首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li XM  Liao WJ  Wolfe LM  Zhang DY 《PloS one》2012,7(2):e31935
The mating system plays a key role during the process of plant invasion. Contemporary evolution of uniparental reproduction (selfing or asexuality) can relieve the challenges of mate limitation in colonizing populations by providing reproductive assurance. Here we examined aspects of the genetics of colonization in Ambrosia artemisiifolia, a North American native that is invasive in China. This species has been found to possess a strong self-incompatibility system and have high outcrossing rates in North America and we examined whether there has been an evolutionary shift towards the dependence on selfing in the introduced range. Specifically, we estimated outcrossing rates in one native and five invasive populations and compared levels of genetic diversity between North America and China. Based on six microsatellite loci we found that, like the native North American population, all five Chinese populations possessed a completely outcrossing mating system. The estimates of paternity correlations were low, ranging from 0.028-0.122, which suggests that populations possessed ~8-36 pollen donor parents contributing to each maternal plant in the invasive populations. High levels of genetic diversity for both native and invasive populations were found with the unbiased estimate of gene diversity ranging from 0.262-0.289 for both geographic ranges based on AFLP markers. Our results demonstrate that there has been no evolutionary shift from outcrossing to selfing during A. artemisiifolia's invasion of China. Furthermore, high levels of genetic variation in North America and China indicate that there has been no erosion of genetic variance due to a bottleneck during the introduction process. We suggest that the successful invasion of A. artemisiifolia into Asia was facilitated by repeated introductions from multiple source populations in the native range creating a diverse gene pool within Chinese populations.  相似文献   

2.
Evolutionary transitions from outcrossing to selfing can strongly affect the genetic diversity and structure of species at multiple spatial scales. We investigated the genetic consequences of mating‐system shifts in the North American, Pacific coast dune endemic plant Camissoniopsis cheiranthifolia (Onagraceae) by assaying variation at 13 nuclear (n) and six chloroplast (cp) microsatellite (SSR) loci for 38 populations across the species range. As predicted from the expected reduction in effective population size (Ne) caused by selfing, small‐flowered, predominantly selfing (SF) populations had much lower nSSR diversity (but not cpSSR) than large‐flowered, predominantly outcrossing (LF) populations. The reduction in nSSR diversity was greater than expected from the effects of selfing on Ne alone, but could not be accounted for by indirect effects of selfing on population density. Although selfing should reduce gene flow, SF populations were not more genetically differentiated than LF populations. We detected five clusters of nSSR genotypes and three groups of cpSSR haplotypes across the species range consisting of parapatric groups of populations that usually (but not always) differed in mating system, suggesting that selfing may often initiate ecogeographic isolation. However, lineage‐wide genetic variation was not lower for selfing clusters, failing to support the hypothesis that selection for reproductive assurance spurred the evolution of selfing in this species. Within three populations where LF and SF plants coexist, we detected genetic differentiation among diverged floral phenotypes suggesting that reproductive isolation (probably postzygotic) may help maintain the striking mating‐system differentiation observed across the range of this species.  相似文献   

3.
Colonizing species often go through genetic bottlenecks when new territories are invaded. The South American continent has been recently colonized by a generalist African drosophilid, Zaprionus indianus, which has become an agricultural pest in Brazil in the last five years. In this paper we used allozyme electrophoresis to estimate levels of genetic differentiation of Z. indianus collected from sites 4 300 km apart in Brazil. We also compared the level of polymorphism of the Brazilian populations with that found in laboratory strains from Africa and Asia, to verify if a significant decrease in gene variability has taken place during the invasion process. The populations were polymorphic for three out of the 11 loci investigated. Genetic distances and FST indices among Brazilian populations were small and generally non significant, suggesting a colonization from one single propagule followed by a rapid demographic expansion. Ancestral and old populations from Africa and Asia were slightly more heterozygous than those from Brazil. Compared to other drosophilids, Z. indianus appears to be characterized by a low proportion (25%) of polymorphic loci. We suggest that the propagule introduced to Brazil had a sufficient size to carry almost all the polymorphism from the (unknown) origin population, although not the precise allelic frequencies.  相似文献   

4.
The dry rot fungus Serpula lacrymans (Basidiomycota) is the most damaging destroyer of wood construction materials in temperate regions. While being a widespread aggressive indoor biodeterioration agent, it is only found in a few natural environments. The geographical source of spread and colonization by this fungus in human environments is thus somewhat of an enigma. Employing genetic markers (amplified fragment length polymorphisms, DNA sequences and microsatellites) on a worldwide sample of specimens, we show that the dry rot fungus is divided into two main lineages; one nonaggressive residing naturally in North America and Asia (var. shastensis), and another aggressive lineage including specimens from all continents, both from natural environments and buildings (var. lacrymans). Our genetic analyses indicate that the two lineages represent well-differentiated cryptic species. Genetic analyses pinpoint mainland Asia as the origin of the aggressive form var. lacrymans. A few aggressive genotypes have migrated worldwide from Asia to Europe, North and South America and Oceania followed by local population expansions. The very low genetic variation in the founder populations indicate that they have established through recent founder events, for example by infected wood materials transported over land or sea. A separate colonization has happened from mainland Asia to Japan. Our data also indicate that independent immigration events have happened to Oceania from different continents followed by admixture.  相似文献   

5.
The hyphomycete Paecilomyces fumosoroseus (Pfr) is a geographically widespread fungus capable of infecting various insect hosts. The fungus has been used for the biological control of several important insect pests of agriculture. However knowledge of the fungus' genetic diversity and population structure is required for its sustainable use as a biological control agent. We investigated length and sequence polymorphisms of nine microsatellite loci for 33 Pfr accessions sampled from various host species and geographical locations, and our results reveal complex mutational processes for these molecular markers. Only Pfr isolates from Bemisia tabaci were amplified successfully, indicating the existence of Pfr genotypes specifically associated with B. tabaci. Genetic relationships among the 25 Pfr isolates from B. tabaci were inferred from allelic variability data at eight microsatellite loci that were polymorphic and subsequently from sequence data from the flanking regions of three selected loci. Maximum parsimony and neighbor joining analyses partitioned Pfr genetic diversity in two major lineages. One lineage included genotypes from the B-biotype of B. tabaci distributed across the Americas and was strongly supported in both analyses. Another lineage was distributed across Asia and consisted of four distinct clusters. Allele size homoplasy was found at the three microsatellite loci. We obtained better discrimination and resolution of the relationships among isolates with sequence data, although not all isolates could be typed. Thus sequencing of microsatellite flanking regions and repeats is a promising approach for the identification of Pfr isolates that specifically infect certain B. tabaci biotypes and phylogeographic studies.  相似文献   

6.
The Beijing/W family is the endemic lineage of Mycobacterium tuberculosis in East Asia: it has disseminated worldwide. To elucidate its genetic diversity in Japan, phylogenetic reconstruction was performed using 403 M. tuberculosis Beijing family clinical isolates. Variable number of tandem repeats analysis revealed the strains from Japan to be dispersed mainly among five subgroups in a phylogenetic tree. Interestingly, the genotypes of the strains from China and Mongolia were restricted mainly to a single branch; they exhibited high clonality. IS 6110 insertion in the NTF region was also analyzed. The majority (78.6%) of Japanese isolates belonged to the ancient sublineage. The modern Beijing strains were observed to correspond to the branch containing the foreign strains, although the ancient Beijing strains were dispersed among the tree's other branches. Our results reflect the singular genetic diversity and the epidemiological pattern of Beijing M. tuberculosis in Japan.  相似文献   

7.
Kura clover (Trifolium ambiguum M.B.) is a persistent rhizomatous forage legume, whose use in the U.S.A. is limited by establishment difficulties in part attributable to nodulation problems. In this study, soil was collected from established stands of Kura clover growing in 9 diverse North American environments. Rhizobia were plant-trapped using Kura clover cv. Endura as host, then rhizobia from nodules fingerprinted using BOX-PCR. The diversity of isolates from North America was then contrasted to that of rhizobia from a single Caucasian environment (Russia), the center of origin for this species. Populations were characterized using clustering methods, and genetic diversity estimated using the Shannon-Weaver diversity index. The genetic diversity of the North American populations was extremely limited, all isolates being closely related to two of the strains found in a locally available commercial inoculant. In contrast, Russian isolates formed a distinct cluster with significant internal genetic diversity. Genetic diversity indices for the North American and Russian populations were 3.5 and 10.76, respectively. The implication of this and other studies is that Kura clover is highly specific in Rhizobium requirement. If the performance of this legume in the U.S.A. is to be improved, either by modifying current establishment practices or plant breeding, it is essential that these studies be paralleled by more collections and evaluation of rhizobia from its center of origin, given the extremely limited diversity of rhizobia found in North America.  相似文献   

8.
Female gypsy moths, Lymantria dispar L., from 46 geographic strains were evaluated for flight capability and related traits. Males from 31 of the same strains were evaluated for genetic diversity using two polymorphic cytochrome oxidase I mitochondrial DNA restriction sites, the nuclear FS1 marker, and four microsatellite loci. Females capable of strong directed flight were found in strains that originated from Asia, Siberia, and the northeastern parts of Europe, but flight capability was not fixed in most strains. No flight-capable females were found in strains from the United States or southern and western Europe. Wing size and musculature were shown to correlate with flight capability and potentially could be used in predicting female flight capability. The mtDNA haplotypes broadly separated the gypsy moth strains into three groups: North American, European/Siberian, and Asian. Specific microsatellite or FS1 alleles were only fixed in a few strains, and there was a gradual increase in the frequency of alleles dominant in Asia at both the nuclear and microsatellite loci moving geographically from west to east. When all the genetic marker information was used, 94% of the individuals were accurately assigned to their broad geographic group of origin (North American, European, Siberian, and Asian), but female flight capability could not be predicted accurately. This suggests that gene flow or barriers to it are important in determining the current distribution of flight-capable females and shows the need for added markers when trying to predict female flight capability in introduced populations, especially when a European origin is suspected.  相似文献   

9.
A total of 582 individuals (1,164 chromosomes) from two African, eight African-derived South American, five South American Amerindian, and three Brazilian urban populations were studied at four variable number of tandem repeat (VNTR) and two short tandem repeat (STR) hypervariable loci. These two sets of loci did not show distinct allele profiles, which might be expected if different processes promoted their molecular differentiation. The two African groups showed little difference between them, and their intrapopulational variation was similar to those obtained in the African-derived South American communities. The latter showed different degrees of interpopulation variability, despite the fact that they presented almost identical average degrees of non-African admixture. The FST single locus estimates differed in the five sets of populations, probably due to genetic drift, indicating the need to consider population structure in the evaluation of their total variability. A high interpopulational diversity was found among Amerindian populations in relation to Brazilian African-derived isolated communities. This is probably a consequence of the differences in the patterns of gene flow and genetic drift that each of these semi-isolated groups experienced. Am J Phys Anthropol 109:425–437, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

10.
Arabis alpina is a characteristic plant in arctic-alpine habitats and serves as a classical example to demonstrate biology, ecology and biogeography of arctic-alpine disjuncts. It has a wider distribution than most other arctic-alpine plants, covering all European mountain systems, the Canary Islands, North Africa, the high mountains of East Africa and Ethiopia, the Arabian Peninsula and mountain ranges of Central Asia in Iran and Iraq. Additionally it is found in the northern amphi-Atlantic area including northeastern North America, Greenland, Iceland, Svalbard and northwestern Europe. We used markers from the nuclear (internal transcribed spacer of ribosomal DNA) and chloroplast genome (trnL-F region) to reconstruct its phylogeographic history. Both markers revealed clear phylogeographic structure. We suggest that A. alpina originated in Asia Minor less than 2 million years ago based on synonymous mutation rates of different genes (plastidic matK, nuclear adh and chs). From the Asian ancestral stock one group migrated via the Arabian Peninsula to the East African high mountains. A second group gave rise to all European and northern populations, and also served as source for the northwest African populations. A third group, which is still centred in Asia, migrated independently southwards and came into secondary contact with the East African lineage in Ethiopia, resulting in high genetic diversity in this area. In the Mediterranean regions, the genetic diversity was relatively high with numerous unique haplotypes, but almost without geographic structure. In contrast, the populations in the northern amphi-Atlantic area were extremely depauperate, suggesting very recent (postglacial) expansion into this vast area from the south.  相似文献   

11.
Population declines and extinctions of amphibians have been attributed to the chytrid fungus Batrachochytrium dendrobatidis (Bd), especially one globally emerging recombinant lineage (‘Bd‐GPL’). We used PCR assays that target the ribosomal internal transcribed spacer region (ITS) of Bd to determine the prevalence and genetic diversity of Bd in South Korea, where Bd is widely distributed but is not known to cause morbidity or mortality in wild populations. We isolated Korean Bd strains from native amphibians with low infection loads and compared them to known worldwide Bd strains using 19 polymorphic SNP and microsatellite loci. Bd prevalence ranged between 12.5 and 48.0%, in 11 of 17 native Korean species, and 24.7% in the introduced bullfrog Lithobates catesbeianus. Based on ITS sequence variation, 47 of the 50 identified Korean haplotypes formed a group closely associated with a native Brazilian Bd lineage, separated from the Bd‐GPL lineage. However, multilocus genotyping of three Korean Bd isolates revealed strong divergence from both Bd‐GPL and the native Brazilian Bd lineages. Thus, the ITS region resolves genotypes that diverge from Bd‐GPL but otherwise generates ambiguous phylogenies. Our results point to the presence of highly diversified endemic strains of Bd across Asian amphibian species. The rarity of Bd‐GPL‐associated haplotypes suggests that either this lineage was introduced into Korea only recently or Bd‐GPL has been outcompeted by native Bd strains. Our results highlight the need to consider possible complex interactions among native Bd lineages, Bd‐GPL and their associated amphibian hosts when assessing the spread and impact of Bd‐GPL on worldwide amphibian populations.  相似文献   

12.

Background

Venturia inaequalis is an ascomycete fungus responsible for apple scab, a disease that has invaded almost all apple growing regions worldwide, with the corresponding adverse effects on apple production. Monitoring and predicting the effectiveness of intervention strategies require knowledge of the origin, introduction pathways, and population biology of pathogen populations. Analysis of the variation of genetic markers using the inferential framework of population genetics offers the potential to retrieve this information.

Methodology/Principal Findings

Here, we present a population genetic analysis of microsatellite variation in 1,273 strains of V. inaequalis representing 28 orchard samples from seven regions in five continents. Analysis of molecular variance revealed that most of the variation (88%) was distributed within localities, which is consistent with extensive historical migrations of the fungus among and within regions. Despite this shallow population structure, clustering analyses partitioned the data set into separate groups corresponding roughly to geography, indicating that each region hosts a distinct population of the fungus. Comparison of the levels of variability among populations, along with coalescent analyses of migration models and estimates of genetic distances, was consistent with a scenario in which the fungus emerged in Central Asia, where apple was domesticated, before its introduction into Europe and, more recently, into other continents with the expansion of apple growing. Across the novel range, levels of variability pointed to multiple introductions and all populations displayed signatures of significant post-introduction increases in population size. Most populations exhibited high genotypic diversity and random association of alleles across loci, indicating recombination both in native and introduced areas.

Conclusions/Significance

Venturia inaequalis is a model of invasive phytopathogenic fungus that has now reached the ultimate stage of the invasion process with a broad geographic distribution and well-established populations displaying high genetic variability, regular sexual reproduction, and demographic expansion.  相似文献   

13.
We have analysed genetic variation at 23 microsatellite loci in a global sample of 16 ethnically and geographically diverse human populations. On the basis of their ancestral heritage and geographic locations, the studied populations can be divided into five major groups, viz. African, Caucasian, Asian Mongoloid, American Indian and Pacific Islander. With respect to the distribution of alleles at the 23 loci, large variability exists among the examined populations. However, with the exception of the American Indians and the Pacific Islanders, populations within a continental group show a greater degree of similarity. Phylogenetic analyses based on allele frequencies at the examined loci show that the first split of the present-day human populations had occurred between the Africans and all of the non-African populations, lending support to an African origin of modern human populations. Gene diversity analyses show that the coefficient of gene diversity estimated from the 23 loci is, in general, larger for populations that have remained isolated and probably of smaller effective sizes, such as the American Indians and the Pacific Islanders. These analyses also demonstrate that the component of total gene diversity, which is attributed to variation between groups of populations, is significantly larger than that among populations within each group. The empirical data presented in this work and their analyses reaffirm that evolutionary histories and the extent of genetic variation among human populations can be studied using microsatellite loci.  相似文献   

14.
Winton LM  Hansen EM  Stone JK 《Mycologia》2006,98(5):781-791
A survey of the genetic diversity and population structure of the Douglas-fir Swiss needle cast pathogen Phaeocryptopus gaeumannii was conducted with single-strand conformational polymorphisms (SSCP) to screen for variability in mitochondrial and nuclear housekeeping genes. Thirty host populations representing the natural range of Douglas-fir as well as locations where the tree was planted as an exotic were sampled. Sequencing of SSCP variants revealed that the method accurately detected both single nucleotide and indel polymorphisms. Sequence information was used to construct multilocus gene genealogies and to test various hypotheses of recombination (outcrossing) and clonality (selfing). We found that P. gaeumannii in the region of Oregon's Swiss needle cast epidemic exhibits strong multilocus gametic phase disequilibrium and is subdivided into two reproductively isolated sympatric lineages. Low genotypic diversity together with the presence of overrepresented genotypes in both lineages suggests a predominantly selfing reproductive mode. Genotypes of one lineage were found in isolates from a widespread geographic distribution, occurring throughout much of the Pacific Northwest as well as nonindigenous populations abroad that have historical reports of disease. Genotypes of the second lineage were detected only in isolates from Oregon's coastal region. Within the main epidemic area, abundance of this second lineage in young plantations appeared to be correlated with disease severity.  相似文献   

15.
While studies have implicated alleles at the CAG and GGC trinucleotide repeats of the androgen receptor gene with high-grade, aggressive prostate cancer disease, little is known about the normal range of variation for these two loci, which are separated by about 1.1 kb. More importantly, few data exist on the extent of linkage disequilibrium (LD) between the two loci in different human populations. Here we present data on CAG and GGC allelic variation and LD in six diverse populations. Alleles at the CAG and GGC repeat loci of the androgen receptor were typed in over 1000 chromosomes from Africa, Asia, and North America. Levels of linkage disequilibrium between the two loci were compared between populations. Haplotype variation and diversity were estimated for each population. Our results reveal that populations of African descent possess significantly shorter alleles for the two loci than non-African populations (P<0.0001). Allelic diversity for both markers was higher among African Americans than any other population, including indigenous Africans from Sierra Leone and Nigeria. Analysis of molecular variance revealed that approx. 20% of CAG and GGC repeat variance could be attributed to differences between the populations. All non-African populations possessed the same common haplotype while the three populations of African descent possessed three divergent common haplotypes. Significant LD was observed in our sample of healthy African Americans. The LD observed in the African American population may be due to several reasons; recent migration of African Americans from diverse rural communities following urbanization, recurrent gene flow from diverse West African populations, and admixture with European Americans. This study represents the largest genotyping effort to be performed on the two androgen receptor trinucleotide repeat loci in diverse human populations.  相似文献   

16.
Multilocus genotyping of microbial pathogens has revealed a range of population structures, with some bacteria showing extensive recombination and others showing almost complete clonality. The population structure of the protozoan parasite Plasmodium falciparum has been harder to evaluate, since most studies have used a limited number of antigen-encoding loci that are known to be under strong selection. We describe length variation at 12 microsatellite loci in 465 infections collected from 9 locations worldwide. These data reveal dramatic differences in parasite population structure in different locations. Strong linkage disequilibrium (LD) was observed in six of nine populations. Significant LD occurred in all locations with prevalence <1% and in only two of five of the populations from regions with higher transmission intensities. Where present, LD results largely from the presence of identical multilocus genotypes within populations, suggesting high levels of self-fertilization in populations with low levels of transmission. We also observed dramatic variation in diversity and geographical differentiation in different regions. Mean heterozygosities in South American countries (0.3-0.4) were less than half those observed in African locations (0. 76-0.8), with intermediate heterozygosities in the Southeast Asia/Pacific samples (0.51-0.65). Furthermore, variation was distributed among locations in South America (F:(ST) = 0.364) and within locations in Africa (F:(ST) = 0.007). The intraspecific patterns of diversity and genetic differentiation observed in P. falciparum are strikingly similar to those seen in interspecific comparisons of plants and animals with differing levels of outcrossing, suggesting that similar processes may be involved. The differences observed may also reflect the recent colonization of non-African populations from an African source, and the relative influences of epidemiology and population history are difficult to disentangle. These data reveal a range of population structures within a single pathogen species and suggest intimate links between patterns of epidemiology and genetic structure in this organism.  相似文献   

17.
Colombia, located in the north of the South American subcontinent is a country of great interest for population genetic studies given its high ethnic and cultural diversity represented by the admixed population, 102 indigenous peoples and African descent populations. In this study, an analysis of the genetic structure and ancestry was performed based on 46 ancestry informative INDEL markers (AIM-INDELs) and considering the genealogical and demographic variables of 451 unrelated individuals belonging to nine Native American, two African American, and four multiple ancestry populations. Measures of genetic diversity, ancestry components, and genetic substructure were analyzed to build a population model typical of the northernmost part of the South American continent. The model suggests three types of populations: Native American, African American, and multiple ancestry. The results support hypotheses posed by other authors about issues like the peopling of South America and the existence of two types of Native American ancestry. This last finding could be crucial for future research on the peopling of Colombia and South America in that a single origin of all indigenous communities should not be assumed. It then would be necessary to consider other events that could explain their genetic variability and complexity throughout the continent.  相似文献   

18.
19.
Eighteen polymorphic microsatellite loci and 11 single‐nucleotide polymorphisms were genotyped in 1 095 individual Hessian fly specimens representing 23 populations from North America, southern Europe, and southwest Asia. The genotypes were used to assess genetic diversity and interrelationship of Hessian fly populations. While phylogenetic analysis indicates that the American populations most similar to Eurasian populations come from the east coast of the United States, genetic distance is least between (Alabama and California) and (Kazakhstan and Spain). Allelic diversity and frequency vary across North America, but they are not correlated with distance from the historically documented point of introduction in New York City or with temperature or precipitation. Instead, the greatest allelic diversity mostly occurs in areas with Mediterranean climates. The microsatellite data indicate a general deficiency for heterozygotes in Hessian fly. The North American population structure is consistent with multiple introductions, isolation by distance, and human‐abetted dispersal by bulk transport of puparia in infested straw or on harvesting equipment.  相似文献   

20.
Ten populations of the model plant Arabidopsis thaliana were collected along a north-south gradient in Norway and screened for microsatellite polymorphisms in 25 loci and variability in quantitative traits. Overall, the average levels of genetic diversity were found to be relatively high in these populations, compared to previously published surveys of within population variability. Six of the populations were polymorphic at microsatellite loci, resulting in an overall proportion of polymorphic loci of 18%, and a relatively high gene diversity for a selfing species (HE = 0.06). Of the overall variability, 12% was found within populations. Two of six polymorphic populations contained heterozygous individuals. Both FST and phylogenetic analyses showed no correlation between geographical and genetic distances. Haplotypic diversity patterns suggested postglacial colonization of Scandinavia from a number of different sources. Heritable variation was observed for many of the studied quantitative traits, with all populations showing variability in at least some traits, even populations with no microsatellite variability. There was a positive association between variability in quantitative traits and microsatellites within populations. Several quantitative traits exhibited QST values significantly less than FST, suggesting that selection may be acting to retard differentiation for these traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号