首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
To enhance the productivity and activity of nitrile hydratase inRhodococcus rhodochrous M33, a glucose-limited fed-batch culture was performed. In a fed-batch culture where the glucose was controlled at a limited level and cobalt was supplemented during the fermentation period, the cell mass and total activity of nitrile hydratase both increased 3.3-fold compared to that in the batch fermentation. The productivity of nitrile hydratase also increased 1.9-fold compared to that in the batch fermentation. The specific activity of nitrile hydratase in the whole cell preparation when using a fed-batch culture was 120 units/mg-DCW, which was similar to that in the batch culture.  相似文献   

2.
γ-Aminobutyric acid (GABA), a hypotensive agent, and monacolin K, a cholesterol-lowering drug, can be produced by Monascus spp. Under optimal culture conditions, the products of fermentation using Monascus spp. may serve as a multi-functional dietary supplement and can prevent heart disease. In this study, Monascus purpureus CCRC 31615, the strain with the highest amount of monacolin K, was identified from 16 strains using solid fermentation. Its GABA productivity was particularly high. Addition of sodium nitrate during solid-state fermentation of M. purpureus CCRC 31615 improved the productivity of monacolin K and GABA to 378 mg/kg and 1,267.6 mg/kg, respectively. GABA productivity increased further to 1,493.6 mg/kg when dipotassium hydrophosphate was added to the medium. Electronic Publication  相似文献   

3.
The fermentation process of 2-keto-L-gulonic acid (2KGA) from L-sorbose was developed using a two-stage continuous fermentation system. The mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium DSM 4026 produced 90 g/L of 2KGA from 120 g/L of L-sorbose at the dilution rate of 0.01 h−1 in a single-stage continuous fermentation process. But after the production period was beyond 150 h, the significant decrease of 2KGA productivity was observed. When the non-spore forming bacteria Xanthomonas maltophilia IFO 12692 was used instead of B. megaterium DSM 4026 as a partner strain for K. vulgare DSM 4025, the 2KGA productivity was significantly improved in a two-stage continuous culture mode, in which two fermentors of the same size and volume were connected in series. In this mode, with two sets of 3-L jar fermentors, the steady state could be continued to over 1,331.5 h at least, when the dilution rates were 0.0382 h−1 and 0.0380 hour−1, respectively, for the first and second fermentors. The overall productivity was calculated to be 2.15 g/L/h at 113.1 g/L and a molar conversion yield of 90.1%. In the up-scaling fermentation to 30-L jar fermentors, 118.5 g/L of 2KGA was produced when dilution rates in both stages were 0.0430 hour−1, and the overall productivity was calculated to be 2.55 g/L/h.  相似文献   

4.
Abstract

Doxorubicin (DXR), which is produced by Streptomyces peucetius, is an important anthracycline-type antibiotic used for the treatment of various cancers. However, due to the low DXR productivity of wild-type S. peucetius, it is difficult to produce DXR by one-step fermentation. In this study, a DXR-resistance screening method was developed to screen for DXR high-producing mutants. Then, S. peucetius SIPI-11 was treated several times with UV and ARTP (atmospheric and room temperature plasma) to induce mutations. Treated strains were screened by spreading on a DXR-containing plate, isolating a mutant (S. peucetius 33-24) with enhanced DXR yield (570?mg/L vs. 119?mg/L for the original strain). The components of the fermentation medium, including the carbon and nitrogen sources, were optimized to further enhance DXR yield (to 850?mg/L). The pH of the fermentation medium and culture temperature were also optimized for effective DXR production. Finally, DXR production by S. peucetius 33-24 was investigated in flask culture and a fermenter. The yield of DXR was as high as 1100?mg/L in a 5-L fermenter, which is the highest DXR productivity reported thus far, suggesting that S. peucetius 33-24 has the potential to produce DXR by direct fermentation.  相似文献   

5.
Two culture modes, continuous and semi-continuous, of the decolorization fungus,Geotrichum candidum Dec 1, were compared to obtain a high treatment efficiency of molasses decolorization and a large productivity of peroxidase (DyP) to simultaneously decolorize dyes and molasses. The continuous culture ofG. candidum Dec 1 using a 5-l jar-fermentor showed high DyP activity at a low dilution ratio of 0.005h−1, and decolorization ratio of molasses of 80% was obtained concomitantly. Therefore, a semi-continuous culture was performed by repeated refill and draw. In this mode, approximately 1.5 liters of the culture broth was replaced per cycle when the decolorization ratio of molasses was near 80%. The molasses medium (1.0 liter per day) was treated and the peroxidase productivity in the drawn culture broth was 26.6 U/day, whereas the peroxidase productivity was 17.9 U/day in the continuous culture with a dilution rate of 0.005 h−1. The semi-continuous treatment system was an efficient decolorization method for the strain,G. candidum Dec 1.  相似文献   

6.
In this study, a pH shock strategy was employed to enhance ε-poly-l-lysine (ε-PL) production from glucose. In the conventional fermentation, in the early stage, only 13% of total ε-PL production is achieved in 25% of the entire fermentation period, which severely affected ε-PL productivity. To improve the efficiency of ε-PL production during fermentation, a novel two-stage fermentation, namely culture and fermentation stages, was proposed on the basis of the analysis of conventional pH shock fermentation. After optimization of parameters such as inoculum growth conditions, initial fermentation pH, and inoculum volume, the ε-PL production and productivity achieved using the novel fermentation process in a 5-L fermenter reached 32.22 g/L and 5.86 g/L/day, which were 32.3% and 36.6% higher, respectively, when compared with those obtained in conventional fermentation. Furthermore, evaluation of acid tolerance of mycelia collected from the pH shock fermentation showed that pH shock enhanced ε-PL production, which might be related to the acid tolerance of Streptomyces albulus and pH stress (pH 3.0). The results obtained could be useful for large-scale ε-PL production and to provide new information on ε-PL biosynthesis mechanism.  相似文献   

7.
 The fermentation characteristics of Saccharomyces cerevisiae strains which overexpress a constitutive OLE1 gene were studied to clarify the relationship between the fatty acid composition of this yeast and its ethanol productivity. The growth yield and ethanol productivity of these strains in the medium containing 15% dextrose at 10 °C were greater than those of the control strains under both aerobic and anaerobic conditions but this difference was not observed under other culture conditions. During repeated-batch fermentation, moreover, the growth yield and ethanol productivity of the wild-type S. cerevisiae increased gradually and then were similar to those of the OLE1-overexpressing transformant in the last batch fermentation. However, the unsaturated fatty acid content (77.6%) of the wild-type cells was lower than that (86.2%) of the OLE1-recombinant cells. These results suggested that other phenomena caused by the overexpression of the OLE1 gene, rather than high unsaturated fatty acid content, are essential to ethanol fermentation by this yeast. Received: 11 June 1999 / Received last revision: 12 November 1999 / Accepted: 28 November 1999  相似文献   

8.
Intermittent broth replacement was carried out to enhance the productivity and purity of sodium gluconate usingAspergillus niger by reducing the concentration of unmetabolized glucose. As inoculum size increased, length of lag phase was shortened and high initial production rate of sodium gluconate was achieved. However, too high inoculum concentration lowered productivity during the later stage of fermentation and increased residual glucose at the end of cultivation. When culture broth was replaced intermittently with distilled water, fresh medium, or recycled medium for comparison with traditional fermentation method, production of sodium gluconate was enhanced more than 1.5 fold and active production period could be prolonged without residual glucose. In addition, productivity was maintained at a level higher than 6 g/L/nr. Therefore, it was found that the reduction of biomass and viscosity by intermittent broth replacement could enhance the productivity.  相似文献   

9.
Summary Continuous cultures with Streptomyces tendae revealed some interesting facts. In a continuous culture running for more than 2500 h the production of either nikkomycins or juglomycins could be selected by varying the feed composition. Decreasing the phosphate supply in the feed broth from the initial concentration of 2.5 mm to 1.0 mm enhanced the productivity of nikkomycins and decreased the productivity of juglomycins. When switching back to the initial conditions of the experiment after 2000 h nearly the same production behaviour as at the beginning of the fermentation could be observed. This indicated a stable behaviour of the population with regard to nikkomycin productivity. The long continuous fermentation showed the ability of S. tendae Tü 901/8c to produce nikkomycin at a high level for at least 1500 h. In a second continuous culture it was shown that the productivity of the nikkomycins and juglomycins decreased and increased, respectively, with increasing dilution rate. Comparing batch cultures with continuous fermentations, higher juglomycin productivity was found in the latter. These facts indicate that the strain responds to complex interacting physiological controls, by producing either nikkomycins or juglomycins in a higher amount. Offprint requests to: D. Hege-Treskatis  相似文献   

10.
The fermentation of xylose by Thermoanaerobacter ethanolicus ATCC 31938 was studied in pH-controlled batch and continuous cultures. In batch culture, a dependency of growth rate, product yield, and product distribution upon xylose concentration was observed. With 27 mM xylose media, an ethanol yield of 1.3 mol ethanol/mol xylose (78% of maximum theoretical yield) was typically obtained. With the same media, xylose-limited growth in continuous culture could be achieved with a volumetric productivity of 0.50 g ethanol/liter h and a yield of 0.42 g ethanol/g xylose (1.37 mol ethanol/mol xylose). With extended operation of the chemostat, variation in xylose uptake and a decline in ethanol yield was seen. Instability with respect to fermentation performance was attributed to a selection for mutant populations with different metabolic characteristics. Ethanol production in these T. ethanolicus systems was compared with xylose-to-ethanol conversions of other organisms. Relative to the other systems, T. ethanolicus offers the advantages of a high ethanol yield at low xylose concentrations in batch culture and of a rapid growth rate. Its disadvantages include a lower ethanol yield at higher xylose concentrations in batch culture and an instability of fermentation characteristics in continuous culture.  相似文献   

11.
To maximize the productivity of ribitol, which is an important starting material for the production of one expensive rare sugar, L-ribose, the effects of culture medium and agitation speed on cell growth as well as on the productivity of ribitol were thoroughly investigated in a 7 L fermentor. The maximum volumetric productivity, 0.322 g/L/h of ribitol, were obtained at an initial glucose concentration of 200 g/L in a batch culture. Based on the optimum glucose concentration, the ribitol yield conversed from glucose was up to 0.193 g/g when 1% yeast extract was used as a nitrogen source. When the agitation speed was maintained at 200 rpm, the ribitol concentration of 38.60 g/L was collected after 120 h of cultivation time. Additionally, the scheme of two-phase agitation and glucose infusion was employed. To begin, in the first 24 h of fermentation, a high agitation rate at 350 rpm and the initial glucose concentration of 50 g/L were applied, and the biomass concentration of 25.50 g/L was achieved at 36 h of incubation; whereas this value was observed until 60 h in the former batch fermentation methods. Then, in the second phase, with the agitation speed reduced to 150 rpm and the infusion amount of glucose controlled at 150 g/L, the yield of ribitol reached to 65.00 g/L in two-phase agitation fermentation and was 1.68 fold of that obtained in one-stage batch fermentation. To our knowledge, this study first demonstrates its significant effectiveness in improving ribitol production with the application of Trichosporonoides oedocephalis ATCC 16958.  相似文献   

12.
This paper describes the performance of a novel bio-reactor system, the membrane-integrated fermentation reactor (MFR), for efficient continuous fermentation. The MFR, equipped with an autoclavable polyvinylidene difluoride membrane, has normally been used for biological wastewater treatment. The productivity of the MFR system, applied to the continuous production of pyruvic acid by the yeast Torulopsis glabrata, was remarkably high. The volumetric productivity of pyruvic acid increased up to 4.2 g/l/h, about four times higher than that of batch fermentation. Moreover, the membrane was able to filter fermentation broth for more than 300 h without fouling even though the cell density of the fermentation broth reached 600 as OD660. Transmembrane pressure, used as an indicator of membrane fouling, remained below 5 kPa throughout the continuous fermentation. These results clearly indicate that the MFR system is a simple and highly efficient system that is applicable to the fermentative production of a range of biochemicals.  相似文献   

13.
Fermentation of xylose from hydrolysate of acid-treated corn cob by Pichia stipitis is inhibited by acetic acid and lignin derivatives. In the present study, we have designed and implemented an immobilized cell culture for xylose to ethanol conversion from acid-treated corn cob hydrolysate without the removal of fermentation inhibitors. In this study, cultivations of suspended and immobilized Pichia were compared in terms of ethanol yield and productivity to investigate whether the cell immobilization could improve resistance to inhibitors. Cell immobilization clearly favored the fermentative metabolism in nondetoxified corn cob hydrolysate leading to an improvement of twofold ethanol productivity as compared to that achieved with suspension culture. Calcium alginate as an immobilization matrix was selected to immobilize Pichia cells. Concentrations of sodium alginate, calcium chloride, and fermentor agitation speed were optimized for ethanol production using statistical method. Statistical analysis showed that agitation speed had maximum influence on ethanol production by immobilized Pichia cells. In comparison to suspension culture, immobilization had a positive impact on the fermentative metabolism of Pichia, improving the ethanol yield from 0.40 to 0.43?g/g and productivity from 0.31 to 0.51?g/L/h for acid-treated corn cob hydrolysate.  相似文献   

14.
In this study, we investigated the effects of aeration on ethanol inhibition and glycerol production during fed-batch ethanol fermentation. When aeration was conducted at 0.13, 0.33, and 0.8 vvm, the ethanol productivity, specific ethanol production rate, and ethanol yield in the presence of greater than 100 g/L of ethanol were higher than when aeration was not conducted. In addition, estimation of the parameters (α and β) in a model equation of ethanol inhibition kinetics indicated that aeration alleviated ethanol inhibition against the specific growth rate and the specific ethanol production rate. Specifically, when aeration was conducted, the glycerol yield and specific glycerol production rate decreased approximately 50 and 70%, respectively. Finally, the results of this study indicated that aeration during fed-batch ethanol fermentation may improve the ethanol concentration in the final culture broth, as well as the ethanol productivity.  相似文献   

15.
Solid state fermentation was conducted for the production of L-glutaminase by Trichoderma koningii Oud.aggr. using different agro-industrial byproducts inlcuding wheat bran, groundnut residues, rice hulls, soya bean meal, corn steep, sesamum oil cake, cotton seed residues and lentil industrial residues as solid substrates. Wheat bran was the best substrate for induction of L-glutaminase (12.1 U/mg protein) by T. koningii. The maximum productivity (23.2 U/mg protein) and yield (45.0 U/gds) of L-glutaminase by T. koningii occurred using wheat bran of 70% initial moisture content, initial pH 7.0, supplemented with D-glucose (1.0%) and L-glutamine (2.0% w/v), inoculated with 3 ml of 6 day old fungal culture and incubated at 30°C for 7 days. After optimization, the productivity of L-glutaminase by the solid cultures of T. koningii was increased by 2.2 fold regarding to the submerged culture.  相似文献   

16.
Oxidized polyvinyl alcohol (PVA) hydrolase (OPH) is a key enzyme in the degradation of PVA, suggesting that OPH has a great potential for application in textile desizing processes. In this study, the OPH gene from Sphingopyxis sp. 113P3 was modified, by artificial synthesis, for overexpression in Escherichia coli. The OPH gene, lacking the sequence encoding the original signal peptide, was inserted into pET-20b (+) expression vector, which was then used to transform E. coli BL21 (DE3). OPH expression was detected in culture medium in which the transformed E. coli BL21 (DE3) was grown. Nutritional and environmental conditions were investigated for improved production of OPH protein by the recombinant strain. The highest OPH activity measured was 47.54 U/mL and was reached after 84 h under optimal fermentation conditions; this level is 2.64-fold higher that obtained under sub-optimal conditions. The productivity of recombinant OPH reached 565.95 U/L/h. The effect of glycine on the secretion of recombinant OPH was examined by adding glycine to the culture medium to a final concentration of 200 mM. This concentration of glycine reduced the fermentation time by 24 h and increased the productivity of recombinant OPH to 733.17 U/L/h. Our results suggest that the recombinant strain reported here has great potential for use in industrial applications.  相似文献   

17.
Summary The production of acetate from the fermentation of lactate by Gluconobacter oxydans was studied. Batch experiments showed that glucose was the preferred substrate compared to lactate. A fed-batch culture was fed with a mixture of glucose and lactate followed by periodic addition of lactate. The maximum productivity of acetate was 0.16 g/l h but this value decreased during the fedbatch culture due to growth inhibition by acetate.  相似文献   

18.

Caffeic acid (3,4-dihydroxycinnamic acid) serves as a building block for thermoplastics and a precursor for biologically active compounds and was recently produced from glucose by microbial fermentation. To produce caffeic acid from inedible cellulose, separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) reactions were compared using kraft pulp as lignocellulosic feedstock. Here, a tyrosine-overproducing Escherichia coli strain was metabolically engineered to produce caffeic acid from glucose by introducing the genes encoding a 4-hydroxyphenyllactate 3-hydroxylase (hpaBC) from Pseudomonas aeruginosa and tyrosine ammonia lyase (fevV) from Streptomyces sp. WK-5344. Using the resulting recombinant strain, the maximum yield of caffeic acid in SSF (233 mg/L) far exceeded that by SHF (37.9 mg/L). In the SSF with low cellulase loads (≤2.5 filter paper unit/g glucan), caffeic acid production was markedly increased, while almost no glucose accumulation was detected, indicating that the E. coli cells experienced glucose limitation in this culture condition. Caffeic acid yield was also negatively correlated with the glucose concentration in the fermentation medium. In SHF, the formation of by-product acetate and the accumulation of potential fermentation inhibitors increased significantly with kraft pulp hydrolysate than filter paper hydrolysate. The combination of these inhibitors had synergistic effects on caffeic acid fermentation at low concentrations. With lower loads of cellulase in SSF, less potential fermentation inhibitors (furfural, 5-hydroxymethyfurfural, and 4-hydroxylbenzoic acid) accumulated in the medium. These observations suggest that glucose limitation in SSF is crucial for improving caffeic acid yield, owing to reduced by-product formation and fermentation inhibitor accumulation.

  相似文献   

19.
Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, (NH4)2HPO4, and MnSO4. The optimum pH and temperature for a batch culture ofLactobacillus sp. RKY2 was found to be 6.0 and 36°C, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity (6.21 gL−1h−1) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture ofLactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.  相似文献   

20.
Bacillus licheniformis PWD-1, the parent strain, and B. subtilis FDB-29, a recombinant strain. In both strains, keratinase was induced by proteinaceous media, and repressed by carbohydrates. A seed culture of B. licheniformis PWD-1 at early age, 6–10 h, is crucial to keratinase production during fermentation, but B. subtilis FDB-29 is insensitive to the seed culture age. During the batch fermentation by both strains, the pH changed from 7.0 to 8.5 while the keratinase activity and productivity stayed at high levels. Control of pH, therefore, is not necessary. The temperature for maximum keratinase production is 37°C for both strains, though B. licheniformis is thermophilic and grows best at 50°C. Optimal levels of dissolved oxygen are 10% and 20% for B. licheniformis and B. subtilis respectively. A scale-up procedure using constant temperature at 37°C was adopted for B. subtilis. On the other hand, a temperature-shift procedure by which an 8-h fermentation at 50°C for growth followed by a shift to 37°C for enzyme production was used for B. licheniformis to shorten the fermentation time and increase enzyme productivity. Production of keratinase by B. licheniformis increased by ten-fold following this new procedure. After respective optimization of fermentation conditions, keratinase production by B. licheniformis PWD-1 is approximately 40% higher than that by B. subtilis FDB-29. Received 16 July 1998/ Accepted in revised form 07 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号