首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amino acid sequence of the 11.6 K dalton heme a subunit of bovine heart cytochrome oxidase has been completed and is presented here. The sequence investigation has established the positions in the protein of all the possible heme ligands, namely cysteine, methionine, histidine and lysine residues. However, the isolation conditions may have caused the heme a to migrate from its original site or the heme is caged by peptides as pointed out in Reference 6. The sequence of the heme a subunit and the β-chain of hemoglobin shows homology. It is possible that these two proteins have arisen from a common ancestor in the distant past.  相似文献   

2.
Cytochrome oxidase from an extreme thermophile. Thermus thermophilus HB8   总被引:5,自引:0,他引:5  
The cytochrome oxidase (EC 1.9.3.1) of Thermusthermophilus HB8 was isolated from the membrane fraction, and was highly purified. The oxidase contained heme a and heme c as the prosthetic groups. The purified preparation showed a single band in polyacrylamide gel electrophoresis, and three major polypeptides with apparent molecular weights of 52,000, 37,000 and 29,000 were observed in the presence of sodium dodecyl sulfate. The enzyme reacted rapidly with T. thermophilus cytochrome c-552. The oxidation of T. thermophilus cytochrome c-555,549 by the enzyme was very slow, and was stimulated by the addition of cytochrome c-552. The enzyme was highly stable to heat.  相似文献   

3.
The repetitive, reversible equilibrium redox cycling of cytochrome c, cytochrome c oxidase, or mixtures thereof has been made possible by the use of the oxidant, ferricinium ion. This ion is electrochemically generated by the use of non-ionic detergent solubilized ferrocene which is apparently incorporated as micelles and readily electron transfers with an electrode. The ferricinium-ferrocene couple equilibrates rapidly with these heme proteins. Electrochemically generated benzylviologen radical cations are used as the reductant. The EO′ values for cytochrome c oxidase at pH 7.0 are 209 ± 15 mv (2e?) and 340 ± 15 mv (2e?).  相似文献   

4.
Mixtures of cytochrome c oxidase and cytochrome c have been titrated by coulometrically generated reductant, methyl viologen radical cation, and physiological oxidant, O2. Charge distribution among the heme components in mixtures of these two redox enzymes has been evaluated by monitoring the absorbance changes at 605 and 550 nm. Differences in the pathway of the electron transfer process during a reduction cycle as compared to an oxidation cycle are indicated by variations found in the absorbance behavior of the heme components during successive reductive and oxidative titrations. It is apparent that the potential of the cytochrome a heme is dependent upon whether oxidation or reduction is occurring.  相似文献   

5.
A cytochrome c - cytochrome c oxidase complex containing 0.8–1.0 moles of cytochrome c per mole of cytochrome c oxidase (heme a + a3) was isolated as described by Ferguson-Miller, S., Brautigan, D.L., and Margoliash E., J. Biol. Chem. 251, 1104 (1976). This complex was reacted with dithiobissuccinimidyl propionate, an 11 Å bridging bifunctional reagent, and the cross-linked products obtained were analyzed by two dimensional gel electrophoresis. Cytochrome c was cross-linked to subunit II of cytochrome c oxidase. Other cross-linked products were formed involving different subunits of cytochrome c oxidase. These included I+V, II+V, III+V, V+VII, IV+VI and IV+VII. Experiments are also described using N,N′-bis(3-succinimidyloxycarbonylpropyl) tartarate. The major product formed with this 18 Å bridging bifunctional reagent was a pair containing II+VI.  相似文献   

6.
Cytochrome c was chemically coupled to cytochrome c oxidase using the reagent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) which couples amine groups to carboxyl residues. The products of this reaction were analyzed on 2.5–27% polyacrylamide gradient gels electrophoretically. Since cytochrome c binds to cytochrome oxidase electrostatically in an attraction between certain of its lysine residues and carboxyl residues on the oxidase surface, EDC is an especially appropriate reagent probe for binding-subunit studies. Coupling of polylysine to cytochrome oxidase using EDC was also performed, and the products of this reaction indicate that polylysine, an inhibitor of the cytochrome c reaction with oxidase, binds to the same oxidase subunit as does cytochrome c, subunit IV in the gel system used.  相似文献   

7.
The addition of formate to oxidized cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase, EC 1.9.3.1) causes the appearance of a high spin heme signal at g = 6 and a splitting of g = 3 signal to g = 2.98 and 3.07. When formate-cytochrome c oxidase is reduced, the g = 2.98 signal decreases significantly. The spectrophotometric studies showed that formate is a specific ligand to cytochrome a3. Data suggest that binding of formate to oxidized cytochrome c oxidase produces a ligand-a3 interaction leading to the splitting of g = 3 signal hitherto considered as due to cytochrome a. Thus both cytochrome a and a3 contribute to the resonance of g = 3 signal of cytochrome c oxidase.  相似文献   

8.
In an attempt to isolate and to study the electron transport system of Azotobacter vinelandii, we have isolated and purified a membrane-bound cytochrome o. The cytochrome o, purified as a detergent (Triton X-100) and hemoprotein complex, contained 1.6 nmoles heme per mg of protein. Cold-temperature spectrum showed that no other cytochrome was associated with the purified preparation, and electrophoresis revealed that only one type of hemoprotein was obtained. The purified cytochrome o reacted with both carbon monoxide and cyanide readily. Only in the reduced form did it combine with carbon monoxide, whereas the oxidized form reacted with cyanide. An “oxygenated” form of the cytochrome o was demonstrated to be spectrally distinguishable from both the oxidized and the reduced forms.  相似文献   

9.
A new c-type cytochrome containing a single heme group, cytochrome c553(550) has been purified from Desulfovibrio desulfuricans (Norway strain) and some of its properties have been investigated. It has an isoelectric point of 6.6 and a higher redox potential than cytochrome c3 isolated from the same bacteria. Its molecular weight was estimated to be 9,200 by gel filtration. The main absorption peaks are at 553, 522.5 and 417 nm in the reduced form and at 690, 529, 411, 357 and 280 nm in the oxidized form. The asymmetric α band of the reduced state is similar to the one reported for socalled “split α” cytochromes c. The cytochrome contains 86 amino acid residues with 5 methionine, two cysteine and two histidine residues. The N terminal sequence of D. desulfuricans Norway cytochrome c553(550) presents no evident homology with that of Desulfovibrio vulgaris Hildenborough cytochrome c553.  相似文献   

10.
The aerobic electron transport chain of Paracoccus denitrificans is very similar to that of mitochondria. It has therefore been suggested that this bacterium might be evolutionarily related to mitochondria. The two subunits (Mr 45.000 and 28.000) of the Paracoccus cytochrome c oxidase were isolated and partially sequenced. The sequences were found to be surprisingly homologous to sequences of the subunits I and II of mitochondrial cytochrome c oxidases. The data provide a molecular basis for the symbiotic origin of mitochondria and strongly support the notion that in eucaryotic oxidases subunits I and/or II carry the redox centers, heme and copper.  相似文献   

11.
The cysteine residues in beef cytochrome c oxidase (E.C.1.9.3.1) which act as ligands to a redox site have been located in the C-terminal portion of subunit II.  相似文献   

12.
An acidic cytochrome c (Pi = 4.8) has been purified from Desulfovibriodesulfuricans Norway. Its molecular weight was estimated to be 26,000 but a monomeric form of 13,500 molecular weight has been obtained. The comparison of its amino acid composition and N terminal sequence has characterized this cytochrome as a new cytochrome, different from cytochrome c3 (Mr 13,000) and cytochrome c553(550) studied in the same organism. Its optical spectrum was similar to cytochrome c3 (Mr 13,000) accordingly it has 4 haems per subunit. The absence of absorption at 695 nm indicates that two histidine residues are implicated as fifth and sixth ligand for haem iron. This new cytochrome is homologous to the cytochrome C3 (Mr 26,000) previously described for Desulfovibriogigas and Desulfovibriovulgaris.  相似文献   

13.
An antigenic subunit of molecular weight 66,000 daltons has been isolated from the antigenic complex of the Melvin strain of Neisseria gonorrhoeae. Incubation of the complex in 8M urea at room temperature for four hours resulted in the dissociation of the subunit from the complex. It was separated from the complex by chromatography of the incubation mixture on a Sepharose 6B column in 50 mM ammonium bicarbonate pH 8.5 without 8M urea and further purified by affinity chromatography. This communication reports on a newly isolated antigenic protein devoid of LPS present in the bacteria.  相似文献   

14.
Mitochondrial protein synthesis was analyzed in the yeast mit? mutants of Saccharomycescerevisiae which specifically lack cytochrome c oxidase. [3H]leucine labeled polypeptides synthesized in yeast OXI 3 mutant were analyzed by means of immunoprecipitation and SDS-polyacrylamide gel electrophoresis (SDS-PAGE). When compared to control, subunit I was not detectable. This result was substantiated by growing OXI 3 mutant in the presence of cycloheximide, an inhibitor of cytoplasmic protein synthesis. Under such conditions SDS-PAGE analysis of [3H]leucine labeled immunoprecipitate shows the absence of subunit I. These data show that the OXI 3 locus contains the structural gene for cytochrome c oxidase subunit I.  相似文献   

15.
Microsomal NADH-cytochrome b5 reductase has been purified from bovine liver by an improved procedure which employs affinity chromatography on ADP-agarose in combination with anion exchange chromatography. The reductase was extracted from a 105,000 × g microsomal pellet with Triton X-100. The overall purification from isolated microsomes was 98-fold and the yield was 10%. The preparation was nearly homogeneous on SDS-PAGE. This procedure requires less time and effort than previously described procedures. Partially purified cytochrome b5 is also obtained.  相似文献   

16.
The isomeric composition of biliverdin formed by the degradation of heme by purified NADPH-cytochrome c reductase has been determined by high performance liquid chromatography. Methemalbumin heme yields a mixture of the four biliverdin IX isomers while myoglobin yields only the IX-α isomer of biliverdin. In both cases biliverdin is a minor product of the reaction. Addition of purified heme oxygenase to the methemalbumin NADPH-cytochrome c reductase system confers α-selectivity on the reaction and allows stoichiometric conversion of heme to biliverdin. Thus the role of heme oxygenase in enzymatic heme degradation appears to be to provide a suitable environment for quantitative conversion of heme to biliverdin in addition to conferring α-selectivity on the reaction.  相似文献   

17.
The ascorbate-TMPD-cytochrome c oxidase and succinate cytochrome c reductase activities and the redox potentials of native and chemically modified cytochromes c—NBS-cytochrome c with modification of Trp-59 and Met-65, nitro-cytochrome c with modification of Tyr-67, and a new preparation, Chloramine-T-cytochrome mc with modification of Met-80 and -65 to methionine sulfoxide—have been compared at pH 7.8 in 25 mM cacodylate-Tris buffer. These modifications exhibit (i) a slight lowering of redox potential, from 260 mV to 180, 215 and 170 mV, respectively, (ii) destabilization of the cytochrome c-reductase complex, 6 to 12 fold, but without alteration of the cytochrome c-oxidase complex, and (iii) a slight lowering of the maximum velocity for both the oxidase and reductase reactions. The selective destabilization of the cytochrome c-reductase complex is interpreted as an indication of a two-path, two-function model for the oxido-reduction function of cytochrome c.  相似文献   

18.
A highly purified and active cytochrome b-c1 complex has been isolated from the chromatophores of the photosynthetic bacteria Rhodopseudomonassphaeroides R-26, through steps of Triton X-100 solubilization, salt fractionation and calcium phosphate column chromatography. The isolated enzyme complex catalyzes fully antimycin A sensitive oxidation of ubiquinol by cytochrome c with a turnover number of 1500 per minute at 23° based on cytochrome c1. It contains 8.3 nmoles of cytochromes b and c1 per mg protein and shows four polypeptides in the sodium dodecylsulfate polyacrylamide gel electrophoresis.  相似文献   

19.
The membranes of two alkalophilic bacilli contain extraordinarily high cytochrome heme contents, at least 5.5 nmoles/mg membrane protein. Membranes from the non-alkalophilic derivatives of these bacterial strains contain much lower heme concentrations, especially lower b- and c-type cytochromes. The respiratory rates of whole cells of the non-alkalophiles were, nevertheless, equal to or slightly greater than those of the alkalophiles at their respective optimal pHs. Moreover, although alkalophiles expend energy to keep their cytoplasmic pH below the external pH, their growth yields on L-malate are comparable to conventional bacteria. Perhaps, among the special bioenergetic properties of alkalophilic bacteria, there are characteristics of the respiratory chain which facilitate particularly efficient energy transduction.  相似文献   

20.
Hendrik Hüdig  Gerhart Drews 《BBA》1984,765(2):171-177
Purified b-type cytochrome oxidase from Rhodopseudomonas capsulata was incorporated into phospholipid vesicles to measure proton extrusion with pulses of ferrocytochrome c for one oxidase turnover. In accordance with the pH shift of its midpoint potential, the purified oxidase showed a proton extrusion of 0.24 H+e? with uptake of 1 H+e? from the liposomes for the reduction of oxygen to water. This proton translocation could only be observed in the presence of valinomycin +K+ and was not inhibited by DCCD. Oxidase preparations from the first purification step, which contain other protein compounds especially a membrane-bound cytochrome c but not the ubiquinol-cytochrome c2-oxidoreductase showed a pumping activity of 0.9 H+e?, which was inhibited by DCCD for nearly 75%. Inhibition of the electron transfer was not observed, which could be explained by a ‘molecular slipping’ of proton extrusion and electron transfer. Proton extrusion from two oxidase-turnovers was only 80% of that from one turnover. The proton pumping of the b-type oxidase strongly depended on the enzyme/phospholipid ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号