首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymatic hydrolysis of the cellulose in raw primary settled municipal sludge by Trichoderma viride cellulase achieved conversions of up to 75% of the cellulose, primarily to cellobiose, in 24 hr. Simultaneously the gel-like characteristic of raw primary sludge was changed to that of a slurry of fine particles in less than 2 hr, causing a radical change in the ability to ultrafilter the sludge. The use of raw primary sludge as a growth medium for T. viride cellulase production was also investigated. It was possible, with nitrogen supplements, to obtain an enzyme with a filter paper activity (FPA) of two compared to over four which is attainable on defined medium of similar strength. The potential use of cellulase treatment as a pretreatment or integral part of waste treatment processes is discussed and the alternatives evaluated.  相似文献   

2.
Discharging of non-treated oily sludge from oil refineries has undesirable impacts on the environment. In this research, the biotreatment of total petroleum hydrocarbons (TPHs) from Abadan Petroleum Refinery, Iran was done using co-composting method. A 5 kg mixture of oily sludge and compost (oily sludge: compost ratios 1:0, 1:0.1, 1:0.3, 1:0.5, and 1:0.7 w/w) and a bulking agent of wheat straw were used as treatments. All treatments were placed in a wooden box inside a laboratory and aerated every 2–3 days by mixing during two months of the experiments. The variation of TPHs concentration, bacterial density, C/N ratio, pH, and temperature were assessed during the 63 days- experiments. Results showed that the majority of TPHs of samples was removed at first 30 days. The maximum TPHs removal (65%) was obtained in the sludge: compost = 1:0.5 at the operation time of 63 day. The significant different between removal efficiency of oily sludge: compost ratios and the control sample (p value < 0.05) indicated the appropriate density of TPHs degrader-bacteria in treated samples. The highest variation in C/N ratio was observed 15± 0.58 in the oily sludge: compost = 1:0.1. At the beginning of experiments, the pH values of all treatments was alkaline, but became neutral at the end of the reaction time. The TPHs degradation kinetic for all oily sludge: compost ratios followed pseudo second-order model. In general, co-composting has high efficiency in oily sludge remediation and can be potentially applied as a simple and cost-effective approach for remediation of oily sludge.  相似文献   

3.
Fifteen mesophilic bacteria with high C(x) cellulase activities were isolated and purified from a mixed-culture enriched from a flower stalks-vegetable waste co-composting system. A CMCase test showed that the enzyme activity of these isolates ranged from 7.9 to 28.0 U ml(-1). Although filter paper degrading capability was low in single culture, significant synergetic cellulose degradation were detected in four groups of mixed cultures, their degradation rates were 23.5%, 26.3%, 19.4% and 24.5%, respectively. Study of morphological and physiological characters of five predominant isolates which possess high CMCase and had positive effect on synergetic cellulose degradation in mixed culture system showed that two of them were closely related to Bacillus pasteurii and Bacillus cereus, whereas the rest belong to the genus Halobacillus, Aeromicrobium and Brevibacterium, respectively.  相似文献   

4.
The thermochemical pretreatment by saponification of two kinds of fatty slaughterhouse waste – aeroflotation fats and flesh fats from animal carcasses – was studied in order to improve the waste’s anaerobic degradation. The effect of an easily biodegradable compound, ethanol, on raw waste biodegradation was also examined. The aims of the study were to enhance the methanisation of fatty waste and also to show a link between biodegradability and bio-availability. The anaerobic digestion of raw waste, saponified waste and waste with a co-substrate was carried out in batch mode under mesophilic and thermophilic conditions.  相似文献   

5.
Four mushroom strains ofPleurotus spp. were cultivated on sugar cane crop residues for 30 days at 26°C. Biochemical changes affected the substrate as a result of fungal growth, in terms of nitrogen, lignin, cellulose and hemicellulose contents. All strains showed a strong ligninolytic activity together with variable cellulolytic and xylanolytic action.Pleurotus sajor-caju attacked lignin and cellulose at the same rate, showing a degradation of 47% and 55%, respectively. A better balance was shown by theP. ostreatus-P. pulmonarius hybrid, which exhibited the poorest cellulolytic action (39%) and the highest ligninolytic activity (67%). The average composition of mushroom fruit bodies, in terms of nitrogen, carbohydrates, fats and amino acid profiles, was determined. Crude protein and total carbohydrate varied from 23% to 33% and 36% to 68% of dry matter, respectively. Fat ranged from 3.3% to 4.7% and amino acid content from 12.2% to 22.2%. Slight evidence for a nitrogen fixing capability was encountered in the substrate to fruit body balance.  相似文献   

6.
Production of waste hair in the leather manufacturing industry is increasing every year due to the adoption of hair-save unhairing techniques, leaving the tanners with the problem of coping with yet another solid by-product. Numerous potential strategies for hair utilisation have been proposed. However, the use of hair waste as agricultural fertiliser is one of its most promising applications due to the high nitrogen content of hair. Agricultural value of hair can be increased by composting. This paper deals with the composting of hair from the unhairing of bovine hide. Results indicated that hair cannot be either composted on its own or co-composted with de-inking sludge, a chemical complementary co-substrate. However, good results were obtained when co-composted with raw sludge from a municipal wastewater treatment plant at hair:raw sludge weight ratios 1:1, 1:2 and, 1:4 in lab scale and pilot plant scale composters. In all cases, a more stable product was achieved at the end of the process. Composting in the pilot plant composter was effectively monitored using Static Respiration Indices determined at process temperature at sampling (SRI T ) and at 37°C (SRI37). Notably, SRI T values were more sensitive to changes in the biological activity. In contrast, Respiratory Quotient (RQ) values were not adequate to follow the development of the process.  相似文献   

7.
一株低温玉米秸秆降解真菌的筛选、鉴定及降解特性   总被引:3,自引:1,他引:2  
【背景】在我国北方地区玉米秸秆还田时期地温低、秸秆降解慢,如何加速玉米秸秆低温腐解成为研究热点。【目的】从冷凉地区土壤中筛选具有高效降解纤维素能力的低温菌株,为秸秆的有效利用奠定基础。【方法】在低温培养条件下,采用稀释涂布平板法、羧甲基纤维素钠(sodium carboxymethyl cellulose,CMC-Na)水解圈测定法、胞外酶活测定法、秸秆失重法进行低温秸秆降解菌株的初筛、复筛和秸秆降解性能的测定;根据菌株形态学特征及ITSrDNA序列分析对筛选菌株进行鉴定;利用3,5-二硝基水杨酸(3,5-dinitrosalicylic acid,DNS)法和秸秆失重法对菌株在不同接种量、培养基初始pH、温度情况下的纤维素酶活力和玉米秸秆降解能力进行研究。【结果】以16°C为筛选温度,获得一株在刚果红-羧甲基纤维素钠平板上D/d值为2.17、CMC酶活力为703 U/mL的高产纤维素酶低温真菌SDF-25;该菌株在4°C可以生长,10-16°C为最适生长温度,37°C条件下仍能生长;综合菌株的形态学和分子生物学测定结果,菌株SDF-25为草酸青霉菌(Penicillium oxalicum);该菌株最佳产纤维素酶的培养条件为接种量2%、初始pH为7.0、培养温度为10°C,在该培养条件下菌株SDF-25的CMC酶活为993.3 U/mL。失重法测定接种SDF-25于10°C培养15 d时秸秆降解率为39.5%,16°C时为44.9%。【结论】草酸青霉菌SDF-25可在低温条件下生长并具有较强的纤维素酶生产能力,在秸秆还田方面具有良好的应用前景。  相似文献   

8.
龙健  黄昌勇  滕应  姚槐应 《应用生态学报》2003,14(11):1925-1928
通过对浙江哩浦铜矿废弃地土壤微生物、土壤酶活性及生化作用强度研究表明,与对照土壤相比,矿区土壤微生物总数下降68.43%~80.32%,细菌、放线菌数量减少,但真菌变化不明显,各主要生理类群硝化细菌、氨化细菌、固氮菌、纤维素分解菌数量均呈下降趋势,土壤基础呼吸速率下降;土壤脲酶、蔗糖酶、蛋白酶、酸性磷酸酶、过氧化氢酶、多酚氧化酶和脱氢酶酶活性均有不同程度减弱;土壤硝化作用、氨化作用、固氮作用和纤维素分解强度降低,抑制了矿区土壤C、N的周转速率和能量循环,土壤微生物活性减弱是矿区复垦土壤微生物生态的重要特征之一。  相似文献   

9.
Azo dye reduction at 55°C by thermophilic anaerobic granular sludge was investigated distinguishing between the biotic and abiotic mechanisms. The impact of the redox mediator anthraquinone-2,6-disulfonate (AQDS) on colour removal and co-substrate oxidation was also investigated. Metabolic activities of the thermophilic inoculum induced a fast azo dye reduction and indicated a biotic predominance in the process. The addition of co-substrate enhanced the decolourisation rates 1.7-fold compared with the bottles free of co-substrate. Addition of AQDS together with co-substrate enhanced the k value 1.5-fold, compared with the incubation containing co-substrate in the absence of AQDS. During a comparative study between sludge samples incubated under mesophilic (30°C) and thermophilic (55°C) conditions, the decolourisation rate at 55°C reached values up to sixfold higher than at 30°C. Biological treatment at 55°C showed a fast initial generation of reducing compounds via co-substrate oxidation, with AQDS increasing the azo dye reduction rate in all the incubations tested. Nevertheless, high concentrations of AQDS showed severe inhibition of thermophilic acetate and propionate oxidation and methane production rates. These promising results indicate that there may be good prospects for thermophilic anaerobic treatment of other reductive transformations such as reduction of nitroaromatics and dehalogenation.  相似文献   

10.
Co-composting solid swine manure with pine sawdust as organic substrate   总被引:3,自引:0,他引:3  
Zhang Y  He Y 《Bioresource technology》2006,97(16):2024-2031
The main objectives of this work were to investigate the evolution of the principal physicochemical properties, i.e., bulk temperature, pH, electrical conductivity (EC), moisture content, total organic matter, total nitrogen and total phosphorus, in co-composting pine sawdust with increasing percentages of fresh solid swine manure, and thus to evaluate the most desirable manure proportion for producing organic substrates in consideration of the quality of the resulted compost. The composting was in four identical 100.5l lab vessels, using 5% each tea leaves and herb residues as conditioners. The swine manure was added in the trials at 20%, 30%, 40%, respectively, and was substituted in the control with 30% lake sludge corrected by 0.5% urea. The initial humidity of each treatment was 60+/-2%. While being aerated actively at approximately 0.3m(3)/min at intervals of 10 min/h, the mixture was composted for 29 days. The results indicated that N and P decomposition primarily occurred in the mesophilic phase, while organic carbon decomposed in the thermophilic phase and 30% swine manure with initial C/N ratio of about 40 was more desirable for composting organic substrates.  相似文献   

11.
A comparison of the ligninolytic, cellulolytic and hemicellulolytic abilities of an alkaliphilic white-rot fungus. Coprinus fimetarius, on wheat straw under varying conditions of solid-substrate fermentation is presented. The extent of fractional degradation (percentage of the original dry weight of the fraction) of straw under an optimized set of cultural conditions (pH 9·0, moisture 65%, temperature 37°C, period 21 days) was in the following order: lignin (45%), cellulose (42%), hemicellulose (27%). Urea nitrogen favoured the degradation of lignin as well as cellulose and hemicellulose up to a certain level (1·5% sterile urea or 3% unsterile urea on a dry weight basis) beyond which the degradation of lignin was relatively more adversely affected than cellulose. The addition of phosphorus and sulphur was found essential for selective lignin removal. Increasing the C:N ratio by addition of free carbohydrates resulted in an overall decrease in the degradation wherein cellulose utilization was the most affected event. The pre-treatment (physical or chemical) of the substrate caused a general increase in biodegradation of lignin, cellulose and hemicellulose. The degrading activity of the fungus declined with the scaling-up of the fermentation particularly under non-sterile conditions.  相似文献   

12.
This study examined Pseudomonas isoamylase immobilized onto polysaccharide matrices, among which included agarose, cellulose, and raw corn starch. For chemical binding of polysaccharides activated with tosyl chloride, a high specific activity of 23144?U/g-starch was obtained as compared with matrices of cellulose and agarose with 3229?U/g-cellulose and 84?U/g-agarose, respectively. For raw corn starch, isoamylase desorption occurred when the immobilized enzyme by physical adsorption was subjected to 0.05?M acetate buffer with pH?5.2 at 40?°C; this is despite the considerable affinity between the enzyme and the matrix. In contrast, no detectable activity leached from the matrix for chemical binding, regardless of whether maltose, i.e. an affinity species to isoamylase, was added. For immobilized starch-isoamylase, its optimal activity performance was obtained in broader pH?ranges of 3.5–5.5 and 5?°C higher than those of the free enzymes. More specifically, the free enzyme's activity markedly decreased within five hours while the immobilized starch-isoamylase exhibited a fairly stable behavior over a three day incubation period at 40?°C. After 175 days of storage at 4?°C, the residues of relative activity of 75% and 45% were obtained with respect to immobilized and free isoamylases, respectively.  相似文献   

13.
研究了污染沉积物泥浆液、固两相五氯酚(PCP)厌氧生物降解.结果表明,投加10g·kg-1厌氧颗粒污泥,经31d处理泥浆液、固两相PCP降解率达98.9%,平均降解速率达到80mg·kg-1·d-1,对照处理平均降解速率仅为4.4mg·kg-1·d-1,颗粒污泥生物强化作用明显.作为泥浆修复过程的调控因子,有机溶剂、共基质和表面活性剂对PCP降解效应不同,投加乙醇,可提高PCP解吸和降解速率,4d内两相PCP降解速率达到54.3mg·kg-1·d-1;而投加共基质和非离子表面活性剂乙二醇丁醚后,液、固两相PCP降解均出现迟滞,两者均不同程度地抑制PCP降解.  相似文献   

14.
The use of maize straw (MS) or cotton waste (CW) as bulking agents in the composting of olive mill wastewater (OMW) sludge was compared by studying the organic matter (OM) mineralisation and humification processes during composting and the characteristics of the end products. Both composts were prepared in a pilot-plant using the Rutgers static-pile system. The use of CW instead of MS to compost OMW sludge extended both the thermophilic and bio-oxidative phases of the process, with higher degradation of polymers (mainly lignin and cellulose), a greater formation of nitrates, higher total nitrogen losses and a lower biological nitrogen fixation. The CW produced a compost with a more stabilised OM and more highly polymerised humic-like substances. In the pile with CW and OMW sludge, OM losses followed a first-order kinetic equation, due to OM degradation being greater at the beginning of the composting and remaining almost constant until the end of the process. However, in the pile with MS and OMW sludge this parameter followed a zero-order kinetic equation, since OM degraded throughout the process. The germination index indicated the reduction of phytotoxicity during composting.  相似文献   

15.
从若尔盖高寒湿地距表层80cm处土壤中筛选出一株纤维素酶高产菌株XW-1。根据形态学、生理生化特征以及16SrDNA核酸序列分析结果表明,该菌属于缺陷短波单胞菌(Brevundimonas sp.)。对该菌产酶条件研究表明,XW-1在含0.5%CMC-Na条件下,20°C培养3d后出现最高酶活,达到15.6U/mL。对其酶学性质初步研究表明,该菌株所产纤维素酶的最适pH为6.0,最适反应温度为20°C,15°C时相对酶活达到80%,并且在5°C时,相对酶活仍能保持56%。  相似文献   

16.
The feasibility of sewage sludge co-digestion using intermediate waste generated inside a wastewater treatment plant, i.e. trapped grease waste from the dissolved air flotation unit, has been assessed in a continuous stirred lab reactor operating at 35 °C with a hydraulic retention time of 20 days. Three different periods of co-digestion were carried out as the grease waste dose was increased. When the grease waste addition was 23% of the volatile solids fed (organic loading rate 3.0 kgCOD m−3 d−1), an increase in methane yield of 138% was reported. Specific activity tests suggested that anaerobic biomass had adapted to the co-substrate. The adapted inoculum showed higher acetoclastic methanogenic and β-oxidation synthrophic acetogenic activities but lower hydrogenotrophic methanogenic activity. The results indicate that a slow increase in the grease waste dose could be a strategy that favours biomass acclimation to fat-rich co-substrate, increases long chain fatty acid degradation and reduces the latter’s inhibitory effect.  相似文献   

17.
Oil Palm Empty Fruit Bunch (OPEFB) is an abundant biomass resource in Indonesia, which contains 41.3 ~ 46.5% (w/w) of cellulose. This research examined the production of cellulase by the E. coli EgRK2 recombinant strain using an OPEFB substrate. The production of the enzyme was initially examined to identify optimum growth conditions, by observing the growth and activity of E. coli EgRK2 compared to its wild type. Our results showed that the optimum production time, pH and temperature of the recombinant growth and cellulase activity were achieved at 24 h, and at 7 and 40°C, respectively. Using these optimum conditions, the enzyme was produced, and experiments were carried out to examine the enzyme characteristics, produced from both strains, on hydrolysis of cellulose from OPEFB. Our results showed that the activity of the enzyme produced by the recombinant almost doubled compared to that of the wild type, although the optimum pH for both strains was pH 6. Higher activity was achieved by the recombinant compared to the wild type strain, and values were 1.905 and 1.366 U/mL, respectively. The optimum temperature for hydrolysis by cellulase occurred at 50°C for Bacillus sp. RK2, and 60°C for Bacillus sp. EgRK2. The Michaelis-Menten constant (Km) and maximum velocity (Vmax) for OPEFB degradation by E. coli EgRK2 were 0.26% and 1.750 μmol/mL/sec, which were significantly better values than those of the wild type. Control experiments for the degradation test using CMC also showed a better Vmax value for E. coli EgRK2 compared to the wild type, which is 2.543 and 1.605 μmol/mL/sec, respectively.  相似文献   

18.
Chlorinated benzoates were degraded by bacteria contained in an activated sludge inoculum by a co-metabolic mechanism. This decomposition began after an initial lag period of 4 days and accounted for 63 to 69% degradation in 28 days. The co-substrate enrichment technique, using glucose as co-substrate, increased both the rate of microbial decomposition of the benzoates and the total amount of substituted aromatic compounds degraded.  相似文献   

19.
The toxicity of formaldehyde (FA) in batch assays, using volatile fatty acids (VFA) as co-substrate, and the continuous anaerobic treatment of wastewaters containing FA in upflow anaerobic sludge blanket (UASB) reactors was investigated. In batch studies, FA exerted a 50% methanogenic toxicity on VFA at concentrations of around 100 mg/l, 2.5 times lower than values reported with sucrose. Although at FA concentrations higher than 200 mg/l methanogenesis was completely inhibited, a partial recovery of the bacterial activity was observed after 250 h when the FA had been removed from the medium. The continuous anaerobic degradation of FA at concentrations up to 2 g/l, using 1.6 g/l of glucose as co-substrate, was studied in a UASB reactor. A stable and efficient operation was observed at organic loading rates (OLR) of 6.0 g COD/l·d and with a COD/FA ratio as low as 1.4. A synthetic substrate with the same characteristics as the effluents produced during fibreboard adhesives manufacturing (based on urea-FA), i.e. 0.95 g FA/l and 0.35 g urea/l, was treated in a UASB reactor. The applied OLR and nitrogen loading rate (NLR) were 3.45 g COD/l·d and 0.58 g N/l·d, respectively. COD removal efficiencies were maintained at 90–95%, FA and urea being completely degraded.  相似文献   

20.
Cellulose is the major carbon substrate entering treatment plants for municipal waste waters. In the present investigation an attempt was made to study its degradation in activated sludge. Cellulolytic micro-organisms were enumerated in different treatment plants and at one plant they were assessed after different steps over a period of about 1 year. The degradation of cellulose contained in Nylon bags suspended in the mixed liquor was also studied and the activities of cellulase components were assayed. Finally, the concentrations of cellulose and lignin in the suspended solids taken from different treatment steps were determined. The results showed that active cellulolysis occurred in activated sludge. The degradation was mainly bacterial, although no significant enrichment of such bacteria was found in the sludge floc. Cellulase activity, however, showed an increase. Experiments with the Nylon bag indicated that 60% of the weight of cotton wool was degraded in 4–5 weeks. It was concluded that about 60% (w/w) of the cellulose entering the system could be degraded by bacteria during aerobic treatment, while 50–60% of that present in the surplus activated sludge was degraded during anaerobic sludge digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号