首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is overwhelming evidence that lipid bilayer regions of animal cell membranes are in a liquid state. Quantitative models of these bilayer regions must then be models of liquids. These liquids are highly non-ideal. For example, it has been known for more than 75 years that mixtures of cholesterol and certain phospholipids undergo an area contraction or condensation in lipid monolayers at the air-water interface. In the past 3 years, a thermodynamic model of “condensed complexes” has been proposed to account for this non-ideal behavior. Here we give an overview of the model, its relation to other models, and to modern views of the properties of animal cell membranes.  相似文献   

2.
Interactions between lipid and cholesterol molecules in membranes play an important role in the structural and functional properties of cell membranes. Although structural properties of lipid-cholesterol mixtures have been extensively studied, an understanding of the role of cholesterol in the lateral organization of bilayers has been elusive. In this article, we propose a simple yet powerful model, based on self-consistent mean-field theory and molecular dynamics simulations, for lipid bilayers containing cholesterol. Properties predicted by our model are shown to be in excellent agreement with experimental data. Our model predicts that cholesterol induces structural changes in the bilayer through the formation of regions of ordered lipids surrounding each cholesterol molecule. We find that the "smooth" and "rough" sides of cholesterol play crucial roles in formation and distribution of the ordered regions. Our model is predictive in that input parameters are obtained from independent atomistic molecular dynamics simulations. The model and method are general enough to describe other heterogeneous lipid bilayers, including lipid rafts.  相似文献   

3.
Increasing experimental evidence has shown that membrane protein functionality depends on molecular composition of cell membranes. However, the origin of this dependence is not fully understood. It is reasonable to assume that specific lipid-protein interactions are important, yet more generic effects due to mechanical properties of lipid bilayers likely play a significant role too. Previously it has been demonstrated using models for elastic properties of membranes and lateral pressure profiles of lipid bilayers that the mechanical properties of a lipid bilayer can contribute as much as ∼10 kBT to the free energy difference associated with a change in protein conformational state. Here, we extend those previous approaches to a more realistic model for a large mechanosensitive channel (MscL). We use molecular dynamics together with the MARTINI model to simulate the open and closed states of MscL embedded in a DOPC bilayer. We introduce a procedure to calculate the mechanical energy change in the channel gating using a three-dimensional pressure distribution inside a membrane, computed from the molecular dynamics simulations. We decompose the mechanical energy to terms associated with area dilation and shape contribution. Our results highlight that the lateral pressure profile of a lipid bilayer together with the shape change in gating can induce a contribution of ∼30 kBT on the gating energy of MscL. This contribution arises largely from the interfacial tension between hydrophobic and hydrophilic regions in a lipid bilayer.  相似文献   

4.
The enhanced permeability of lipid bilayer membranes at their gel-to-liquid phase transition has been explained using a "bilayer lipid heterogeneity" model, postulating leaky interfacial regions between still solid and melting liquid phases. The addition of lysolipid to dipalmitoylphosphatidylcholine bilayers dramatically enhances the amount of, and speed at which, encapsulated markers or drugs are released at this, already leaky, phase transition through these interfacial regions. To characterize and attempt to determine the mechanism behind lysolipid-generated permeability enhancement, dithionite permeability and doxorubicin release were measured for lysolipid and non-lysolipid, containing membranes. Rapid release of contents from lysolipid-containing membranes appears to occur through lysolipid-stabilized pores rather than a simple enhancement due to increased drug solubility in the bilayer. A dramatic enhancement in the permeability rate constant begins about two degrees below the calorimetric peak of the thermal transition, and extends several degrees past it. The maximum permeability rate constant coincides exactly with this calorimetric peak. Although some lysolipid desorption from liquid state membranes cannot be dismissed, dialyzation above T(m) and mass spectrometry analysis indicate lysolipid must, and can, remain in the membrane for the permeability enhancement, presumably as lysolipid stabilized pores in the grain boundary regions of the partially melted solid phase.  相似文献   

5.
The activity of antimicrobial peptides has been shown to depend on the composition of the target cell membrane. The bacterial selectivity of most antimicrobial peptides has been attributed to the presence of abundant acidic phospholipids and the absence of cholesterol in bacterial membranes. The high amount of cholesterol present in eukaryotic cell membranes is thought to prevent peptide-induced membrane disruption by increasing the cohesion and stiffness of the lipid bilayer membrane. While the role of cholesterol on an antimicrobial peptide-induced membrane disrupting activity has been reported for simple, homogeneous lipid bilayer systems, it is not well understood for complex, heterogeneous lipid bilayers exhibiting phase separation (or "lipid rafts"). In this study, we show that cholesterol does not inhibit the disruption of raft-containing 1,2-dioleoyl-sn-glycero-3-phosphocholine:1,2-dipalmitoyol-sn-glycero-3-phosphocholine model membranes by four different cationic antimicrobial peptides, MSI-78, MSI-594, MSI-367 and MSI-843 which permeabilize membranes. Conversely, the presence of cholesterol effectively inhibits the disruption of non-raft containing 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyol-sn-glycero-3-phosphocholine lipid bilayers, even for antimicrobial peptides that do not show a clear preference between the ordered gel and disordered liquid-crystalline phases. Our results show that the peptide selectivity is not only dependent on the lipid phase but also on the presence of phase separation in heterogeneous lipid systems.  相似文献   

6.
Prior to the 1960s, the model for the molecular structure of cell membranes consisted of a lipid bilayer held in place by a thin film of electrostatically-associated protein stretched over the bilayer surface: (the Danielli–Davson–Robertson “unit membrane” model). Andrew Benson, an expert in the lipids of chloroplast thylakoid membranes, questioned the relevance of the unit membrane model for biological membranes, especially for thylakoid membranes, instead of emphasizing evidence in favour of hydrophobic interactions of membrane lipids within complementary hydrophobic regions of membrane-spanning proteins. With Elliot Weier, Benson postulated a remarkable subunit lipoprotein monolayer model for thylakoids. Following the advent of freeze fracture microscopy and the fluid lipid-protein mosaic model by Singer and Nicolson, the subunits, membrane-spanning integral proteins, span a dynamic lipid bilayer. Now that high resolution X-ray structures of photosystems I and II are being revealed, the seminal contribution of Andrew Benson can be appreciated.  相似文献   

7.
The effect of alpha-tocopherol (alpha-tp) prepared in solvents of different polarity in a wide range of concentrations (10(-4) M - 10(-25) M) on lipid phase structural characteristics of microsomal membranes isolated from mouse liver cells has been investigated in vitro. Structural changes in membranes were detected on a Bruker-200D ESR-spectrometer (Germany) by the method of spin probes. Changes in the rigidity of surface lipid bilayer regions (8 A) and microviscosity of deep membrane layers (20 A) were studied using the stable nitroxyl radicals 5- and 16-doxylstearic acids, correspondingly. As a result, nonlinear multimodal dose dependences were obtained. It was demonstrated that the physiological (10(-4) M - 10(-9) M) and ultralow doses of alpha-tocopherol up to "apparent" concentrations (10(-11) M - 10(-25) M) increased the rigidity of surface lipid bilayer regions and microviscosity in the depth of membrane. Additionally, these doses of alpha-tp induced an increase in the number of thermoinduced structural transitions in deep lipid bilayer regions. The effect at "apparent" concentrations (< 10(-18) M) has only been observed in polar alpha-tocopherol solutions. The results obtained are statistically reliable with a significance level of 95%.  相似文献   

8.
Summary We have synthesized three sets of fluorescent probes which we believe will be useful in studies of asymmetric membranes and have studied their interactions with model lipid bilayers and erythrocyte membranes. The probes were designed to partition preferentially into one face of a lipid bilayer with asymmetrically disposed phospholipids and to report lipid transitions in that monolayer.We synthesized more than twenty probes containing anthroyl-, dansyl-, or pyrene rings with acidic, basic, and neutral functional groups and alkyl spacers of various lengths. The interactions of these probes with liposomes of phosphatidyl choline and with erythrocyte membranes were characterized to determine whether probe insertion was asymmetric, how deeply the probe penetrated the bilayer, and whether the probe reflected thermotropic phase transitions in model membranes. The set of variously charged anthroyl esters, analogs of local anaesthetics, appears to be promising for studies of asymmetric membranes.Fluorescent probes have been used extensively to provide information on the lipid regions of biological membranes. Membrane fluidity, a composite of molecular packing and motion of acyl chains in lipid bilayers, has been assessed with a variety of fluorescent probes, the fluorescence of which undergoes some measurable change at the temperature of the membrane's thermotropic phase transition. A large number of fluorescent probes have been used for this purpose. Bashford, Morgan and Radda (Bashford, C.L., Morgan, C.G., Radda, G.K. 1976;Biochim. Biophys. Acta 426: 157) and Thulborn and Sawyer (Thulborn, K.R., Sawyer, W.H. 1978;Biochim. Biophys. Acta 511: 125) synthesized several fatty acid derivatives in which an anthracene group is attached (in ester linkage) along the acyl chain at various positions, and have shown that this set of probes may be useful in probing membrane fluidity at differentdepths within the bilayer.This report describes the synthesis and properties of several sets of amphipathic fluorescent probes, which may partition unequally into the two faces of an asymmetric lipid bilayer, and may therefore provide information about membranes complementary to that obtainable with existing probes.  相似文献   

9.
Nath A  Atkins WM  Sligar SG 《Biochemistry》2007,46(8):2059-2069
Phospholipid bilayer Nanodiscs are novel model membranes derived from high-density lipoprotein particles and have proven to be useful in studies of membrane proteins. Membrane protein enzymology has been hampered by the inherent insolubility of membrane proteins in aqueous environments and has necessitated the use of model membranes such as liposomes and detergent-stabilized micelles. Current model membranes display a polydisperse particle size distribution and can suffer from problems of inconsistency and instability. It is also unclear how well they mimic biological lipid bilayers. In contrast, Nanodiscs, the particle size of which is constrained by a coat of scaffold proteins, are relatively monodisperse, stable model membranes with a "nativelike" lipid bilayer. Nanodiscs have already been used to study a variety of membrane proteins, including cytochrome P450s, seven-transmembrane proteins, and bacterial chemoreceptors. These proteins are simultaneously monomerized, solubilized, and incorporated into the well-defined membrane environment provided by Nanodiscs. Nanodiscs may also provide useful insights into the thermodynamics and biophysics of biological membranes and binding of small molecules to membranes.  相似文献   

10.
Direct measurement of the partition coefficient of n-hexane into phosphatidylcholine and phosphatidylcholine-cholesterol bilayers showed that (a) isotropic liquids are not good models for lipid bilayers and (b), Regular Solution Theory cannot, in general, be applied to lipid bilayer membranes at temperatures above their phase transition. Theoretical and experimental evidence is given.  相似文献   

11.
12.
Carbon nanotubes have been proposed to be efficient nanovectors able to deliver genetic or therapeutic cargo into living cells. However, a direct evidence of the molecular mechanism of their translocation across cell membranes is still needed. Here, we report on an extensive computational study of short (5 nm length) pristine and functionalized single-walled carbon nanotubes uptake by phospholipid bilayer models using all-atom molecular dynamics simulations. Our data support the hypothesis of a direct translocation of the nanotubes through the phospholipid membrane. We find that insertion of neat nanotubes within the bilayer is a "nanoneedle" like process, which can often be divided in three consecutive steps: landing and floating, penetration of the lipid headgroup area and finally sliding into the membrane core. The presence of functional groups at moderate concentrations does not modify the overall scheme of diffusion mechanism, provided that their deprotonated state favors translocation through the lipid bilayer.  相似文献   

13.
Low-intensity ultrasound can modulate action potential firing in neurons in vitro and in vivo. It has been suggested that this effect is mediated by mechanical interactions of ultrasound with neural cell membranes. We investigated whether these proposed interactions could be reproduced for further study in a synthetic lipid bilayer system. We measured the response of protein-free model membranes to low-intensity ultrasound using electrophysiology and laser Doppler vibrometry. We find that ultrasonic radiation force causes oscillation and displacement of lipid membranes, resulting in small (<1%) changes in membrane area and capacitance. Under voltage-clamp, the changes in capacitance manifest as capacitive currents with an exponentially decaying sinusoidal time course. The membrane oscillation can be modeled as a fluid dynamic response to a step change in pressure caused by ultrasonic radiation force, which disrupts the balance of forces between bilayer tension and hydrostatic pressure. We also investigated the origin of the radiation force acting on the bilayer. Part of the radiation force results from the reflection of the ultrasound from the solution/air interface above the bilayer (an effect that is specific to our experimental configuration) but part appears to reflect a direct interaction of ultrasound with the bilayer, related to either acoustic streaming or scattering of sound by the bilayer. Based on these results, we conclude that synthetic lipid bilayers can be used to study the effects of ultrasound on cell membranes and membrane proteins.  相似文献   

14.
Lipid bilayers provide a solute-proof barrier that is widely used in living systems. It has long been recognized that the structural changes of lipids during the phase transition from bilayer to non-bilayer have striking similarities with those accompanying membrane fusion processes. In spite of this resemblance, the numerous quantitative studies on pure lipid bilayers are difficult to apply to real membranes. One reason is that in living matter, instead of pure lipids, lipid mixtures are involved and there is currently no model that establishes the connection between pure lipids and lipid mixtures. Here, we make this connection by showing how to obtain (i) the short-range repulsion between bilayers made of lipid mixtures and, (ii) the pressure at which transition from bilayer phase to non-bilayer phases occur. We validated our models by fitting the experimental data of several lipid mixtures to the theoretical data calculated based on our model. These results provide a useful tool to quantitatively predict the behavior of complex membranes at low hydration.  相似文献   

15.
Many prokaryotic organisms (archaea and bacteria) are covered by a regularly ordered surface layer (S-layer) as the outermost cell wall component. S-layers are built up of a single protein or glycoprotein species and represent the simplest biological membrane developed during evolution. Pores in S-layers are of regular size and morphology, and functional groups on the protein lattice are aligned in well-defined positions and orientations. Due to the high degree of structural regularity S-layers represent unique systems for studying the structure, morphogenesis, and function of layered supramolecular assemblies. Isolated S-layer subunits of numerous organisms are able to assemble into monomolecular arrays either in suspension, at air/water interfaces, on planar mono- and bilayer lipid films, on liposomes and on solid supports (e.g. silicon wafers). Detailed studies on composite S-layer/lipid structures have been performed with Langmuir films, freestanding bilayer lipid membranes, solid supported lipid membranes, and liposomes. Lipid molecules in planar films and liposomes interact via their head groups with defined domains on the S-layer lattice. Electrostatic interactions are the most prevalent forces. The hydrophobic chains of the lipid monolayers are almost unaffected by the attachment of the S-layer and no impact on the hydrophobic thickness of the membranes has been observed. Upon crystallization of a coherent S-layer lattice on planar and vesicular lipid membranes, an increase in molecular order is observed, which is reflected in a decrease of the membrane tension and an enhanced mobility of probe molecules within an S-layer-supported bilayer. Thus, the terminology 'semifluid membrane' has been introduced for describing S-layer-supported lipid membranes. The most important feature of composite S-layer/lipid membranes is an enhanced stability in comparison to unsupported membranes.  相似文献   

16.
The use of the long-lived fluorescence probe coronene (mean value of tau(FL) approximately 200 ns) is described for investigating submicrosecond lipid dynamics in DPPC model bilayer systems occurring below the lipid phase transition. Time-resolved fluorescence emission anisotropy decay profiles, measures as a function of increasing temperature toward the lipid-phase transition temperature (T(C)), for coronene-labeled DPPC small unilamellar vesicles (SUVs), are best described in most cases by three rotational decay components (phi(i = 3)). We have interpreted these data using two dynamic lipid bilayer models. In the first, a compartmental model, the long correlation time (phi(N)) is assigned to immobilized coronene molecules located in "gel-like" or highly ordered lipid phases (S-->1) of the bilayer, whereas a second fast rotational time (phi(F) approximately 2-5 ns) is associated with probes residing in more "fluid-like" regions (with corresponding lower ordering, S-->0). Interests here have focused on the origins of an intermediate correlation time (50-100 ns), the associated amplitude (beta(G)) of which increases with increasing temperature. Such behavior suggests a changing rotational environment surrounding the coronene molecules, arising from fluidization of gel lipid. The observed effective correlation time (phi(EFF)) thus reflects a discrete gel-fluid lipid exchange rate (k(FG)). A refinement of the compartmental model invokes a distribution of gel-fluid exchange rates (d(S,T)) corresponding to a distribution of lipid order parameters and is based on an adapted Landau expression for describing "gated" packing fluctuations. A total of seven parameters (five thermodynamic quantities, defined by the free energy versus temperature expansion; one gating parameter (gamma) defining a cooperative "melting" requirement; one limiting diffusion rate (or frequency factor: d(infinity))) suffice to predict complete anisotropy decay curves measured for coronene at several temperatures below the phospholipid T(C). The thermodynamic quantities are associated with the particular lipid of interest (in this case DPPC) and have been determined previously from ultrasound studies, thus representing fixed constants. Hence resolved variables are r(O), temperature-dependent gate parameters (gamma), and limiting diffusion rates (d(infinity)). This alternative distribution model is attractive because it provides a general probe-independent expression for distributed lipid fluctuation-induced probe rotational rates occurring within bilayer membranes below the phospholipid phase transition on the submicrosecond time scale.  相似文献   

17.
After the development of the "black lipid membrane" techniques, studies of the permeability of labeled water and nonelectrolytes across these artificial membranes have yielded permeability constants comparable in magnitude to those obtained from tracer studies of living cell membranes. This general agreement has affirmed the belief that the living cell membranes are indeed closely similar to these bilayer phospholipid membranes. In this report, we draw attention to a hidden assumption behind such comparisons made: the assumption that labeled material passing through the cell membrane barriers instantly reaches diffusion equilibrium inside the cell. The permeability constants to labeled water (and nonelectrolytes) across lipid layers were obtained using setups in which the lipid membrane was sandwiched between aqueous compartments both of which were vigorously stirred. In studies of permeability of living cell membranes only the outside solution was stirred, the intracellular water remained stationary. Yet the calculations of permeability constants of the cell membrane were made with the tacit assumption, that once the labeled materials pass through the cell membrane, they were instantly mixed with the entire cell contents as if a stirrer operating at infinite speed had been present inside the cells. Ignoring this unstirred condition of the intracellular water, in fact, lumped all the real-life delay due to diffusion in the cytoplasm and added it to the resistance to diffusion of the membrane barrier. The result is an estimated membrane permeability to labeled water (and nonelectrolytes) many times slower than it actually is. The present report begins with a detailed analysis of a specific case: tritiated water diffusion from giant barnacle muscle fibers and two non-living models, one real, one imagined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effect of three water-soluble fusogens: dimethyl sulfoxide (DMSO), glycerol and sucrose on the structural properties of model lipid membranes has been studied by electron spin resonance (ESR) using 5-doxylstearic acid as a spin probe and by fluorescence spectroscopy using pyrene as an excimer forming fluorescent probe. All three fusogens tested produce a marked increase in the order parameter of the region close to the polar surface of the lipid bilayer. The ordering effect of DMSO, but not of glycerol and sucrose, is much stronger with respect to membranes prepared from acidic than from neutral phospholipids. The membrane-perturbing action of glycerol and sucrose manifests itself also in the reduced lateral mobility of membrane incorporated pyrene, indicating thus a decreased fluidity of the bilayer hydrophobic region. The structural perturbations produced in model membranes by DMSO, glycerol and sucrose are discussed in relation to the mechanism by which these substances promote cell fusion.  相似文献   

19.
The enhanced permeability of lipid bilayer membranes at their gel-to-liquid phase transition has been explained using a “bilayer lipid heterogeneity” model, postulating leaky interfacial regions between still solid and melting liquid phases. The addition of lysolipid to dipalmitoylphosphatidylcholine bilayers dramatically enhances the amount of, and speed at which, encapsulated markers or drugs are released at this, already leaky, phase transition through these interfacial regions. To characterize and attempt to determine the mechanism behind lysolipid-generated permeability enhancement, dithionite permeability and doxorubicin release were measured for lysolipid and non-lysolipid, containing membranes. Rapid release of contents from lysolipid-containing membranes appears to occur through lysolipid-stabilized pores rather than a simple enhancement due to increased drug solubility in the bilayer. A dramatic enhancement in the permeability rate constant begins about two degrees below the calorimetric peak of the thermal transition, and extends several degrees past it. The maximum permeability rate constant coincides exactly with this calorimetric peak. Although some lysolipid desorption from liquid state membranes cannot be dismissed, dialyzation above Tm and mass spectrometry analysis indicate lysolipid must, and can, remain in the membrane for the permeability enhancement, presumably as lysolipid stabilized pores in the grain boundary regions of the partially melted solid phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号