首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Non-functional mutants of sigma(38)(sigma(S)) were studied in vitro to identify the nature of their defects. Mutations in four amino acids led to severe defects in DNA binding and enzyme isomerization with promoter fork junction probes containing single-stranded non-template DNA. The same properties were previously seen with DNA mutations at the fork junction, implying that sigma:DNA interactions at the fork junction are used both for DNA binding and enzyme isomerization. An overlapping set of four mutants had defects that appear to be associated with DNA melting to create the fork junction. When mapped onto the sigma(70) structure, these groups of mutants suggest motifs used by sigma factors to melt DNA and isomerize RNA polymerase to form functional open promoter complexes.  相似文献   

4.
Band shift assays using DNA probes that mimic closed and open complexes were used to explore the determinants of promoter recognition by sigma38 (rpoS) RNA polymerase. Duplex recognition was found to be much weaker than that observed in sigma70 promoter usage. However, binding to fork junction probes, which attempt to mimic melted DNA, was very strong. This binding occurs via the non-template strand with the identity of the two conserved junction nucleotides (-12T and -11A) being of paramount importance. A modified promoter consensus sequence identified these two nucleotides as among only four (underlined) that are highly conserved, and all four were in the -10 region (CTAcacT from -13 to -7). The remaining two nucleotides were shown to have different roles, -13C in preventing recognition by the heterologous sigma70 polymerase and -7T in directing enzyme isomerization. These -10 region nucleotides appear to have their primary function prior to full melting because probes that had a melted start site were relatively insensitive to substitution at these positions. These results suggest the sigma38 mechanism differs from the sigma70 mechanism, and this difference likely contributes to selective use of sigma38 under conditions that exist during stationery phase.  相似文献   

5.
6.
7.
8.
9.
10.
Interactions between helicases and the tracking strand of a DNA substrate are well-characterized; however, the role of the displaced strand is a less understood characteristic of DNA unwinding. Dda helicase exhibited greater processivity when unwinding a DNA fork compared to a ss/ds DNA junction substrate. The lag phase in the unwinding progress curve was reduced for the forked DNA compared to the ss/ds junction. Fewer kinetic steps were required to unwind the fork compared to the ss/ds junction, suggesting that binding to the fork leads to disruption of the duplex. DNA footprinting confirmed that interaction of Dda with a fork leads to two base pairs being disrupted whereas no disruption of base pairing was observed with the ss/ds junction. Neutralization of the phosphodiester backbone resulted in a DNA-footprinting pattern similar to that observed with the ss/ds junction, consistent with disruption of the interaction between Dda and the displaced strand. Several basic residues in the 1A domain which were previously proposed to bind to the incoming duplex DNA were replaced with alanines, resulting in apparent loss of interaction with the duplex. Taken together, these results suggest that Dda interaction with the tracking strand, displaced strand and duplex coordinates DNA unwinding.  相似文献   

11.
Heyduk E  Heyduk T 《Biochemistry》2002,41(8):2876-2883
Escherichia coli RNA polymerase is able to bind fork junction DNA containing a conserved -10 promoter element in a sequence-specific manner, and it is believed that polymerase-fork junction DNA interaction mimics those between the enzyme and the promoter DNA in the open complex. In this report we determined the conformation of polymerase-bound fork junction DNA in solution. A series of distances between sites in the fork junction DNA in complex with polymerase were determined using luminescence and fluorescence resonance energy transfer. A series of fork junction DNAs were prepared containing the luminescent or fluorescent donor probe at the upstream or at the downstream end of the fork DNA and acceptor probes at nine positions within the fork junction DNA. The measured distances were compared with analogous distances in a model reference DNA duplex, and the observed distance differences were used to build a model of the fork junction DNA in a complex with the polymerase. The obtained model revealed an insignificant perturbation of the duplex part of the fork DNA in a complex with the polymerase whereas a sharp kink of DNA was observed at the ds/ss DNA boundary of the fork junction DNA.  相似文献   

12.
13.
Matlock DL  Heyduk T 《Biochemistry》2000,39(40):12274-12283
It has been recently suggested that E. coli RNA polymerase can specifically recognize a fork junction DNA structure, suggesting a possible role for such interaction in promoter DNA melting [Guo, Y., and Gralla, J. D. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 11655-11660]. We have determined here quantitatively, using a site-specific binding assay, the effects of base substitutions within the conserved -10 hexamer in the context of a short fork junction DNA on binding to RNA polymerase. Adenine at position -11 and thymine at position -7 were found to be critical for sequence-specific recognition of the DNA. The identities of bases at positions -9 and -8 were found to be not important for the binding whereas replacement of bases at positions -12 and -10 had a mild negative effect on the binding affinity. It was found that for the binding of fork DNA to RNA polymerase, specific sequence recognition was more important than specific recognition of fork junction DNA structure. The pattern of relative importance of bases in the -10 region for binding RNA polymerase was generally consistent with the sequence conservation pattern observed in nature where positions -11 and -7 are the most conserved. Binding experiments with a series of adenine analogues at position -11 revealed that the N1 nitrogen of adenine was a critical determinant for the preference of the adenine at this position, suggesting a mechanism for the nucleation of promoter DNA melting initiation in which RNA polymerase destabilizes duplex DNA by directly competing with the thymine of the A-T base pair for hydrogen bonding to the N1 position of the -11 nontemplate strand adenine.  相似文献   

14.
15.
16.
17.
Viral and bacterial Holliday junction resolvases differ in specificity with the former typically being more promiscuous, acting on a variety of branched DNA substrates, while the latter exclusively targets Holliday junctions. We have determined the crystal structure of a RuvC resolvase from bacteriophage bIL67 to help identify features responsible for DNA branch discrimination. Comparisons between phage and bacterial RuvC structures revealed significant differences in the number and position of positively‐charged residues in the outer sides of the junction binding cleft. Substitutions were generated in phage RuvC residues implicated in branch recognition and six were found to confer defects in Holliday junction and replication fork cleavage in vivo. Two mutants, R121A and R124A that flank the DNA binding site were purified and exhibited reduced in vitro binding to fork and linear duplex substrates relative to the wild‐type, while retaining the ability to bind X junctions. Crucially, these two variants cleaved Holliday junctions with enhanced specificity and symmetry, a feature more akin to cellular RuvC resolvases. Thus, additional positive charges in the phage RuvC binding site apparently stabilize productive interactions with branched structures other than the canonical Holliday junction, a feature advantageous for viral DNA processing but deleterious for their cellular counterparts.  相似文献   

18.
Amino acid residues in region 2 of final sigma(70) have been shown to play an important role in the strand separation step that is necessary for formation of the functional or open RNA polymerase-promoter complex. Here we present a comparison of the roles of basic and aromatic amino acids in the accomplishment of this process, using RNA polymerase bearing alanine substitutions for both types of amino acids in region 2. We determined the effects of the substitutions on the kinetics of open complex formation, as well as on the ability of the RNA polymerase to form complexes with single-stranded DNA, and with forked DNA duplexes carrying a single-stranded overhang consisting of bases in the -10 region. We concluded that two basic amino acids (Lys(414) and Lys(418)) are important for promoter binding and demonstrated distinct roles, at a subsequent step, for two aromatic amino acids (Tyr(430) and Trp(433)). It is likely that these four amino acids, which are close to each other in the structure of final sigma(70), together are involved in the nucleation of the strand separation process.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号