首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative expression of 1 - and 2-Na+/K+-ATPase isoforms found in vascular smooth muscle is developmentally regulated and under hormonal and neurogenic control. The physiological roles of these isoforms in vascular function are not known. It has been postulated that the 1-isoform serves a "housekeeping" role, whereas the 2-isoform localizes to a subsarcolemmal compartment and modulates contractility. To test this hypothesis, isoform-specific gene-targeted mice in which the mRNA for either the 1- or the 2-Na+/K+-ATPase isoform was ablated were utilized. Both of these knockouts, and , are lethal; the latter dies at birth, which allows this neonatal aorta to be studied. Isometric force in -aorta was more sensitive to contractile agonists and less sensitive to the vasodilators forskolin and sodium nitroprusside (SNP) than wild-type (WT) aorta; -aortas had intermediate values. In contrast, neonatal -aorta was similar to WT. Western blot analysis indicated a population of 70% 1- and 30% 2-isoforms in the WT. Thus in terms of the total Na+/K+-ATPase protein, the -aorta (at 70%) would be similar to the -aorta (at 65%) but with a dramatically different phenotype. These data suggest that individual -isoforms of the Na+/K+-ATPase differ functionally and that the 2-isoform couples more strongly to activation-relaxation pathways. Three-dimensional image-acquisition and deconvolution analyses suggest that the 2-isoform is distributed differently than the 1-isoform. Importantly, these isoforms do not localize to the same regions. sodium; potassium; ATPase; contraction; transgenic  相似文献   

2.
SLC26A6 (or putative anion transporter 1, PAT1) is located on the apical membrane of mouse kidney proximal tubule and mediates exchange in in vitro expression systems. We hypothesized that PAT1 along with a exchange is present in apical membranes of rat kidney proximal tubules. Northern hybridizations indicated the exclusive expression of SLC26A6 (PAT1 or CFEX) in rat kidney cortex, and immunocytochemical staining localized SLC26A6 on the apical membrane of proximal tubules, with complete prevention of the labeling with the preadsorbed serum. To examine the functional presence of apical exchanger, proximal tubules were isolated, microperfused, loaded with the pH-sensitive dye BCPCF-AM, and examined by digital ratiometric imaging. The pH of the perfusate and bath was kept at 7.4. Buffering capacity was measured, and transport rates were calculated as equivalent base flux. The results showed that in the presence of basolateral DIDS (to inhibit cotransporter 1) and apical EIPA (to inhibit Na+/H+ exchanger 3), the magnitude of cell acidification in response to addition of luminal Cl was 5.0-fold higher in the presence than in the absence of . The Cl-dependent base transport was inhibited by 61% in the presence of 0.5 mM luminal DIDS. The presence of physiological concentrations of oxalate in the lumen (200 µM) did not affect the exchange activity. These results are consistent with the presence of SLC26A6 (PAT1) and exchanger activity in the apical membrane of rat kidney proximal tubule. We propose that SLC26A6 is likely responsible for the apical (and Cl/OH) exchanger activities in kidney proximal tubule. putative anion transporter 1; chloride/formate exchanger; SLC26A6  相似文献   

3.
The presence of exogenous stimulates O2evolution in illuminated H. africanum cells at the CO2 compensationpoint, and it is likely that reduction in the light uses reductant produced in non-cyclic electron flow.When sources of ATP other than fermentation are absent, thepresence of , light, and a functional non-cyclic electron transport pathway stimulates active, ATP-dependentH2 influx. This is consistent with non-cyclic electron flow associated with reduction being coupled to ATP synthesis. This -dependent ATP synthesis may be quantitatively important as a source ofATP during photolithotrophic growth with as N source in H. africanum and other algal unicells.  相似文献   

4.
Evidence suggests that 1) ischemia-reperfusion injury is due largely to cytosolic Ca2+ accumulation resulting from functional coupling of Na+/Ca2+ exchange (NCE) with stimulated Na+/H+ exchange (NHE1) and 2) 17-estradiol (E2) stimulates release of NO, which inhibits NHE1. Thus we tested the hypothesis that acute E2 limits myocardial Na+ and therefore Ca2+ accumulation, thereby limiting ischemia-reperfusion injury. NMR was used to measure cytosolic pH (pHi), Na+ (Na), and calcium concentration ([Ca2+]i) in Krebs-Henseleit (KH)-perfused hearts from ovariectomized rats (OVX). Left ventricular developed pressure (LVDP) and lactate dehydrogenase (LDH) release were also measured. Control ischemia-reperfusion was 20 min of baseline perfusion, 40 min of global ischemia, and 40 min of reperfusion. The E2 protocol was identical, except that 1 nM E2 was included in the perfusate before ischemia and during reperfusion. E2 significantly limited the changes in pHi, Na and [Ca2+]i during ischemia (P < 0.05). In control OVX vs. OVX+E2, pHi fell from 6.93 ± 0.03 to 5.98 ± 0.04 vs. 6.96 ± 0.04 to 6.68 ± 0.07; Na rose from 25 ± 6 to 109 ± 14 meq/kg dry wt vs. 25 ± 1 to 76 ± 3; [Ca2+]i changed from 365 ± 69 to 1,248 ± 180 nM vs. 293 ± 66 to 202 ± 64 nM. E2 also improved recovery of LVDP and diminished release of LDH during reperfusion. Effects of E2 were diminished by 1 µM N-nitro-L-arginine methyl ester. Thus the data are consistent with the hypothesis. However, E2 limitation of increases in [Ca2+]i is greater than can be accounted for by the thermodynamic effect of reduced Na accumulation on NCE. myocardial ischemia; Na+/H+ exchange; Na+/Ca2+ exchange; nuclear magnetic resonance; ischemic biology; ion channels/membrane transport; transplantation  相似文献   

5.
The effect of level of different counterion forms of or or both, on establishment of the Rhizobium trifolii-Trifolium repens symbiosis was evaluatedin plants cultured under bacteriologically controlled conditions. Ammonium had little effect on nodule formation, and even after exhaustion there was little compensatory nodule formation. Plant growth, nodule mass and acetylene reductionactivity all declined with increasing levels of . Except for , different counterion forms had little effect on plant growth, nodule numberand mass, and acetylene reduction activity. Ammonium markedlydecreased pH, the extent being dependent upon level and counterion present. Nitrate inhibited nodulation while levels remained in excessof plant uptake. Compensatory nodulation followed exhaustionof or at lower or levels. Nodule mass and acetylene reduction activity decreased, but plant growth increased withincreasing or levels. Nitrate raised the pH of the nutrient solution by one unit orless. Different or counterion forms had little effect on the symbiosis or plant growth. Ammonium nitrate severely inhibited nodulation but on exhaustionmarked compensatory nodulation occurred. The patterns of nodulemass, acetylene reduction activity and plant growth with increasingNH4NO3 levels were similar to or alone. Plants provided with NH4NO3 or no nitrogenwere similar in only slightly decreasing pH. Key words: Ammonium, Nitrate, Ammonium nitrate, Nitrogen fixation, Rhizobium trifolii, Trifolium repens, Symbiosis establishment, Nodulation  相似文献   

6.
Integrin mechanotransduction is a ubiquitous biological process. Mechanical forces are transduced transmembranously by an integrin's ligand-bound extracellular domain through its -subunit's cytoplasmic domain connected to the cytoskeleton. This often culminates in the activation of tyrosine kinases directing cell responses. The delicate balance between hemostasis and thrombosis requires exquisitely fine-tuned integrin function, and balance is maintained in vivo despite that the major platelet integrin IIb3 is continuously subjected to frictional or shearing forces generated by laminar blood flow. To test the hypothesis that platelet function is regulated by the direct effects of mechanical forces on IIb3, we examined IIb3/cytoskeletal interactions in human platelets exposed to shear stress in a cone-plate viscometer. We observed that -actinin, myosin heavy chain, and Syk coimmunoprecipitate with IIb3 in resting platelets and that 120 dyn/cm2 shear stress leads to their disassociation from IIb3. Shear-induced disassociation of -actinin and myosin heavy chain from the 3 tail is unaffected by blocking von Willebrand factor (VWF) binding to glycoprotein (Gp) Ib-IX-V but abolished by blocking VWF binding to IIb3. Syk's disassociation from 3 is inhibited when VWF binding to either GpIb-IX-V or IIb3 is blocked. Shear stress-induced phosphorylation of SLP-76 and its association with tyrosine-phosphorylated adhesion and degranulation-promoting adapter protein are inhibited by blocking ligand binding to IIb3 but not by blocking ligand binding to GpIb-IX-V. Chinese hamster ovary cells expressing IIb3 with 3 truncated of its cytoskeletal binding domains demonstrate diminished shear-dependent adhesion and cohesion. These results support the hypothesis that shear stress directly modulates IIb3 function and suggest that shear-induced IIb3-mediated signaling contributes to the regulation of platelet aggregation by directing the release of constraining cytoskeletal elements from the 3-tail. platelets; mechanoreceptor; integrin; shear stress; signal transduction  相似文献   

7.
Expression ofendothelial nitric oxide synthase (eNOS) in transfected U-937 cellsupregulates phorbol 12-myristate 13-acetate (PMA)-induced tumornecrosis factor- (TNF-) production through a superoxide(O)-dependent mechanism. Because mitogen-activatedprotein kinases (MAPK) have been shown to participate in both reactiveoxygen species signaling and TNF- regulation, their possible role ineNOS-derived O signal transduction was examined. Aredox-cycling agent, phenazine methosulfate, was found to bothupregulate TNF- (5.8 ± 1.0 fold; P = 0.01) andincrease the phosphorylation state of p42/44 MAPK (3.1 ± 0.2 fold; P = 0.01) in PMA-differentiated U-937 cells. AlthoughS-nitroso-N-acetylpenicillamine, a nitric oxide(NO) donor, also increased TNF- production, NO exposure led tophosphorylation of p38 MAPK, not p42/44 MAPK. Upregulation of TNF-production by eNOS transfection was associated with increases inactivated p42/44 MAPK (P = 0.001), whereas levels ofphosphorylated p38 MAPK were unaffected. Furthermore, cotransfectionwith Cu/Zn superoxide dismutase, which blocks TNF- upregulation byeNOS, also abolished the effects on p42/44 MAPK. Expression ofGln361eNOS, a mutant that produces O but not NO, still resulted in p42/44 MAPK phosphorylation. In contrast, twoNADPH binding site deletion mutants of eNOS that lack oxidase activityhad no effect on p42/44 MAPK. Finally, PD-98059, a p42/44 MAPK pathwayinhibitor, blocked TNF- upregulation by eNOS (P = 0.02).Thus O produced by eNOS increases TNF- productionvia a mechanism that involves p42/44 MAPK activation.

  相似文献   

8.
We evaluated thedependency of neutrophil O production on PTK-Lyn andMAPK-ERK1/2 in rats after thermal injury. Activation of PTK-Lyn wasassessed by immunoprecipitation. Phosphorylation of ERK1/2 was assessedby Western blot analysis. O production was measuredby isoluminol-enhanced luminometry. Imaging technique was employed tomeasure neutrophil [Ca2+]i in individualcells. Thermal injury caused marked upregulation of Lyn and ERK1/2accompanying enhanced neutrophil O production.Treatment of rats with PTK blocker (AG556) or MAPK blocker (AG1478)before burn injury caused complete inhibition of the respective kinaseactivation. Both AG556 and AG1478 produced an ~66% inhibition inO production. Treatment with diltiazem (DZ) producedan ~37% inhibition of O production withoutaffecting Lyn or ERK1/2 activation with burn injury. Ca2+mobilization was upregulated with burn injury but not affected bytreatment of burn rats with AG556. Unlike the partial inhibition ofburn-induced O production by AG556, AG1478, or DZ,platelet-activating factor antagonist (PAFa) treatment of burn ratsproduced near complete inhibition of O production.PAFa treatment also blocked activation of Lyn. The findings suggestthat the near complete inhibition of O production byPAFa was a result of blockade of PTK as well as Ca2+signaling. Overall, our studies show that enhanced neutrophil O production after thermal injury is a result ofpotentiation of Ca2+-linked and -independent signalingtriggered by inflammatory agents such as PAF.

  相似文献   

9.
Enhanced Superoxide Radical Production in Roots of Zinc-Deficient Plants   总被引:16,自引:1,他引:15  
The production of superoxide radical () was studied in roots of cotton (Gossypium hirsutum L. cv. Deltapine15/21), bean (Phaseolus vulgaris L. var. Pr?lude) and tomato(Lycopersicon esculentum L. cv. Super marmande) plants grownin nutrient solution with different Zn concentrations. UsingTiron as a spin-probe, electron spin resonance (ESR) was employedfor the measurements of levels. In the 48 000 g and 140 000 g supernatants of cotton root extracts theamplitude of the Tiron ESR signals reflecting production steeply increased with the appearance of visual Zndeficiency symptoms in the shoots. The changes in the amplitudeof the Tiron ESR signals were closely correlated with an NADPH-dependent generating oxidase activity with a high pH optimum. Increases in NADPH-dependent generation were also found in root extracts of Zn-deficientbean and tomato plants. In all experiments re-supply of Zn todeficient plants for 12 h or 24 h markedly decreased generation. Further, with advancing Zn deficiencyrates of NADPH oxidation increased and the activities of superoxidedismutase (SOD) and catalase decreased. The results suggest that cotton, bean and tomato roots possessan NADPH-dependent generating activity which is affected by the Zn nutritional status of the plants. UnderZn deficiency, enhanced generation and impaired detoxification of Of and H2O2 could lead to elevated levelsof and -derived oxidizing O2 species and thus to increased peroxidation of membrane lipids. Key words: NADPH oxidase, superoxide radical, zinc deficiency  相似文献   

10.
An experimental study in flowing solution culture compared threeNorwegian ecotypes (from Saerheim, Pasvik and Bod) and a commercialcultivar (Ac51) of white clover (Trifolium repens L.) and demonstrateddifferences with respect to the rate and intensity with whichN2 fixation was affected when or were supplied at 20 mmol m–3 over 14 d. Plants were nodulated and N2 fixation wasestablished over 17 d prior to supplying mineral N, with shoottemperature 25/15 C day/night and root temperature adjustedprogressively to 12C. Control plants received no mineral Nthroughout, and did not grow as rapidly as those supplied with or . Mineral N generally depressed the total N2 fixation per plantrelative to control plants, with two exceptions. The effectof on N2 fixation was moresevere than that of and, over the 14 d, -fed plants fixed more N2 than the comparable -fed plants. Interpolated daily rates of N2 fixation per plant andnodule dry wts were used to calculate specific rates of N2 fixation.These showed that (1) addition of either or initially stimulated fixation relative to control plants and to mineral N uptake;(2) this stimulation was greatest and was delayed by 1-2 d in-fed plants; and (3) nutrition sustained higher residualrates of N2 fixation after 8 d compared with nutrition, under which fixation all but ceased after10 d in three of the genotypes. Ecotype Bode showed by far themost severe induced depression of N2 fixation. Key words: N2 fixation, nitrate, ammonium, white clover, northern ecotypes  相似文献   

11.
Pumpkin seed globulin is composed of heterogeneous polypeptidechains, acidic and chains and basic 1 and 2 chains (12). This study showed that the basicchains had similar N-terminal sequences, Gly-Leu-Asp-Glu-Thr-Ile-for the 1 chain and Gly-Leu-Glu-Glu-Thr-Ile- for 2. On the contrary,the N-terminal sequences of the acidic and chains were dissimilar, Ile-Gln-Gly-Tyr- for the chain and no N-terminal residue for the chain, according to routine terminal analysis. Pyrrolidonylpeptidase digestion of the chain and its thermolysin digestion followed by Edman degradationsrevealed that the N-terminal sequence of the chain was < Glu-Ile-Glu-Gln-Gln-Glu-Pro(Trp,Ser)-. The N-terminal sequences and the C-terminal residuesindicated that the acidic and chains were more heterogeneous than the basic 1 and 2 chains.A preliminary study on the degradation of storage globulin isalso presented. (Received November 9, 1979; )  相似文献   

12.
The rate of exponential growth of Amphidinium carterae Hulburtwas the same (0.025 h–1) with either or as sole N-source. Nevertheless, in short-term experiments, cells growing exponentially with as N-source took up added 5–6 times faster than . accumulated in the cells. Addition of inhibited, reversibly, disappearance of from the medium; prior N-deprivation of the cells did not affect this inhibition. N-repIetecells, grown with as N-source, took up for several hours both in light and darkness, butthe uptake by such cells soon ceased in darkness although it continued in light. When uptake ceased, the cells could still take up rapidly in darkness. Ammonium taken up was assimilated rapidly into organic-N includingglutamine, other amino acids and protein. Ammonium uptake in darkness was accompanied by the utilizationof cellular polysaccharide, mainly glucose polysaccharide. Mostof this carbon was unavailable for the dark assimilation of. Addition of the analogue, methylammonium, did not initiate polysacchande catabolism. Itis suggested that a control mechanism is in operation, througha product of assimilation, which operates on one or more of the enzymes concerned with polysaccharidebreakdown, for example, -amylase or phosphorylase. Uptake of was accompanied by a high rate of dark 14CO2 fixation and with both Amphidintum klebsii Kof.et Swezy and A. carterae N-deprivation led to a marked increasein this rate following addition of ; addition of had much less effect. The possible implications of these findings for the eco-physiology of marine dinoflagellatesare discussed. Key words: Ammonium, nitrate, CO2 fixation  相似文献   

13.
-Syntrophin is a component of the dystrophin glycoprotein complex (DGC). It is firmly attached to the dystrophin cytoskeleton via a unique COOH-terminal domain and is associated indirectly with -dystroglycan, which binds to extracellular matrix laminin. Syntrophin contains two pleckstrin homology (PH) domains and one PDZ domain. Because PH domains of other proteins are known to bind the -subunits of the heterotrimeric G proteins, whether this is also a property of syntrophin was investigated. Isolated syntrophin from rabbit skeletal muscle binds bovine brain G-subunits in gel blot overlay experiments. Laminin-1-Sepharose or specific antibodies against syntrophin, - and -dystroglycan, or dystrophin precipitate a complex with G from crude skeletal muscle microsomes. Bacterially expressed syntrophin fusion proteins and truncation mutants allowed mapping of G binding to syntrophin's PDZ domain; this is a novel function for PDZ domains. When laminin-1 is bound, maximal binding of Gs and G occurs and active Gs, measured as GTP-35S bound, decreases. Because intracellular Ca2+ is elevated in Duchenne muscular dystrophy and Gs is known to activate the dihydropyridine receptor Ca2+ channel, whether laminin also altered intracellular Ca2+ was investigated. Laminin-1 decreases active (GTP-S-bound) Gs, and the Ca2+ channel is inhibited by laminin-1. The laminin 1-chain globular domains 4 and 5 region, the region bound by DGC -dystroglycan, is sufficient to cause an effect, and an antibody that specifically blocks laminin binding to -dystroglycan inhibits G binding by syntrophin in C2C12 myotubes. These observations suggest that DGC is a matrix laminin, G protein-coupled receptor. Duchenne muscular dystrophy; protein G -subunit; pleckstrin homology domain  相似文献   

14.
Rates of , and CO2 assimilationby the organisms in the shallow and deepchlorophyll layers ofCastle Lake were measured over a gradient of photosyntheticphoton flux densities (PPFD) during the 1979–1980 ice-freeseasons. The results of these experiments could be fitted witha hyperbolic function in the manner of the Michaelis-Mentenequation (excluding rates of dark assimilation) up to –40%of the surface PPFD after which photon inhibition occurred.The half saturation constants relative to incidence PPFD (KLT)for assimilation ( = 1.1 E m–2d–2) were about twice those for ( = 0.5 E m–2d–1).All of the KLT values correspond to depths in thelakerangingfrom 17–29 m(–1% of surface PPFD). Dark assimilationof both and was –50% of the assimilation at saturating PPFD implying that part ofthe immediate energy required for inorganic nitrogen assimilationmay come from intermediary metabolism. This contention was supportedfor assimilation by the results of experiments performed with specific inhibitors of non-cyclic photophosphorylationand oxidative phosphorylation. The KLT values for the assimilationof CO2 were from 2–10 times higher than those for inorganicnitrogen. These values for CO2 assimilation were not significantlyaltered by the addition of either or during 12 h incubations.  相似文献   

15.
We examined expression of sphingosine 1-phosphate (S1P) receptors and sphingosine kinase (SPK) in gastric smooth muscle cells and characterized signaling pathways mediating S1P-induced 20-kDa myosin light chain (MLC20) phosphorylation and contraction. RT-PCR demonstrated expression of SPK1 and SPK2 and S1P1 and S1P2 receptors. S1P activated Gq, G13, and all Gi isoforms and stimulated PLC-1, PLC-3, and Rho kinase activities. PLC- activity was partially inhibited by pertussis toxin (PTX), G or Gq antibody, PLC-1 or PLC-3 antibody, and by expression of Gq or Gi minigene, and was abolished by a combination of antibodies or minigenes. S1P-stimulated Rho kinase activity was partially inhibited by expression of G13 or Gq minigene and abolished by expression of both. S1P stimulated Ca2+ release that was inhibited by U-73122 and heparin and induced concentration-dependent contraction of smooth muscle cells (EC50 1 nM). Initial contraction and MLC20 phosphorylation were abolished by U-73122 and MLC kinase (MLCK) inhibitor ML-9. Initial contraction was also partially inhibited by PTX and Gq or G antibody and abolished by a combination of both antibodies. In contrast, sustained contraction and MLC20 phosphorylation were partially inhibited by a PKC or Rho kinase inhibitor (bisindolylmaleimide and Y-27632) and abolished by a combination of both inhibitors but not affected by U-73122 or ML-9. These results indicate that S1P induces 1) initial contraction mediated by S1P2 and S1P1 involving concurrent activation of PLC-1 and PLC-3 via Gq and Gi, respectively, resulting in inositol 1,4,5-trisphosphate-dependent Ca2+ release and MLCK-mediated MLC20 phosphorylation, and 2) sustained contraction exclusively mediated by S1P2 involving activation of RhoA via Gq and G13, resulting in Rho kinase- and PKC-dependent MLC20 phosphorylation. muscle contraction; signal transduction  相似文献   

16.
HCO-dependentfluid secretion by the corneal endothelium controls corneal hydrationand maintains corneal transparency. Recently, it has been shown thatmRNA for the cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in the corneal endothelium; however, protein expression, functional localization, and a possible role in HCO transport have not been reported. Immunoblotting for CFTR showed asingle band at ~170 kDa for both freshly isolated and primary cultures of bovine corneal endothelial cells. Indirectimmunofluorescence confocal microscopy indicated that CFTR locates tothe apical membrane. Relative changes in apical and basolateralchloride permeability were estimated by measuring the rate offluorescence quenching of the halide-sensitive indicator6-methoxy-N-ethylquinolinium iodide during Clinflux in the absence and presence of forskolin (FSK). Apical andbasolateral Cl permeability increased 10- and 3-fold,respectively, in the presence of 50 µM FSK. FSK-activated apicalchloride permeability was unaffected by H2DIDs (250 µM);however, 5-nitro-2-(3-phenylpropyl-amino)benzoic acid (NPPB; 50 µM) and glibenclamide (100 µM) inhibited activated Clfluxes by 45% and 30%, respectively. FSK-activated basolateral Cl permeability was insensitive to NPPB, glibenclamide,or furosemide but was inhibited 80% by H2DIDS.HCO permeability was estimated by measuring changesin intracellular pH in response to quickly lowering bath[HCO]. FSK (50 µM) increased apicalHCO permeability by twofold, which was inhibited42% by NPPB and 65% by glibenclamide. BasolateralHCO permeability was unaffected by FSK. Genistein(50 µM) significantly increased apical HCO andCl permeability by 1.8- and 16-fold, respectively. When50 µM genistein was combined with 50 µM FSK, there was no furtherincrease in Cl permeability; however,HCO permeability was reduced to the control level.In summary, we conclude that CFTR is present in the apical membrane ofbovine corneal endothelium and could contribute to transendothelialCl and HCO transport. Furthermore,there is a cAMP-activated Cl pathway on the basolateralmembrane that is not CFTR.

  相似文献   

17.
Pancreatic stellate cells (PSCs) are activated during pancreatitis and promote pancreatic fibrosis by producing and secreting ECMs such as collagen and fibronectin. IL-1 has been assumed to participate in pancreatic fibrosis by activating PSCs. Activated PSCs secrete various cytokines that regulate PSC function. In this study, we have examined IL-1 secretion from culture-activated PSCs as well as its regulatory mechanism. RT-PCR and ELISA have demonstrated that PSCs express IL-1 mRNA and secrete IL-1 peptide. Inhibition of TGF-1 activity secreted from PSCs by TGF-1-neutralizing antibody attenuated IL-1 secretion from PSCs. Exogenous TGF-1 increased IL-1 expression and secretion by PSCs in a dose-dependent manner. Adenovirus-mediated expression of dominant-negative (dn)Smad2/3 expression reduced both basal and TGF-1-stimulated IL-1 expression and secretion by PSCs. Coexpression of Smad3 with dnSmad2/3 restored IL-1 expression and secretion by PSCs, which were attenuated by dnSmad2/3 expression. In contrast, coexpression of Smad2 with dnSmad2/3 did not alter them. Furthermore, inhibition of IL-1 activity secreted from PSCs by IL-1-neutralizing antibody attenuated TGF-1 secretion from PSCs. Exogenous IL-1 enhanced TGF-1 expression and secretion by PSCs. IL-1 activated ERK, and PD-98059, a MEK1 inhibitor, blocked IL-1 enhancement of TGF-1 expression and secretion by PSCs. We propose that an autocrine loop exists between TGF-1 and IL-1 in activated PSCs through Smad3- and ERK-dependent pathways. fibrosis; cytokine; chronic pancreatitis  相似文献   

18.
We have examined the effects of the cannabinoid anandamide (AEA) and its stable analog, methanandamide (methAEA), on large-conductance, Ca2+-activated K+ (BK) channels using human embryonic kidney (HEK)-293 cells, in which the -subunit of the BK channel (BK-), both - and 1-subunits (BK-1), or both - and 4-subunits (BK-4) were heterologously expressed. In a whole cell voltage-clamp configuration, each cannabinoid activated BK-1 within a similar concentration range. Because methAEA could potentiate BK-, BK-1, and BK-4 with similar efficacy, the -subunits may not be involved at the site of action for cannabinoids. Under cell-attached patch-clamp conditions, application of methAEA to the bathing solution increased BK channel activity; however, methAEA did not alter channel activity in the excised inside-out patch mode even when ATP was present on the cytoplasmic side of the membrane. Application of methAEA to HEK-BK- and HEK-BK-1 did not change intracellular Ca2+ concentration. Moreover, methAEA-induced potentiation of BK channel currents was not affected by pretreatment with a CB1 antagonist (AM251), modulators of G proteins (cholera and pertussis toxins) or by application of a selective CB2 agonist (JWH133). Inhibitors of CaM, PKG, and MAPKs (W7, KT5823, and PD-98059) did not affect the potentiation. Application of methAEA to mouse aortic myocytes significantly increased BK channel currents. This study provides the first direct evidence that unknown factors in the cytoplasm mediate the ability of endogenous cannabinoids to activate BK channel currents. Cannabinoids may be hyperpolarizing factors in cells, such as arterial myocytes, in which BK channels are highly expressed. anandamide; channel opener  相似文献   

19.
The effects of sulphite ion () and sulphate ion () on both the activation and the catalytic activities of ribulose- 1, 5-bisphosphate carboxylase (EC 4.1.1.39 [EC] )were studied and compared to those of other effectors of theenzyme, particularly inorganic phosphate (P1). The activationby CO2 and Mg2+ of a slow activating form of the carboxylasein the presence of the two anions produced high specific activitieswith significant lower concentrations of CO2 than normally required.This was due to stabilization of the ternary complex betweenthe enzyme, CO2 and Mg2+. With a rapidly activating speciesof enzyme, and caused only a small increase in activation with subsaturating CO2. , and P1, with saturatingconcentrations of CO2 also enhanced the catalytic activity abovethat achieved with CO2 and Mg2+ alone; P1 was the most effectiveof the anions, producing a 50% increase in the specific activity,both with the slow and rapidly activating species. and were potent inhibitors of the carboxylase and oxygenase reactions of the enzyme. was a non-competitive inhibitor with respect to CO2, and competitive/mixedwith respect to ribulose-1, 5-bisphosphate. The time courseof the carboxylase and oxygenase reactions in the presence of were biphasic with inhibition apparent only in the second phase. Key words: Ribulose bisphosphate carboxylase, Activation, SO32-, SO42-  相似文献   

20.
Heterotrimeric Gi proteins may play a role in lipopolysaccharide (LPS)-activated signaling through Toll-like receptor 4 (TLR4), leading to inflammatory mediator production. Although LPS is a TLR4 ligand, the gram-positive bacterium Staphylococcus aureus (SA) is a TLR2 ligand, and group B streptococci (GBS) are neither TLR2 nor TLR4 ligands but are MyD88 dependent. We hypothesized that genetic deletion of Gi proteins would alter mediator production induced by LPS and gram-positive bacterial stimulation. We examined genetic deletion of Gi2 or Gi1/3 protein in Gi2-knockout (Gi2–/–) or Gi1/3-knockout (Gi1/3–/–) mice. LPS-, heat-killed SA-, or GBS-induced mediator production in splenocytes or peritoneal macrophages (M) was investigated. There were significant increases in LPS-, SA-, and GBS-induced production of TNF- and IFN- in splenocytes from Gi2–/– mice compared with wild-type (WT) mice. Also, LPS-induced TNF- was increased in splenocytes from Gi1/3–/– mice. In contrast to splenocytes, LPS-, SA-, and GBS-induced TNF-, IL-10, and thromboxane B2 (TxB2) production was decreased in M harvested from Gi2–/– mice. Also, LPS-induced production of IL-10 and TxB2 was decreased in M from Gi1/3–/– mice. In subsequent in vivo studies, TNF- levels after LPS challenge were significantly greater in Gi2–/– mice than in WT mice. Also, myeloperoxidase activity, a marker of tissue neutrophil infiltration, was significantly increased in the gut and lung of LPS-treated Gi2–/– mice compared with WT mice. These data suggest that Gi proteins differentially regulate murine TLR-mediated inflammatory cytokine production in a cell-specific manner in response to both LPS and gram-positive microbial stimuli. Gi protein-deficient mice; endotoxin; group B streptococci; Staphylococcus aureus; Toll-like receptors  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号