree and direction of effects of ozone on transpiration of canopies of mature forest trees is critically needed to model ozone effects on forest water use and growth in a warmer future climate. * Patterns of sap flow in stems and soil moisture in the rooting zones of mature trees, coupled with late-season streamflow in three forested watersheds in east Tennessee, USA, were analyzed to determine relative influences of ozone and other climatic variables on canopy physiology and streamflow patterns. * Statistically significant increases in whole-tree canopy conductance, depletion of soil moisture in the rooting zone, and reduced late-season streamflow in forested watersheds were detected in response to increasing ambient ozone levels. * Short-term changes in canopy water use and empirically modeled streamflow patterns over a 23-yr observation period suggest that current ambient ozone exposures may exacerbate the frequency and level of negative effects of drought on forest growth and stream health.  相似文献   

2.
介绍了Granier热消散探针在树干液流测定中的工作原理,并利用该系统长期监测广东鹤山马占相思林14株样树的液流密度,分析了树木个体内和个体之间液流密度的差异、整树和林段水分利用的量化特征.由于树木边材结构以及周围微环境的差别,树木内和个体间的液流密度差异非常明显,变异系数的平均值分别为15.51%-37.26%、37.46%-50.73%.尽管液流密度的差异较大,但同一株树木不同方位的液流密度之间却呈现明显的线性相关(p<0.0001),这是重要的特征值,使得只需测定某一方位的液流密度经尺度外推计算整树和林段蒸腾成为可能.树木液流对环境因子响应的变化规律取决于所参照的时间尺度,日变化主要受光辐射、水汽压差等气候因子的控制,而土壤水份对液流的季节变化影响较大.形态特征明显影响树木的液流,高大树木由于边材较厚、树干粗壮和冠幅较宽而承载较多的辐射能量,因而水分蒸腾较高.对树木液流密度在径向和方位上进行适当的整合,可较准确地计算整树和林段蒸腾.由液流估测的马占相思整树和林段蒸腾的结果显示,该群落的水分利用在时间和空间上均有明显的分化.  相似文献   

3.
Tree growth is the most important factor in determining the carbon sequestration processes of forest ecosystems. However, the growth phenology (seasonal growth pattern) and responses of tree growth to climatic variables vary considerably among different species, especially between deciduous and evergreen species. Thus, it is crucial to explore the seasonal growth patterns of different tree species in relation to climate to better understand the responses of tree physiology to climate changes, especially in mixed-species forest stands. In this study, we monitored the daily basal area increments of 220 individuals belonging to 15 common broadleaved tree species, nine deciduous and six evergreen species, in mixed-species experimental stands in subtropical China and analysed the relationships between radial stem growth and seasonal climate at a high-temporal resolution. We fitted daily increments of stem diameters with four frequently used nonlinear models and chose the best model for each species. The results showed that the evergreen trees grew faster than the deciduous trees, both annually and within the growing season. The tested nonlinear models (Korf, Weibull, logistic and Gompertz) produced good fits for the growth patterns of all species. Overall, the evergreen species began stem growth earlier and finished later during the growing season than that of the deciduous species. Within the growing season, the radial growth of trees in mixed stands containing both types of species was strongly positively correlated with humidity. In spring, increases in both temperature and moisture increased the daily relative basal area increment of all species. Maximum growth rates occurred when the soil water content reached its highest level and gradually decreased when the soil water content decreased. In summer, high temperatures combined with low amounts of precipitation led to heat-induced summer drought, to which the evergreen trees appeared to be more tolerant than the deciduous trees, which was reflected in the reduced stem growth of the latter. These results indicate the different climate-dependent seasonal growth strategies of evergreen and deciduous trees related to the trade-off described by the leaf economics spectrum, i.e., short-lived leaves with higher assimilation rates in deciduous and longer-lived leaves with a greater drought tolerance in evergreen species.  相似文献   

4.
This study characterizes whole tree root system distribution in a non-destructive way based on its functional parameters, particularly the sap flow patterns in stems. This approach particularly considers sap flow variation across stems, both radial and circumferential patterns of flow that are usually used for a better integration of sap flow density at the whole tree level. We focused at: (1) Showing examples of sap flow variation across stems at a defined situation (high midday values at the period of non-limiting water supply; (2) Analyzing radial flow patterns in terms of root distribution; (3) Validating these results at the stand level (mean data of series of individual trees) using results of classical biometric methods used at the same site; and (4) Applying the results for evaluation of root distribution around leaning trees. Sap flow rate was measured by the heat deformation method on a set of 14 trees at an experimental pine forest stand in Brasschaat (Belgium) during the growing season of 2000. Sap flow variation across stems was measured at a total of 700 points. Amounts of water supplied by superficial (horizontally oriented) and sinker (vertically oriented) roots were estimated from sap flow patterns. The vertical distribution of absorbing roots as derived from the analysis of sap flow patterns in stem sapwood was very similar to the distribution determined by the classical biometric analysis of fine roots. Trees leaning to the East had stem radii at the stump level and crown radii enhanced in the leaning direction. Sinker roots showed higher absorption activities in the leaning direction, but superficial roots were more absorbing in the opposite direction. The application of the above-described method allows for a better evaluation of the whole-tree behavior and facilitates the evaluation of tree and stand properties in traditional forest stands, which are not equipped for detailed scientific research. This may also facilitate practical applications in landscape-level studies.  相似文献   

5.
Aims Nighttime sap flow of trees may indicate transpiration and/or recharge of stem water storage at night. This paper deals with the water use of Acacia mangium at night in the hilly lands of subtropical South China. Our primary goal was to reveal and understand the nature of nighttime sap flow and its functional significance.Methods Granier's thermal dissipation method was used to determine the nighttime sap flux of A. mangium. Gas exchange system was used to estimate nighttime leaf transpiration and stomatal conductance of studied trees.Important findings Nighttime sap flow was substantial and showed seasonal variation similar to the patterns of daytime sap flow in A. mangium. Mean nighttime sap flow was higher in the less precipitation year of 2004 (1122.4 mm) than in the more precipitation year of 2005 (1342.5 mm) since more daytime transpiration and low soil water availability in the relatively dry 2004 can be the cause of more nighttime sap flow. Although vapor pressure deficit and air temperature were significantly correlated with nighttime sap flow, they could only explain a small fraction of the variance in nighttime sap flow. The total accumulated water loss (E L) by transpiration of canopy leaves was only ~2.6–8.5% of the total nighttime sap flow (E t) during the nights of July 17–18 and 18–19, 2006. Therefore, it is likely that the nighttime sap flow was mainly used for refilling water in the trunk. The stem diameter at breast height, basal area and sapwood area explained much more variance of nighttime water recharge than environmental factors and other tree form features, such as tree height, stem length below the branch, and canopy size. The contribution of nighttime water recharge to the total transpiration ranged from 14.7 to 30.3% depending on different DBH class and was considerably higher in the dry season compared to the wet season.  相似文献   

6.
7.
油松、栓皮栎树干液流速率比较   总被引:11,自引:0,他引:11  
聂立水  李吉跃  翟洪波 《生态学报》2005,25(8):1934-1940
应用TDP(ThermalDissipationProbe)技术对油松和栓皮栎树干液流进行了初步研究,经过野外近1a的实地定位观测,研究结果显示:栓皮栎月平均树干液流速率在整个生长期都较油松的月平均树干液流速率要高。前者大约是后者的5~10倍。栓皮栎在土壤干旱时期能够在白天产生明显的树干液流。在土壤干旱时期油松白天不产生树干液流而在晚上产生明显树干液流。在土壤相对湿润时期,油松和栓皮栎树干液流速率的波形与太阳总辐射的波形变化一致,但不同的是油松的树干液流速率波形呈明显的单峰状,而栓皮栎树干液流速率波形呈明显的多峰状。在土壤相对湿润时期太阳总辐射很低时能对油松树干液流速率产生明显的降低作用,而对栓皮栎树干液流则没有明显影响。在土壤干旱时期,油松和栓皮栎树干液流速率的峰值分别大约为0.0001cm/s和0.0006cm/s左右;在土壤水分充足时期,油松和栓皮栎树干液流速率的峰值分别大约相等约为0.0015cm/s左右,分别是油松和栓皮栎在干旱日期的液流速率峰值的10倍和2.5倍。  相似文献   

8.
运用Granier热扩散式探针法,于2010年干湿季对鼎湖山自然保护区针阔混交林4种优势树种马尾松、锥栗、木荷和广东润楠的树干液流密度进行连续监测,并同步观测气温、相对湿度和光合有效辐射等环境因子的变化,研究其树干液流特征及其对环境因子的响应.结果表明:在干湿季,4种优势树种的树干液流速率日变化均呈“昼高夜低”的典型单峰曲线,阔叶树锥栗、木荷和广东润楠的平均液流速率和峰值以及日液流量均显著大于针叶树马尾松;马尾松、锥栗、木荷和广东润楠的最大树干液流密度分别为29.48、38.54、51.67、58.32g H2O·m-2·s-1.优势树种树干液流速率的变化与环境因子的昼夜变化存在时滞;液流速率变化与光合有效辐射、水汽压亏缺和气温等环境因子的变化呈显著正相关,其中湿季以光合有效辐射为主导因子,干季以气温为主导因子.  相似文献   

9.
Stem water storage capacity and diurnal patterns of water use were studied in five canopy trees of a seasonal tropical forest in Panama. Sap flow was measured simultaneously at the top and at the base of each tree using constant energy input thermal probes inserted in the sapwood. The daily stem storage capacity was calculated by comparing the diurnal patterns of basal and crown sap flow. The amount of water withdrawn from storage and subsequently replaced daily ranged from 4 kg d–1 in a 0·20-m-diameter individual of Cecropia longipes to 54 kg d–1 in a 1·02-m-diameter individual of Anacardium excelsum, representing 9–15% of the total daily water loss, respectively. Ficus insipida, Luehea seemannii and Spondias mombin had intermediate diurnal water storage capacities. Trees with greater storage capacity maintained maximum rates of transpiration for a substantially longer fraction of the day than trees with smaller water storage capacity. All five trees conformed to a common linear relationship between diurnal storage capacity and basal sapwood area, suggesting that this relationship was species-independent and size-specific for trees at the study site. According to this relationship there was an increment of 10 kg of diurnal water storage capacity for every 0·1 m2 increase in basal sapwood area. The diurnal withdrawal of water from, and refill of, internal stores was a dynamic process, tightly coupled to fluctuations in environmental conditions. The variations in basal and crown sap flow were more synchronized after 1100 h when internal reserves were mostly depleted. Stem water storage may partially compensate for increases in axial hydraulic resistance with tree size and thus play an important role in regulating the water status of leaves exposed to the large diurnal variations in evaporative demand that occur in the upper canopy of seasonal lowland tropical forests.  相似文献   

10.
Summary Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed with tree canopy transpiration rate determined by the difference between above-canopy eddy correlation and forest floor lysimeter evaporation measurements. Daily sap flux varied by an order of magnitude among trees (2 to 87 kg day–1 tree–1). Over 50% of plot sap flux density originated from 3 of 14 trees which emerged 2 to 5 m above the canopy. Maximum tree transpiration rate was significantly correlated with tree height, stem sapwood area, and stem circumference. Use of water stored in the trees was minimal. It is estimated that during growth and crown development, Nothofagus allocates about 0.06 m of circumference of main tree trunk or 0.01 m2 of sapwood per kg of water transpired over one hour.Maximum total conductance for water vapour transfer (including canopy and aerodynamic conductance) of emergent trees, calculated from sap flux density and humidity measurements, was 9.5 mm s–1 that is equivalent to 112 mmol m–2 s–1 at the scale of the leaf. Artificially illuminated shoots measured in the stand with gas exchange chambers had maximum stomatal conductances of 280 mmol m–2 s–1 at the top and 150 mmol m–2 s–1 at the bottom of the canopy. The difference between canopy and leaf-level measurements is discussed with respect to effects of transpiration on humidity within the canopy. Maximum total conductance was significantly correlated with leaf nitrogen content. Mean carbon isotope ratio was –27.76±0.27 (average ±s.e.) indicating a moist environment. The effects of interactions between the canopy and the atmosphere on forest water use dynamics are shown by a fourfold variation in coupling of the tree canopy air saturation deficit to that of the overhead atmosphere on a typical fine day due to changes in stomatal conductance.This paper is dedicated to Prof. Dr. O.L. Lange on the occasion of his 65th birthday  相似文献   

11.
Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species’ hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios.  相似文献   

12.
Summary The effect of cold soils on stem sap flow, shoot gas exchange and water potential of Picea engelmannii (Parry) was investigated during the snowmelt period in the Medicine Bow Mountains, Wyoming, USA. Shoot net photosynthetic rates were higher in young trees (1.5–1.8 m in height) growing in cold soils (<3.5° C) associated with snowpack, than trees in warm soils until about 1500 h. Higher shoot photosynthetic rates of trees in cold soils continued after snow was removed and could not be completely explained by higher visible irradiance over highly reflective snow. Following soil warming higher photosynthetic rates were evident in these trees for five days. High nutrient availability associated with snowmelt may improve shoot nutrient status leading to higher gas-exchange rates during snowmelt. Shoot conductance to water vapor was higher in trees in cold soil until midday, when declining shoot conductance led to lower intercellular CO2 concentrations. Midday through afternoon shoot water potentials of trees in cold soils were similar or higher than those of trees in warm soils and the lower afternoon shoot conductances in cold soils were not the result of lower bulk shoot water potentials. Decline in net photosynthesis of trees in cold soils at 1500 h paralleled increases in intercellular CO2 concentrations, implying a nonstomatal limitation of photosynthesis. This scenario occurred consistently in mid-afternoon following higher morning and midday photosynthesis in cold soils, suggesting a carbohydrate feedback inhibition of photosynthesis. Diurnal patterns in stem sap flow of all trees (cold and warm soils) reflected patterns of shoot conductance, although changes in stem sap flow lagged 1–3 h behind shoot conductance apparently due to stem water storage. Total daily stem sap flow was similar in trees in cold and warm soils, although diel patterns differed. The morning surge and night-time drop in sap flow commenced 1–2 h earlier in trees in cold soils. Overnight stem sap flow was lower in trees in cold soils, possibly due to higher resistance to root water uptake in cold soils, which may explain lower predawn shoot water potentials. However, midday shoot water potentials of trees in cold soils equalled or exceeded those of trees in warm soils. Higher resistance to root water uptake in P. engelmannii in cold soils was apparently overshadowed by transpirational forces and significant shoot water deficits did not develop.  相似文献   

13.
14.
A strong correlation was previously observed between carbon isotope discrimination (Delta(13)C) of phloem sap sugars and phloem sap sugar concentration in the phloem-bleeding tree Eucalyptus globulus Labill. (J. Pate, E. Shedley, D. Arthur, M. Adams [1998] Oecologia 117: 312-322). We hypothesized that correspondence between these two parameters results from covarying responses to plant water potential. We expected Delta(13)C to decrease with decreasing plant water potential and phloem sap sugar concentration to increase, thereby maintaining turgor within sieve tubes. The hypothesis was tested with analyses of E. globulus trees growing on opposite ends of a rainfall gradient in southwestern Australia. The Delta(13)C of phloem sap sugars was closely related to phloem sap sugar concentration (r = -0.90, P < 0.0001, n = 40). As predicted, daytime shoot water potential was positively related to Delta(13)C (r = 0.70, P < 0.0001, n = 40) and negatively related to phloem sap sugar concentration (r = -0.86, P < 0.0001, n = 40). Additional measurements showed a strong correspondence between predawn shoot water potential and phloem sap sugar concentration measured at midday (r = -0.87, P < 0.0001, n = 30). The Delta(13)C of phloem sap sugars collected from the stem agreed well with that predicted from instantaneous measurements of the ratio of intercellular to ambient carbon dioxide concentrations on subtending donor leaves. In accordance, instantaneous ratio of intercellular to ambient carbon dioxide concentrations correlated negatively with phloem sap sugar concentration (r = -0.91, P < 0.0001, n = 27). Oxygen isotope enrichment (Delta(18)O) in phloem sap sugars also varied with phloem sap sugar concentration (r = 0.91, P < 0.0001, n = 39), consistent with predictions from a theoretical model of Delta(18)O. We conclude that drought induces correlated variation in the concentration of phloem sap sugars and their isotopic composition in E. globulus.  相似文献   

15.
A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.  相似文献   

16.
Water availability is the main climate driver of neotropical tree growth   总被引:1,自引:0,他引:1  
? Climate models for the coming century predict rainfall reduction in the Amazonian region, including change in water availability for tropical rainforests. Here, we test the extent to which climate variables related to water regime, temperature and irradiance shape the growth trajectories of neotropical trees. ? We developed a diameter growth model explicitly designed to work with asynchronous climate and growth data. Growth trajectories of 205 individual trees from 54 neotropical species censused every 2 months over a 4-year period were used to rank 9 climate variables and find the best predictive model. ? About 9% of the individual variation in tree growth was imputable to the seasonal variation of climate. Relative extractable water was the main predictor and alone explained more than 60% of the climate effect on tree growth, i.e. 5.4% of the individual variation in tree growth. Furthermore, the global annual tree growth was more dependent on the diameter increment at the onset of the rain season than on the duration of dry season. ? The best predictive model included 3 climate variables: relative extractable water, minimum temperature and irradiance. The root mean squared error of prediction (0.035 mm x d(-1)) was slightly above the mean value of the growth (0.026 mm x d(-1)). ? Amongst climate variables, we highlight the predominant role of water availability in determining seasonal variation in tree growth of neotropical forest trees and the need to include these relationships in forest simulators to test, in silico, the impact of different climate scenarios on the future dynamics of the rainforest.  相似文献   

17.
While there is strong evidence for hydraulic redistribution (HR) of soil water by trees, it is not known if common mycorrhizal networks (CMN) can facilitate HR from mature trees to seedlings under field conditions. Ponderosa pine (Pinus ponderosa) seedlings were planted into root-excluding 61-microm mesh barrier chambers buried in an old-growth pine forest. After 2 yr, several mature trees were cut and water enriched in D(2)O and acid fuchsin dye was applied to the stumps. Fine roots and mycorrhizal root tips of source trees became heavily dyed, indicating reverse sap flow in root xylem transported water from stems throughout root systems to the root hyphal mantle that interfaces with CMN. Within 3 d, D(2)O was found in mesh-chamber seedling foliage > 1 m from source trees; after 3 wk, eight of 10 mesh-chamber seedling stem samples were significantly enriched above background levels. Average mesh-chamber enrichment was 1.8 x greater than that for two seedlings for which the connections to CMN were broken by trenching before D(2)O application. Even small amounts of water provided to mycorrhizas by HR may maintain hyphal viability and facilitate nutrient uptake under drying conditions, which may provide an advantage to seedlings hydraulically linked by CMN to large trees.  相似文献   

18.
树干液流径向分布的不均匀性是引起热技术估算单株乃至林分蒸腾误差的主要来源。因此, 了解树干液流径向分布格局并将其定量化, 成为利用热扩散和热脉冲技术准确估算森林蒸腾的必要条件。该文详细介绍了树干液流径向分布格局的研究方法, 总结了目前4种常见的树干液流的径向分布格局, 分析了影响树干液流径向分布格局的内部结构因素和外部环境因素, 阐明了树干液流径向分布格局的时间动态特征及其影响因素, 并提出目前研究中存在的问题和可能的解决方法。  相似文献   

19.
Databases are needed for the ozone (O(3)) risk assessment on adult forest trees under stand conditions, as mostly juvenile trees have been studied in chamber experiments. A synopsis is presented here from an integrated case study which was conducted on adult FAGUS SYLVATICA trees at a Central-European forest site. Employed was a novel free-air canopy O(3) fumigation methodology which ensured a whole-plant assessment of O(3) sensitivity of the about 30 m tall and 60 years old trees, comparing responses to an experimental 2 x ambient O(3) regime (2 x O(3), max. 150 nl O(3) l (-1)) with those to the unchanged 1 x ambient O(3) regime (1 x O(3)=control) prevailing at the site. Additional experimentation on individual branches and juvenile beech trees exposed within the forest canopy allowed for evaluating the representativeness of young-tree and branch-bag approaches relative to the O(3) sensitivity of the adult trees. The 2 x O(3) regime did not substantially weaken the carbon sink strength of the adult beech trees, given the absence of a statistically significant decline in annual stem growth; a 3 % reduction across five years was demonstrated, however, through modelling upon parameterization with the elaborated database. 2 x O(3) did induce a number of statistically significant tree responses at the cell and leaf level, although the O(3) responsiveness varied between years. Shade leaves displayed an O(3) sensitivity similar to that of sun leaves, while indirect belowground O(3) effects, apparently mediated through hormonal relationships, were reflected by stimulated fine-root and ectomycorrhizal development. Juvenile trees were not reliable surrogates of adult ones in view of O(3) risk assessment. Branch sections enclosed in (climatized) cuvettes, however, turned out to represent the O(3) sensitivity of entire tree crowns. Drought-induced stomatal closure decoupled O(3) intake from O(3) exposure, as in addition, also the "physiologically effective O(3) dose" was subject to change. No evidence emerged for a need to lower the "Critical Level for Ozone" in risk assessment of forest trees, although sensitive tree parameters did not necessarily reflect a linear relationship to O(3) stress. Exposure-based concepts tended to overestimate O(3) risk under drought, which is in support of current efforts to establish flux-related concepts of O(3) intake in risk assessment.  相似文献   

20.
采用Granier热消散探针测定了马占相思(Acacia mangium)的树干液流,结合Li-6400光合测定系统测定的夜间叶片气孔导度和蒸腾,将夜间液流区分为夜间树干水分补充和叶片气孔蒸腾。叶片的蒸腾作用微弱,因此,夜间液流主要用于补充贮水部位的水分亏缺。马占相思夜间水分补充量年内和年际的变化不明显,树形特征的差异是解释夜间水分补充量变化的重要因子,夜间水分补充量对于整树蒸腾量的贡献因季节和树木径级的不同而有明显变化,但对整树总蒸腾量计算造成的误差可以忽略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号