首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Artificial activation is required for successful intracytoplasmic sperm injection (ICSI) to induce haploidy pronuclear formation with extraction of second polar body. The present study showed that an additional treatment with Phorbol 12-myristate 13-acetate (PMA) followed by Ca(2+) ionophore treatment improved the rate of pronuclear formation, however, these oocytes had more than two pronuclei because of the suppression of polar body emission. The cultivation with MEK inhibitor U0126 followed by Ca(2+) ionophore also increased the rate of pronuclear formation but suppressed the emission of second polar body. These results suggested that the decrease of MAP kinase activity at early stage of artificial activation, concomitantly with decreasing p34(cdc2) kinase activity, prevented the second polar body extraction. We investigated that the timing of MAP kinase inactivation affected the extraction of the polar body and pronuclear formation rate. The addition of PMA 8 hr after Ca(2+) ionophore treatment induced the delay of MAP kinase inactivation, which resulted in haploidy pronuclear formation with emission of polar body. These results demonstrated for the first time that the delay of MAP kinase inactivation induced by PMA improved pronuclear formation with the extraction of second polar body in porcine oocytes activated by Ca(2+) ionophore. This method can be available for successfully ICSI in low response species of oocyte activation to Ca(2+) ionophore including pig.  相似文献   

2.
In vitro maturation of oocytes is a promising assisted reproductive technology (ART) for infertility treatment, although it is still not a routine technique for human ART due to reduced embryonic development. The aim of the present study was to clarify the possible reasons for reduced capacity of in vitro matured oocytes. Our results showed that the oocytes matured in vitro displayed increased abnormal mitochondrial distribution, reduced mitochondrial membrane potential, and increased reactive oxygen species levels when compared to in vivo matured oocytes. These results were not different in oocytes matured in vitro with or without cumulus cells. Notably, in vitro matured oocytes displayed increased mitochondrial DNA numbers probably due to functional compensation. In vitro matured oocytes showed significantly lower activation and embryonic development rates, and their ability to produce Ca2+ oscillations was much lower in response to parthenogenetic activation, especially in oocytes matured in vitro without cumulus cells with nearly half of them failing to produce calcium waves upon strontium chloride stimulation. These data are important for understanding the reasons for reduced developmental potential of in vitro matured oocytes and the importance of cumulus cells for oocyte quality.  相似文献   

3.
It is essential to enhance the in vitro maturation (IVM) condition for immature oocytes after cryopreservation, particularly if limited numbers of oocytes collected from specific donors. The objective of this study was to determine if quality of vitrified porcine immature oocytes was enhanced by coculturing with fresh oocytes during IVM. To distinguish fresh versus vitrified oocytes, we used two types of coculture systems: (a) transwell two‐chamber coculture; (b) labeling and tracing fresh oocytes with CellTracker? Green CMFDA during conventional culture. Coculture systems significantly accelerated meiotic progression of vitrified oocytes and significantly increased blastocyst formation rates following parthenogenetic activation and somatic cell nuclear transfer. Reactive oxygen species generation in vitrified oocytes was ameliorated by the coculture conditions, with no significant difference between fresh and vitrified oocytes for intracellular glutathione level. Both coculture systems significantly increased rate of normal mitochondrial distribution in vitrified oocytes, but did not affect fluorescence intensity of mitochondria. The percentage of oocytes with normal endoplasmic reticulum (ER) distribution and ER fluorescence intensity were significantly higher in vitrified oocytes cocultured with fresh oocytes. After 20 hr of IVM, mRNA expression of COX2, HAS2, PTX3, and TNFAIP6 remained significantly higher in cumulus cells derived from vitrified oocytes and coculture systems significantly decreased the expression of these genes. Additionally, coculture methods prevented the reduction of mRNA expression for BMP15, ZAR1, POU5F1, and DNMT3A in vitrified oocytes. In conclusion, oocyte quality and subsequent embryo development of vitrified porcine immature oocytes were significantly improved by fresh oocyte coculture during IVM.  相似文献   

4.
5.
Meiotic spindle structure and chromosome alignment were examined after porcine oocytes were cooled at metaphase II (M II) stage. Cumulus-oocyte complexes (COCs) collected from medium size follicles were cultured in an oocyte maturation medium at 39 degrees C, 5% CO(2) in air for 44 hr. At the end of culture, oocytes were removed from cumulus cells and cooled to 24 or 4 degrees C for 5, 30, or 120 min in a solution with or without 1.5 M dimethyl sulfoxide (DMSO). After being cooled, oocytes were either fixed immediately for examination of the meiotic spindle and chromosome alignment or returned to maturation medium at 39 degrees C for 2 hr for examination of spindle recovery. Most oocytes (65-71%) cooled to 24 degrees C showed partially depolymerized spindles but 81-92% of oocytes cooled at 4 degrees C did not have a spindle after cooling for 120 min. Quicker disassembly of spindles in the oocytes was observed at 4 degrees C than at 24 degrees C. Cooling also induced chromosome abnormality, which was indicated by dispersed chromosomes in the cytoplasm. Limited spindle recovery was observed in the oocytes cooled to both 4 and 24 degrees C regardless of cooling time. The effect of cooling on the spindle organization and chromosome alignment was not influenced by the presence of DMSO. These results indicate that the meiotic spindles in porcine M II oocytes are very sensitive to a drop in the temperature. Both spindle and chromosomes were damaged during cooling, and such damage was not reversible by incubating the oocytes after they had been cooled.  相似文献   

6.
Although successful embryo development is dependent upon genetic and epigenetic contributions from both the male and female, the male potential to adversely affect embryo development has been scarcely studied. It is unclear whether the sperm variation among different males would affect the outcome of oocyte evaluation by embryo development following fertilization. In the present study, variation in the developmental potential of mouse embryos was first compared between in vitro fertilization with epididymal spermatozoa from different males and Sr(2+) parthenogenetic activation using oocytes of different qualities, and then the effect of male on fertilization and embryo development was examined using randomly chosen oocytes and spermatozoa from cauda epididymidis, vas deferens or electro-ejaculates. Rates of fertilization and blastocyst formation were significantly higher with spermatozoa from cauda epididymidis or vas deferens than with ejaculated spermatozoa. Rates of embryonic development differed significantly between different males, but not between different ejaculates of the same male. Analysis of standard errors of means and coefficients of variance indicated that as long as multiple males were involved, the variation in oocyte fertilization/activation and blastocyst formation was always higher after fertilization than after Sr(2+) parthenogenetic activation whether spermatozoa were collected from epididymidis, vas deferens or ejaculates and regardless of oocyte qualities. It is concluded that (1) epididymal mouse spermatozoa fertilize more oocytes than ejaculated spermatozoa under identical experimental conditions; (2) like farm animals, the mice also show a remarkable male effect on the developmental potential of in vitro produced embryos although they are supposed to be less genetically diverse; (3) parthenogenetic activation is recommended for assessment of oocyte quality to exclude the effect of male.  相似文献   

7.
Morphological and biochemical changes indicative of cytoplasmic maturation in relation to nuclear maturation progression and early embryo developmental potential was studied. Fluorescently labeled microfilaments and cortical granules were visualized by using laser scanning confocal microscopy. The mitogen-activated protein (MAP) kinase phosphorylation and cyclin B1 levels were revealed by Western blot. With the maturation of oocytes, cortical granules and microfilaments were localized at the cell cortex. A cortical granule-free domain (CGFD) and an actin-thickening area were observed over both the MII spindle of a mature oocyte and chromosomes of a nocodazole-treated oocyte, suggesting that chromosomes, but not the spindle, determined the localization of CGFD and actin-thickening area. In oocytes that are incompetent to resume meiosis, as indicated by the failure of germinal vesicle breakdown (GVBD), peripheral localization of cortical granules and microfilaments, phosphorylation of MAP kinase and synthesis of cyclin B1 did not occur after 44 hr in vitro. These cytoplasmic changes were also blocked when GVBD of meiotically competent oocytes was inhibited by cycloheximide. Culture of oocytes in a chemically defined medium showed that biological factors such as gonadotropins, cumulus cells and follicle size affected both nuclear and cytoplasmic maturation as well as embryo developmental potential. Absence of gonadotropins or removal of cumulus cells alone did not significantly influence GVBD or cyclin B1 levels, but decreased the final maturation and developmental ability of oocytes. A combination of gonadotropin absence and cumulus removal decreased GVBD, MAP kinase phosphorylation and embryo development. A high proportion of oocytes derived from small follicles were able to resume meiosis, synthesize cyclin B(1), phosphorylate MAP kinase and translocate CGs, but their maturation and embryo developmental ability were limited. Removal of cumulus cells from small follicle-derived oocytes severely affected their ability to undergo cytoplasmic and nuclear maturation.  相似文献   

8.
Experiments were designed to identify the extent to which follicle cells and hormones contribute to the developmental competence of porcine oocytes matured in vitro. Oocyte-cumulus complexes were collected from ovaries by dissection and cultured in 2 ml of TCM199-based medium in 5% CO2 in humidified air at 38.5°C. This basic maturation system was supplemented, for either the first 24 hr only or for the 48-hr culture period, with 1) everted follicle shell alone, 2) gonadotrophic hormones alone, or 3) both follicle shells and hormones. The effect of these treatments was evaluated on 1) meiotic maturation rates, 2) the capacity of matured eggs to undergo activation and early cleavage, and 3) changes to the profile of proteins secreted into the culture medium. The results showed that 1) supplementation with either follicle shell or hormones alone increased the rates of meiotic maturation over the nonsupplemented control group, and 2) combined follicle shell and hormonal supplementation yielded the highest rates for maturation, activation, and cleavage but only when hormonal supplementation was removed after the first 24 hr of culture. Proteins of 30, 37, 45, and 46 kD, but of unknown function, were secreted during the first 24 hr into the culture medium in groups supplemented with follicle shells. The addition of hormones did not affect this pattern of secreted proteins. It is possible that some secreted proteins may act to facilitate full maturation of pig oocytes. Mol. Reprod. Dev. 47:191–199, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
The regulation of MAP kinase phosphorylation by cAMP and protein kinase C (PKC) modulators during pig oocyte maturation was studied by Western immunoblotting. We showed that both forskolin and IBMX inhibited MAP kinase phosphorylation and meiosis resumption in a dose-dependent manner, and this inhibitory effect was overcome by the protein phosphatase inhibitor, okadaic acid. Pharmacological PKC activator phorbol myristate acetate or physiological PKC activator diC8 also delayed MAP kinase phosphorylation and meiosis resumption, and their effect was abrogated by PKC inhibitors, staurosporine, and calphostin C. The results suggest that meiotic resumption is inhibited by elevation of cAMP or delayed by activation of PKC probably via down-regulation of MAP kinase activation, which is mediated by protein phosphatase, during pig oocyte maturation.  相似文献   

10.
Checkpoint 1 (Chk1), as an important member of DNA replication checkpoint and DNA damage response, has an important role during the G2/M stage of mitosis. In this study, we used porcine oocyte as a model to investigate the function of Chk1 during porcine oocyte maturation. Chk1 was expressed from germinal vesicle (GV) to metaphase II (MII) stages, mainly localized in the cytoplasm at GV stage and moved to the spindle after germinal vesicle breakdown (GVBD). Chk1 depletion not only induced oocytes to be arrested at MI stage with abnormal chromosomes arrangement, but also inhibited the degradation of Cyclin B1 and decreased the expression of Mitotic Arrest Deficient 2-Like 1 (Mad2L1), one of spindle assembly checkpoint (SAC) proteins, and cadherin 1 (Cdh1), one of coactivation for anaphase-promoting complex/cyclosome (APC/C). Moreover, Chk1 overexpression delayed GVBD. These results demonstrated that Chk1 facilitated the timely degradation of Cyclin B1 at anaphase I (AI) and maintained the expression of Mad2L1 and Cdh1, which ensured that all chromosomes were accurately located in a line, and then oocytes passed metaphase I (MI) and AI and exited from the first meiotic division successfully. In addition, we proved that Chk1 had not function on GVBD of porcine oocytes, which suggested that maturation of porcine oocytes did not need the DNA damage checkpoint, which was different from the mouse oocyte maturation.  相似文献   

11.
12.
Nitric oxide (NO) and protein kinase C (PKC) are involved in the activation of mammalian oocytes, although their role in the exit from the metaphase II stage and cortical granule (CG) exocytosis is still not fully understood. The aim of this study was to verify whether the NO-donor together with specific PKC-activators induce the complete activation of porcine oocytes assessed as meiosis resumption and a cortical reaction. Pig maturated oocytes were treated with the NO-donor S-nitroso-N-acetylpenicillamine (SNAP, 2 mM) or PKC-activators such as phorbol-12-myristate-13-acetate (PMA, 100 nM), 1-oleoyl-2-acetyl-sn-glycerol (OAG, 400 μM) and l-α-phosphatidylinositol-3,4,5-trisphosphate dipalmitoyl heptaammonium salt (DPAM, 2 μM). To study the combined effect of NO-donor and PKC-activators, aliquots of oocytes were also incubated with SNAP (0.5 mM) together with PKC-activators at the same concentration as above (SNAP–DPAM, SNAP–OAG and SNAP–PMA groups). After in vitro maturation, an aliquot of oocytes was placed in a fresh medium without NO-donor or PKC-activators (Control group). Another aliquot of oocytes was activated by calcium ionophore A23187 (25 μM, 5 min). The results showed that 0% of the control oocytes reassumed meiosis. However, both the PKC-activators (DPAM 44.0 ± 10.0%, OAG 63.3 ± 1.0% and PMA 45.0 ± 16.5%) as well as the NO-donor alone (48.7 ± 21.0%) significantly induced exit from MII. Interestingly, the combination of PKC-activators and SNAP mainly restrained to the meiosis resumption (SNAP–OAG 0, SNAP–DPAM 17.4 ± 2.5% and SNAP–PMA 38.4 ± 8.5%). Control oocytes did not show a cortical reaction and the area occupied by CG reached 25.9 ± 1.7%, whereas CGs were partially released after Ca2+ ionophore treatment (13.0 ± 3.2%). Treatment with PKC-activators induced a cortical reaction compared with the control group (8.6 ± 2.5, 6.7 ± 1.9 and 0.7 ± 0.4%, respectively, for DPAM, OAG and PMA groups). However, treatment with the NO-donor alone (SNAP group 17.2 ± 2.2%) or combined with any PKC-activator prevented cortical reaction (SNAP–DPAM 20.7 ± 2.6%, SNAP–OAG 16.7 ± 2.9% or SNAP–PMA 20.0 ± 2.4%). Besides, meiosis resumption was not always accompanied by a cortical reaction, indicating that these two activation events are independent. In conclusion, PKC-activators alone induce CG exocytosis to the same degree as calcium ionophore. However, an NO-donor alone or combined with PKC-activators is not able to induce a cortical reaction in pig oocytes.  相似文献   

13.
Pre-pubertal pig oocytes display reduced developmental competence compared with adult oocytes following in vitro maturation (IVM). Exposure to dibutyryl cyclic adenosine monophosphate (dbcAMP) for the first 20 hr IVM improves development of pre-pubertal oocytes, suggesting that their cAMP content may be inadequate. This study examined the effect of 1 mM dbcAMP treatment for the first 22 hr of IVM on the cAMP content, meiotic progression, and embryo development of pre-pubertal and adult oocytes. In control groups, a two-fold increase in cAMP was observed in adult oocytes after 22 hr IVM, with no change in pre-pubertal oocyte cAMP content. At 22 hr IVM, dbcAMP treatment resulted in two- and five-fold increases in pre-pubertal and adult oocyte cAMP, respectively. After 22 hr control IVM, a greater proportion of pre-pubertal oocytes occupied metaphase I (MI) compared with adult oocytes (69% vs. 49%). dbcAMP treatment reduced the proportion of pre-pubertal and adult oocytes in MI stage at 22 hr. Despite dbcAMP treatment, the proportion of pre-pubertal oocytes in the MI stage at 22 hr remained higher than that of adult oocytes. In control groups, adult oocytes displayed a greater ability to form blastocysts compared with pre-pubertal oocytes following either parthenogenetic activation (59% vs. 25%) or in vitro fertilization (IVF) (47% vs. 19%). dbcAMP treatment increased subsequent blastocyst formation rates of pre-pubertal oocytes, whereas blastocyst formation rates of adult oocytes remained unchanged. Our results suggest that the reduced developmental capacity of pre-pubertal oocytes may be a consequence of their reduced ability to accumulate cAMP during IVM.  相似文献   

14.
Excessive softness is a serious defect of dry cured hams which seems related to high activity of lysosomal cysteine proteinases, such as cathepsin B, in fresh pork muscles a few days after slaughtering. As it has been shown that cathepsin B activity has a moderate heritability in Italian Large White pigs we started a candidate gene approach to identify the gene(s) that affect(s) this parameter. Here, we studied two candidate genes: cathepsin B (CTSB) and cystatin B (CSTB). We amplified and sequenced porcine DNA fragments for these two genes that were used to identify polymorphisms by SSCP and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Four and two alleles were detected at the CTSB and CSTB loci, respectively. Sequencing of the CSTB alleles showed a missense mutation that changes a codon for aspartic acid into a codon for asparagine in exon 3 of the gene. Allele frequencies for the two loci differed among the pig breeds studied (Large White, Landrace, Duroc, Belgian Landrace, Hampshire, Piétrain, Meishan, Cinta Senese, Casertana, Calabrese and Nero di Sicilia). Linkage, somatic cell hybrid panel and radiation hybrid panel analyses assigned CTSB to porcine chromosome (Sscr) 14 and CSTB to Sscr 13. The markers identified at the CTSB and CSTB loci were used in association studies with several traits of economic importance including parameters that may indicate the suitability of pig meat to produce dry-cured hams. Significant associations were observed between CTSB and back-fat thickness and between CSTB and average daily gain. In this study, cathepsin B activity was not associated with the polymorphisms identified at the CTSB and CSTB loci.  相似文献   

15.
Primordial oocytes are a potential resource for medical and zoological application, but those of large animals have not yet been reported to show efficient embryonic development. In the present study, we established a pig model for production of blastocysts from primordial oocytes that had been grafted into nude mice and matured in vitro, in combination with fusion of cytoplasmic fragments. Neonatal porcine ovaries in which most follicles are at the primordial stage were minced and grafted into nude mice (Crlj:CD1-Foxn1nu). About 60 days after detection of vaginal opening, the mice were given 62.5 U/mL porcine FSH for 2 weeks by infusion to enhance follicular development. Developmentally competent oocytes collected from porcine ovaries (conventional oocytes) were matured in vitro and subjected to serial centrifugation to prepare cytoplasmic fragments without a metaphase plate (cytoplasts). Three cytoplasts were fused by electrostimulation to an oocyte retrieved from a host mouse (xenogeneic oocyte) and matured in vitro. Then these fused oocytes were fertilized and subsequently cultured in vitro. No blastocysts were generated from xenogeneic oocytes without fusion of cytoplasm. When xenogeneic oocytes had been fused with three cytoplasts, the blastocyst rate increased significantly to 14.3%, comparable to that for untreated conventional oocytes (20.0%). The numbers of cells in blastocysts for these fused oocytes (37.2 cells/blastocyst) were not significantly different from those for conventional oocytes (25.4 cells/blastocyst). Our findings show that it is possible to use primordial oocytes of large mammals in combination with xenografting of ovarian tissue and also ooplasmic fusion.  相似文献   

16.
Mouse oocyte aged in vitro cannot develop normally following activation. To investigate the roles of nucleus or cytoplasm elements in oocyte aged in vitro process and their subsequent development capability following activation, we reconstructed oocytes with MII chromosome spindle and cytoplasm from aged and fresh oocytes by nuclear transfer. The subsequent developmental potential after parthenogenetic activation (PA) or in vitro fertilization (IVF) was evaluated. After nuclear transfer, more than 75.6% of karyoplast and cytoplast pairs can be fused and reconstructed oocytes have a normal haploid karyotype. Following PA, aged oocytes cannot develop beyond four-cell stage, reconstructed oocytes from fresh nucleus and aged cytoplasm developed to blastocyst with a low percentage (9.1%). Instead, blastocyst formation rate of reconstructed oocyte from aged nucleus and fresh cytoplasm was higher (60.0%). Following IVF, zygote with diploid karyotype can be formed from zona pellucida (ZP)-free oocyte. After cultured in vitro, aged oocytes cannot develop beyond two-cell; reconstructed oocytes from fresh nucleus and aged cytoplasm developed to blastocyst with low percentage (15.0%). However, high blastocyst formation rate (86.2%) can be obtained from reconstructed oocytes from aged nucleus and fresh cytoplasm. Furthermore, after embryo transfer, three viable pups have been obtained, although the efficiency is very low. These observation demonstrated that cytoplasm is more crucial than nucleus to aging process. Fresh cytoplasm could partly rescue nucleus susceptibility to apoptosis from aging in vitro.  相似文献   

17.
Aim of the study was to investigate the effect of vitrification on viability, cytoskeletal integrity and in vitro developmental competence after in vitro fertilization (IVF) of oocytes vitrified before or after in vitro maturation (IVM) using a pig model. Oocytes from abattoir-derived porcine ovaries were vitrified at either the germinal vesicle (GV) or metaphase II (MII) stage by modified solid surface vitrification (SSV). Oocyte viability was evaluated by stereomicroscopic observation whereas their nuclear stage and morphology of microtubules and F-actin were observed by confocal microscopy after immunostaining. Fertilization was assessed by orcein staining. The survival rate after vitrification was higher for MII-stage than for GV-stage oocytes. However, the ability of surviving oocytes to reach the MII stage after vitrification at the GV stage (GV-vitrified oocytes) was similar to that of control oocytes. Furthermore, after IVM, GV-vitrified oocytes had better spindle and F-actin integrity than oocytes vitrified at the MII stage (MII-vitrified oocytes). In accordance with this result, GV-vitrified oocytes had better ability to extrude the second polar body and support male pronucleus formation after in vitro fertilization (IVF), in comparison to MII-vitrified oocytes. Fertilization rates did not differ among groups. Finally, the ability of GV-vitrified oocytes to develop into embryos was superior to that of MII-vitrified oocytes. However, both vitrified groups showed reduced blastocyst development compared with the control group. In conclusion vitrification of porcine oocytes at the GV stage is advantageous in conferring better cytoskeletal organization and competence to develop to the blastocyst stage in comparison with vitrification at the MII stage.  相似文献   

18.
Lipid droplets (LD) in porcine oocytes form a dark mass reaching almost all cytoplasm. Herein we investigated changes in fat areas, cytoplasmic tone and LD morphology during in vitro maturation (IVM) of porcine oocytes cultured with 100 μM trans-10, cis-12 conjugated linoleic acid (t10,c12 CLA) or 10 μM forskolin at different time periods. Four groups were constituted: control, excipient, t10,c12 CLA and forskolin, with drugs being supplemented during 44 to 48 h and the initial 22 to 24 h in Experiments 1 and 2, respectively. In Experiment 3, forskolin was supplemented for the first 2 h. Matured oocytes were inseminated with frozen-thawed boar semen and cleavage rate recorded. Before and during IVM, samples of oocytes were evaluated for LD, total and fat areas and fat gray value or for meiotic progression. Results showed that forskolin supplementation during 44 to 48 h or 22 to 24 h inhibits oocyte maturation (exp. 1: forskolin = 5.1 ± 8.0%, control = 72.6 ± 5.0%; exp. 2: forskolin = 24.3 ± 7.4%, control = 71.6 ± 5.6%) and cleavage (exp. 1: forskolin = 0.0 ± 0.0%, control = 55.4 ± 4.1%; exp. 2: forskolin = 8.3 ± 3.3%, control = 54.5 ± 3.0%). Forskolin also reduced oocyte and fat areas. In Experiment 3, forskolin negative effect on oocyte maturation and cleavage disappeared, although minor (P ⩽ 0.03) LD and oocyte fat areas were identified at 22 to 24 h of IVM. Oocytes supplemented with t10,c12 CLA during 44 to 48 h presented a lighter (P ⩽ 0.04) colour tone cytoplasm than those of control and forskolin. In conclusion, t10,c12 CLA and forskolin were capable of modifying the distribution and morphology of cytoplasmic LD during porcine oocyte maturation, thus reducing its lipid content in a time-dependent manner.  相似文献   

19.
On the basis of the results outlined in our previous report, bacterial sialyltransferases (ST) from marine sources were further characterized using glycosphingolipids (GSL), especially ganglio-series GSLs, based on the enzymatic characteristics and kinetic parameters obtained by Line weaver-Burk plots. Among them, GA1 and GA2 were found to be good substrates for these unique STs. Thus, new gangliosides synthesized by α2-3 and α2-6STs were structurally characterized by several analytical procedures. The ganglioside generated by the catalytic activity of α2-3ST was identified as GM1b. On the other hand, when enzyme reactions by α2-6STs were performed using substrates GA2 and GA1, very unique gangliosides were generated. The structures were identified as NeuAcα2-6GalNAcβ1-4Galβ1-4Glcβ-Cer and NeuAcα2-6Galβ1-3GalNAcβ1-4Galβ1-4Glcβ-Cer, respectively. The synthesized ganglioside NeuAcα2-6GalNAcβ1-4Galβ1-4Glcβ-Cer showed binding activity to the influenza A virus {A/Panama/2007/99 (H3N2)} at a similar level to purified sialyl(α2-3)paragloboside (S2-3PG) and sialyl(α2-6)paragloboside (S2-6PG) from mammalian sources. The evidence suggests that these STs have unique features, including substrate specificities restricted not only to lacto-series but also to ganglio-series GSLs, as well as catalytic potentials for ganglioside synthesis. This evidence demonstrates that effective in vitro ganglioside synthesis could be a valuable tool for selectively synthesizing sialic acid (Sia) modifications, thereby preparing large-scale gangliosides and permitting the exploration of unknown functions.  相似文献   

20.
This study tests the hypothesis 033 that growing murine oocytes, which are incompetent to resume meiosis, are deficient in their content of p34cdc2 and/or cyclin B, the two subunits of maturation promoting factor (MPF). Accumulation of the two MPF components occurred in an asynchronous manner in growing oocytes. Cyclin B content reached maximal levels in oocytes that were not yet competent to undergo germinal vesicle breakdown (GVB), the first obvious morphological manifestation of the resumption of meiosis. Thus, the amount of cyclin B is not the limiting factor rendering these growing oocytes incompetent to undergo GVB. In contrast, synthesis and accumulation of p34cdc2 increased during the period of oocyte growth in vivo when they became competent to undergo GVB. A similar increase in the amount of p34cdc2 also occurred in cultured granulosa cell-free oocytes despite the lack of oocyte growth, but these cultured oocytes did not become GVB competent. Thus, the accumulation of p34cdc2 is probably necessary, but not sufficient, for mouse oocytes to become competent to undergo GVB. This accumulation occurs autonomously in oocytes independently of growth or of the participation of follicular somatic cells. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号