首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Synthesis of egg-laying hormone by the neuroendocrine bag cells ofAplysia californica is approximately twofold higher in summer than in winter. To determine whether this seasonal variation in peptide synthesis is triggered by seasonal variations in ocean temperature, animals were obtained at various times of the year and held for prolonged periods at either 15 or 20°C prior to measuring hormone synthesis. Rates of synthesis in winter animals held at 20°C began to increase after two weeks, reaching a level twice that of 15°C animals by six weeks. Cooling to 15°C blocked the rise in hormone synthesis that normally occurs between May and June and reduced synthesis in summer animals to values typical of winter. It is concluded that the seasonal modulation of neurohormone synthesis is due to changes in environmental temperature.  相似文献   

2.
Summary Prolonged secretory stimulation of the exocrine pancreas in the rat by in vivo infusion of caerulein leads to a rapid degranulation of the organ associated with a progressive reduction in the size of the zymogen granules. During the first six to twelve hours of stimulation Golgi complexes are enlarged and several structural forms of multivesicular bodies are found indicating a lysosomal degradation of membrane material in the Golgi area. Maximum secretory activity is obtained after a 24 hour infusion, Golgi complexes appear fragmented, the secretory granules measure only 1/3 to 1/4 their normal size. Thereafter, in spite of a continuous stimulation, the exocrine cells regranulate progressively up to 72 hours of infusion. This regranulation is associated with massive enlargement of the Golgi complexes.The phasic adaptation of the exocrine pancreas to prolonged stimulation, concluded from the structural studies, was confirmed by biochemical analysis of protein synthesis, intracellular transport and enzyme discharge. Pancreatic protein synthesis as measured by the incorporation of tritiated leucine remained unchanged during the first six hours of stimulation, then increased reaching a maximum of 230% of the control levels after 24 hours of infusion. After 48 and 72 hours the rate of protein synthesis decreased again to normal values. Most pronounced changes were observed in the kinetics of intracellular transport of newly synthesized proteins. Using pulse-chase incubation of prestimulated pancreatic lobules, the rate of transition of secretory proteins through the cell increased consistently with prolonged infusion periods reaching maximal acceleration after 24 hours. Newly synthesized proteins were transported and segregated up to ten times faster than in controls. After a maximum at 24 hours transport returned to normal rates after 72 hours of infusion. Enzyme secretion, measured for amylase, followed a similar pattern of stimulation.The results suggest a phasic adaptation of the exocrine pancreatic cell to prolonged stimulation. They demonstrate for the first time the possibility of an acceleration of intracellular transport by means of secretagogues.Dedicated to Professor W. Bargmann on the occasion of his 70th birthday.Supported by a grant from Deutsche Forschungsgemeinschaft (Ke 113/8). A preliminary communication was presented at the 9th annual meeting of the European Society for Clinical Investigation, Rotterdam (April 24–26, 1975). The expert technical assistance of Miss Helga Hollerbach and Miss Hiltraud Hosser is gratefully acknowledged.  相似文献   

3.
Summary Frog pancreatic tissue was pulse-labelled in vitro with 3H-leucine and protein transport was studied in exocrine cells by electron microscope autoradiography. The proteins appeared to be synthesized in the RER and transported to the secretory granules along a similar route and with the same velocity as previously described under in vitro conditions.Evidence was obtained for the involvement of the vesicular and tubular elements at the periphery of the Golgi system in transferring protein from the RER to the Golgi cisternae.Kinetics of the release of newly synthesized proteins from the RER and their appearance in the condensing vacuoles are discussed and related to results reported from other tissues.The transport velocity in this poikilothermic system was studied in relation to the incubation temperature and compared with results reported from its mammalian counterpart. At temperatures between 20 and 30° C intracellular protein transport occurs faster in the frog than in the Guinea pig pancreas. At higher temperature the transport process was severely disturbed in the frog.  相似文献   

4.
The cunner, Tautogolabrus adspersus, is a north-temperate teleost which relies upon metabolic depression to survive the extreme low water temperatures of its habitat during the winter. Previous study has demonstrated a decrease in protein synthesis accompanies the metabolic depression observed at the whole animal level during seasonal low temperature exposure. As such, the objective of the current study was to determine: (i) if the response of decreased protein synthesis is conserved across environmental stressors and (ii) if the response of metabolic depression is conserved across levels of cellular organization. This was accomplished through the measurement of in vivo protein synthesis rates in the whole tissue, cytosolic and mitochondrial protein pools (reflective of nuclear encoded proteins imported into mitochondria) of heart and gill in cunner exposed to either acute low temperature (8–4°C) or acute hypoxia (10% O2 saturation). In both heart and gill, rates of protein synthesis in the whole tissue and cytosolic protein pools were substantially depressed by 80% in response to acute hypothermia. In hypoxic heart, protein synthesis was significantly decreased by 50–60% in the whole tissue, cytosolic and mitochondrial pools; however, in gill there was no significant difference in rates of protein synthesis in any cellular fraction between normoxic and hypoxic groups. Most strikingly the rate of new protein accumulation in the mitochondrial fraction of gill did not change in response to either a decrease in temperature or hypoxia. The defense of protein synthesis in the gill is most likely associated with the importance of maintaining ionic regulation and the oxidative capacity in this front line organ for gas and ion exchange.  相似文献   

5.
Incubation of hydrated Tortula ruralis (Hedw.) Gaertn., Meyer. Scherb. at temperatures down to 2°C resulted in an accumulation of polyribosomes and a decrease in single ribosomes. No changes in the levels of ribosomal subunits were detected. On rehydration of slowly dried moss, which contains no polyribosomes, these were reormed at 2, 8 and 20°C. Rapid incorporation of labelled leucine into protein was observed on reintroduction of the desiccated plant o water at 20°C and there was significant, but much reduced, ncorporation at 2°C. Previously undesiccated moss was also able o take up radioactive leucine and to synthesize protein at 2 and -2.5°C. Changes in the rate of protein synthesis at low temperature were not detected in cold hardened (winter collected or incubated at 2°C) T. ruralis. The moss appears to be adapted to survive freezing wear round and even summer-collected moss can conduct protein synthesis at low temperatures: seasonal cold hardiness changes do lot appear to take place.  相似文献   

6.
7.
Eukaryotic cells can sense a wide variety of environmental stresses, including changes in temperature, pH, osmolarity and nutrient availability. They respond to these changes through a variety of signal-transduction mechanisms, including activation of Ca2+-dependent signaling pathways. This research has discovered important implications in the function(s) of polycystic kidney disease (PKD) channels and the mechanisms through which they act in the control of cell growth and cell polarity in Schizosaccharomyces pombe by ion channel-mediated Ca2+ signaling. Pkd2 was expressed maximally during the exponential growth phase. At the cell surface pkd2 was localized at the cell tip during the G2 phase of the cell cycle, although following cell wall damage, the cell surface-expressed protein relocalized to the whole plasma membrane. Pkd2 depletion affected Golgi trafficking, resulting in a buildup of vesicles at the cell poles, and strongly affected plasma membrane protein delivery. Surface-localized pkd2 was present in the plasma membrane for a very short time and was rapidly internalized. Internalization was dependent on Ca2+, enhanced by amphipaths and inhibited by gadolinium. The pkd2 protein was in a complex with a yeast synaptotagmin homologue and myosin V. Depletion of pkd2 severely affected the localization of glucan synthase. A role for pkd2 in a cell polarity and cell wall synthesis signaling complex with a synaptotagmin homologue, myosin V and glucan synthase is proposed.  相似文献   

8.
Photoactivatable and photoconvertible fluorescent proteins capable of pronounced light‐induced spectral changes are a powerful addition to the fluorescent protein toolbox of the cell biologist. They permit specific tracking of one subcellular structure (organelle or cell subdomain) within a differentially labelled population. They also enable pulse–chase analysis of protein traffic. The Kaede gene codes for a tetrameric protein found in the stony coral Trachyphyllia geoffroyi, which emits green fluorescence that irreversibly shifts to red following radiation with UV or violet light. We report here the use of Kaede to explore the plant secretory pathway. Kaede versions of the Golgi marker sialyl‐transferase (ST‐Kaede) and of the vacuolar pathway marker cardosin A (cardA‐Kaede) were engineered. Several optical devices enabling photoconversion and observation of Kaede using these two constructs were assessed to optimize Kaede‐based imaging protocols. Photoconverted ST‐Kaede red‐labelled organelles can be followed within neighbouring populations of non‐converted green Golgi stacks, by their gradual development of orange/yellow coloration from de novo synthesis of Golgi proteins (green). Results highlight some aspects on the dynamics of the plant Golgi. For plant bio‐imaging, the photoconvertible Kaede offers a powerful tool to track the dynamic behaviour of designated subpopulations of Golgi within living cells, while visualizing the de novo formation of proteins and structures, such as a Golgi stack.  相似文献   

9.
During winter and early spring, evergreen boreal conifers are severely stressed because light energy cannot be used when photosynthesis is pre‐empted by low ambient temperatures. To study photosynthetic performance dynamics in a severe boreal climate, seasonal changes in photosynthetic pigments, chloroplast proteins and photochemical efficiency were studied in a Scots pine forest near Zotino, Central Siberia. In winter, downregulation of photosynthesis involved loss of chlorophylls, a twofold increase in xanthophyll cycle pigments and sustained high levels of the light stress‐induced zeaxanthin pigment. The highest levels of xanthophylls and zeaxanthin did not occur during the coldest winter period, but rather in April when light was increasing, indicating an increased capacity for thermal dissipation of excitation energy at that time. Concomitantly, in early spring the D1 protein of the photosystem II (PSII) reaction centre and the light‐harvesting complex of PSII dropped to their lowest annual levels. In April and May, recovery of PSII activity, chloroplast protein synthesis and rearrangements of pigments were observed as air temperatures increased above 0°C. Nevertheless, severe intermittent low‐temperature episodes during this period not only halted but actually reversed the physiological recovery. During these spring low‐temperature episodes, protective processes involved a complementary function of the PsbS and early light‐induced protein thylakoid proteins. Full recovery of photosynthesis did not occur until the end of May. Our results show that even after winter cold hardening, photosynthetic activity in evergreens responds opportunistically to environmental change throughout the cold season. Therefore, climate change effects potentially improve the sink capacity of boreal forests for atmospheric carbon. However, earlier photosynthesis in spring in response to warmer temperatures is strongly constrained by environmental variation, counteracting the positive effects of an early recovery process.  相似文献   

10.
The presence of dictyosomes secreting densely stained vesicles throughout endosperm protein body formation was confirmed for four cereals (rice, Oryza sativa L.; hard red winter wheat, Triticum aestivum L.; winter feed barley and spring malting barley, Hordeum vulgare L.; oats, Avena sativa L.). The contents of the Golgi vesicles and protein bodies were digested with proteases for all cereals except rice. It was found in the case of rice that OsO4 altered the proteins in the Golgi apparatus and protein bodies making them resistant to protease digestion. These results imply that the Golgi apparatus plays an important role in the concentration and transport of storage proteins into vacuoles.  相似文献   

11.
We studied the dynamics of endogenous content of biologically active oligosaccharides in the roots of winter wheat seedlings. Previously, these oligosaccharides proved to mediate the development of frost resistance during the first days of hardening (Zabotinaet al., 1998). The changes in their endogenous content can be described by a curve with a single peak observed 6 h after the onset of frost hardening. The capacity of these polysaccharides to increase frost resistance (LT50was evaluated by leakage of electrolytes) when added to growth medium did not depend on the pretreatment duration (from 1.5 to 18 h) but decreased if they were introduced in the course of the adaptive response. Inhibition of the adaptive response by inhibitors of RNA and protein synthesis ceased in the presence of the oligosaccharides. We believe that the oligosaccharides that are products of metabolism of the cell wall polysaccharides are involved in adaptation to low temperature.  相似文献   

12.
 Cell-free systems for the analysis of Golgi apparatus membrane traffic rely either on highly purified cell fractions or analysis by specific trafficking markers or both. Our work has employed a cell-free transfer system from rat liver based on purified fractions. Transfer of any constituent present in the donor fraction that can be labeled (protein, phospholipid, neutral lipid, sterol, or glycoconjugate) may be investigated in a manner not requiring a processing assay. Transition vesicles were purified and Golgi apparatus cisternae were subfractionated by means of preparative free-flow electrophoresis. Using these transition vesicles and Golgi apparatus subfractions, transfer between transitional endoplasmic reticulum and cis Golgi apparatus was investigated and the process subdivided into vesicle formation and vesicle fusion steps. In liver, vesicle formation exhibited both ATP-independent and ATP-dependent components whereas vesicle fusion was ATP-independent. The ATP-dependent component of transfer was donor and acceptor specific and appeared to be largely unidirectional, i.e., ATP-dependent retrograde (cis Golgi apparatus to transitional endoplasmic reticulum) traffic was not observed. ATP-dependent transfer in the liver system and coatomer-driven ATP-independent transfer in more refined yeast and cultured cell systems are compared and discussed in regard to the liver system. A model mechanism developed for ATP-dependent budding is proposed where a retinol-stimulated and brefeldin A-inhibited NADH protein disulfide oxidoreductase (NADH oxidase) with protein disulfide-thiol interchange activity and an ATP-requiring protein capable of driving physical membrane displacement are involved. It has been suggested that this mechanism drives both the cell enlargement and the vesicle budding that may be associated with the dynamic flow of membranes along the endoplasmic reticulum-vesicle-Golgi apparatus-plasma membrane pathway. Accepted: 26 January 1998  相似文献   

13.
Several mechanisms have been suggested to explain how secretory cells remove from the plasmalemma the excess membrane resulting from the insertion of granule membrane during exocytosis: intact patches of membrane may be internalized and then reutilized within the cell; alternatively these membranes may be either disassembled to subunits or degraded. In the latter case new membranes should be synthetized at other sites of the cell, probably in the rough-surfaced endoplasmic reticulum (RER) and the Golgi complex. In the present research, membrane subfractions were obtained from rough microsomes (derived from fragmented and resealed RER cisternae) and from smooth microsomes (primarily contributed by Golgi stacks and vesicles) of the guinea pig pancreas by incubation at 4°C for 4 hr in 0.0005 M puromycin at high ionic strength followed by mild (pH 7.8) alkaline extraction with 0.2 M NaHCO3. Such treatments release the majority of nonmembrane components of both microsomal fractions (i.e., contained secretory enzymes, ribosomes, and absorbed proteins of the cell sap) and allow the membranes to be recovered by centrifugation. The effect of in vitro stimulation of enzyme secretion (brought about in pancreas slices by 0.0001 M carbamoyl choline) on the rate of synthesis of the phospholipid (PLP) and protein of these membranes was then investigated. In agreement with previous data, we observed that in stimulated slices the synthesis of microsomal PLP was greatly increased. In contrast, the synthesis of microsomal membrane proteins was unchanged. These results suggest that exocytosis is not coupled with an increased rate of synthesis of complete ER and Golgi membranes and are, therefore, consistent with the view that excess plasma membrane is preserved and reutilized, either as discrete membrane patches or as membrane macromolecules, throughout the secretory cycle.  相似文献   

14.
15.
Abstract: The relation between the availability of newly synthesized protein and lipid and the axonal transport of optically detectable organelles was examined in peripheral nerve preparations of amphibia (Rana catesbeiana and Xenopus laevis) in which intracellular traffic from the endo-plasmic reticulum to the Golgi complex was inhibited with brefeldin A (BFA). Accumulation of fast-transported radio-labeled protein or phospholipid proximal to a sciatic nerve ligature was monitored in vitro in preparations of dorsal root ganglia and sciatic nerve. Organelle transport was examined by computer-enhanced video microscopy of single myelinated axons. BFA reduced the amount of radiolabeled protein and lipid entering the fast-transport system of the axon without affecting either the synthesis or the transport rate of these molecules. The time course of the effect of BFA on axonal transport is consistent with an action at an early step in the intrasomal pathway, and with its action being related to the observed rapid (<1 h) disassembly of the Golgi complex. At a concentration of BFA that reduced fast-transported protein by >95%, no effect was observed on the flux or velocity of anterograde or retrograde organelle transport in axons for at least 20 h. Bidirectional axonal transport of organelles was similarly unaffected following suppression of protein synthesis by >99%. The findings suggest that the anterograde flux of transport organelles is not critically dependent on a supply of newly synthesized membrane precursors. The possibilities are considered that anterograde organelles normally arise from membrane components supplied from a post-Golgi storage pool, as well as from recycled retrograde organelles.  相似文献   

16.
Development of legume seeds is accompanied by the synthesis of storage proteins and lectins, and the deposition of these proteins in protein-storage vacuoles (protein bodies). We examined the subcellular distribution, in developing seeds of the common bean, Phaseolus vulgaris L., of the major storage protein (phaseolin) and the major lectin (phytohemagglutinin, PHA). The proteins were localized using an indirect immunocytochemical method in which ultrathin frozen sections were immunolabeled with rabbit antibodies specific for either PHA or phaseolin. Bound antibodies were then localized using goat-anti-rabbit immunoglobulin G adsorbed onto 4- to 5-nm colloidal gold particles. The sections were post-fixed with OsO4, dehydrated, and embedded in plastic on the grids. Both PHA and phaseolin exhibited a similar distribution in the storage-parenchyma cells, being found primarily in the developing protein bodies. Endoplasmic reticulum and Golgi complexes (cisternal stacks and associated vesicles) also were specifically labeled for both proteins, whereas the cytosol and other organelles, such as mitochondria, were not. We interpret these observations as supporting the hypothesis that the transport of storage proteins and lectins from their site of synthesis, the rough endoplasmic reticulum, to their site of deposition, the protein bodies, is mediated by the Golgi complex.Abbreviations ER endoplasmic reticulum - IgG immunoglobulin G - PBS phosphate-buffered saline - PHA phytohemagglutinin  相似文献   

17.
Frog exocrine pancreatic tissue was studied in vitro under conditions which maintain the differences between tissues from fasted and fed animals. Sodium dodecyl sulfate (SDS) gel electrophoresis after labeling with [14C]amino acids showed that feeding stimulated the synthesis of secretory proteins to the same relative degree as the overall protein synthesis. The intracellular transport of secretory proteins was studied by electronmicroscopy autoradiography after pulse-labeling with [3H]leucine. It was found that the transport route is similar under both feeding conditions. After their synthesis in the rough endoplasmic reticulum (RER), the proteins move through the peripheral elements and cisternae of the Golgi system into the condensing vacuoles. The velocity of the transport increases considerably after feeding. When frogs are fasted, the release of labeled proteins from the RER takes greater than 90 min, whereas after feeding, this happens within 30 min. Comparable differences were observed for transport through the Golgi system. The apparent differences between the frog and mammalian pancreas in the regulation of synthesis, intracellular transport, and secretion of proteins are discussed.  相似文献   

18.
Plant hormones play a key role in plant growth and differentiation. Certain plant hormones are known to be potential antitumor agents, affect the secretory activity of animal cells, and are produced by mammalian cells as proinflammatory cytokines. The goal of this research was to study the effect of abscisic and gibberellic acids on the secretory system of human epidermoid A431 carcinoma cells and HaCaT keratinocytes. Immunocytochemical and morphometric analysis showed that a subtoxic concentration of abscisic and gibberellic acids induced extension of the ER network and increased the size of the Golgi complex. Electron-microscope studies confirmed the hypertrophic changes of the Golgi complex: swelling of cisternae in the trans-Golgi compartment after exposure to abscisic acid and swelling of cis- and trans-compartments after exposure to gibberellic acid. The Click-iT technique revealed elevation of total protein synthesis only in A431 cells exposed to abscisic acid. Our data suggest that the hypertrophy of Golgi may reflect enhanced secretory activity in A431 cells exposed to abscisic acid. In other experiments, Golgi hypertrophy was not accompanied with increased protein synthesis that suggested the stress-related changes of ER and Golgi complex. Our results demonstrate that morphologically similar reaction manifested in hypertrophy of Golgi complex, in response to plant hormones, is the result of different functional activities, and that molecular mechanisms underlying induced changes need further investigations.  相似文献   

19.
Supernatant protein factor (SPF) is a poorly characterized cytosolic protein that stimulates HMG-CoA reductase and squalene monooxygenase in vitro and cholesterol synthesis when expressed in hepatoma cells. The activation of SPF by protein kinases A (PKA) and Cdelta enhances its ability to stimulate these cholesterolgenic enzymes in microsomal preparations. The present studies demonstrate that the ability of SPF to stimulate cholesterol synthesis in cell culture is also modulated by phosphorylation. Addition of dibutyryl-cAMP, a PKA activator, to hepatoma cells expressing SPF increased cholesterol synthesis by 62%, whereas addition of a cell-permeable PKA inhibitor blocked the SPF-mediated increase in cholesterol synthesis. To confirm a role for PKA in the regulation of SPF, substitution of alanine for serine-289 (a putative PKA recognition site) blocked the stimulation of cholesterol synthesis by SPF. Serine-289 is located at the junction of the proposed lipid-binding domain and the carboxyl-terminal Golgi dynamics domain, suggesting that phosphorylation may alter the interaction of these two domains. In a test of this hypothesis, deletion of the Golgi dynamics domain blocked the ability of SPF to stimulate cholesterol synthesis, supporting a role for Golgi in SPF function; this finding was buttressed by the observation that addition of brefeldin A, which disrupts Golgi formation, also abolished the ability of SPF to stimulate cholesterol synthesis. The activation of SPF by PKA suggests that cholesterol synthesis can be rapidly modulated in response to external stimuli by changes in cAMP levels, and that this regulation is dependent on an as yet undefined interaction with Golgi.  相似文献   

20.
Ticks are external parasitic arthropods that can transmit a variety of pathogens by sucking blood. Low-temperature tolerance is essential for ticks to survive during the cold winter. Exploring the protein regulation mechanism of low-temperature tolerance of Haemaphysalis longicornis could help to explain how ticks survive in winter. In this study, the quantitative proteomics of several tissues of H. longicornis exposed to low temperature were studied by data independent acquisition technology. Totals of 3 699, 3 422, and 1 958 proteins were identified in the salivary gland, midgut, and ovary, respectively. The proteins involved in energy metabolism, cell signal transduction, protein synthesis and repair, and cytoskeleton synthesis changed under low-temperature stress. The comprehensive analysis of the protein regulation of multiple tissues of female ticks exposed to low temperature showed that maintaining cell homeostasis, maintaining cell viability, and enhancing cell tolerance were the most important means for ticks to maintain vital signs under low temperature. The expression of proteins involved in and regulating the above cell activities was the key to the survival of ticks under low temperatures. Through the analysis of a large amount of data, we found that the expression levels of arylamine N-acetyltransferase, inositol polyphosphate multikinase, and dual-specificity phosphatase were up-regulated under low temperature. We speculated that they might have important significance in low-temperature tolerance. Then, we performed RNA interference on the mRNA of these 3 proteins, and the results showed that the ability of female ticks to tolerate low temperatures decreased significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号