首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulose-binding domains (CBDs) are characterized by their ability to strongly bind to different forms of cellulose. This study examined the use of a recombinant CBD fused to the reporter enzyme beta-glucuronidase (CBD-GUS) to determine the extent of removal of the water-repellent waxy component of cotton fiber cuticles following hydrolytic treatment, i.e., scouring. The CBD-GUS test displayed higher sensitivity and repeatability than conventional water absorb techniques applied in the textile industry. Increases in the levels of CBD-GUS bound to the exposed cellulose correlated to increases in the fabric's hydrophilicity as a function of the severity of the scouring treatment applied, clearly indicating that the amount of bound enzyme increases proportionally with the amount of available binding sites. The binding of CBD-GUS also gave measurable and repeatable results when used on untreated or raw fabrics in comparison with conventional water drop techniques. The quantitative response of the reaction as bound enzyme activity was optimized for fully wettable fabrics. A minimal free enzyme concentration-to-swatch weight ratio of 75:1 was found to be necessary to ensure enzyme saturation (i.e., a linear response), corresponding to a free enzyme-to-bound enzyme ratio of at least 3:5.  相似文献   

2.
The cellulose-binding domain (CBD) is the second important and the most wide-spread element of cellulase structure involved in cellulose transformation with a great structural diversity and a range of adsorption behavior toward different types of cellulosic materials. The effect of the CBD from Clostridium cellulovorans on the supramolecular structure of three different sources of cellulose (cotton cellulose, spruce dissolving pulp, and cellulose linters) was studied. Fourier-transform infrared spectroscopy (FTIR) was used to record amides I and II absorption bands of cotton cellulose treated with CBD. Structural changes as weakening and splitting of the hydrogen bonds within the cellulose chains after CBD adsorption were observed. The decrease of relative crystallinity index of the treated celluloses was confirmed by FTIR spectroscopy and X-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to confirm the binding of the CBD on the cellulose surface and the changing of the cellulose morphology.  相似文献   

3.
This article discusses the analysis of the hydrolysis products from one-step scouring of cotton using pectinase and two-step scouring of cotton using lipase then cellulase, protease then cellulase, or lipase/protease then cellulase, to improve water absorbency of cotton. UV spectrophotometric analysis indicated that the pectinase scouring process produced approximately 18-fold higher amounts of reducing sugars and galacturonic acid than any of the two-step scouring processes. The production rate of reducing sugars and galacturonic acid from most of the scouring processes showed a decrease with an increase in time. HPLC analysis revealed that the lipase/protease/cellulase scouring processes produced approximately 5-fold higher amounts of 17 amino acids than the pectinase scouring process. GC analysis for 18 fatty acids (C(8)-C(24)) revealed that three major fatty acids, palmitic acid, stearic acid, and behenic acid, were found on both the scoured and the unscoured fabrics. Scoured fabrics were tested for content of proteins, extractable components, waxes, and anionic components including pectins, and some differences among the fabric scoured with different enzyme combinations were found.  相似文献   

4.
Cellulose-binding protein A (CbpA), a component of the cellulase complex of Clostridium cellulovorans, contains a unique sequence which has been demonstrated to be a cellulose-binding domain (CBD). The DNA coding for this putative CBD was subcloned into pET-8c, an Escherichia coli expression vector. The protein produced under the direction of the recombinant plasmid, pET-CBD, had a high affinity for crystalline cellulose. Affinity-purified CBD protein was used in equilibrium binding experiments to characterize the interaction of the protein with various polysaccharides. It was found that the binding capacity of highly crystalline cellulose samples (e.g., cotton) was greater than that of samples of low crystallinity (e.g., fibrous cellulose). At saturating CBD concentration, about 6.4 mumol of protein was bound by 1 g of cotton. Under the same conditions, fibrous cellulose bound only 0.2 mumol of CBD per g. The measured dissociation constant was in the 1 microM range for all cellulose samples. The results suggest that the CBD binds specifically to crystalline cellulose. Chitin, which has a crystal structure similar to that of cellulose, also was bound by the CBD. The presence of high levels of cellobiose or carboxymethyl cellulose in the assay mixture had no effect on the binding of CBD protein to crystalline cellulose. This result suggests that the CBD recognition site is larger than a simple cellobiose unit or more complex than a repeating cellobiose moiety. This CBD is of particular interest because it is the first CBD from a completely sequenced nonenzymatic protein shown to be an independently functional domain.  相似文献   

5.
The activities (at pH 7 and 50 degrees C) of purified EGV (Humicola insolens) and CenA (Cellulomonas fimi) were determined on cotton fabrics at high and low levels of mechanical agitation. Similar activity measurements were also made by using the core domains of these cellulases. Activity experiments suggested that the presence of cellulose binding domains (CBDs) is not essential for cellulase performance in the textile processes, where high levels of mechanical agitation are applied. The binding reversibilities of these cellulases and their cores were studied by dilution of the treatment liquor after equilibrium adsorption. EGV showed low percentage of adsorption under both levels of agitation. It was observed that the adsorption/desorption processes of cellulases are enhanced by higher mechanical agitation levels and that the binding of cellulase with CBD of family I (EGV) is more reversible than that of CBD of the cellulase of family II (CenA).  相似文献   

6.
Alkaline pectinases have been proven to be effective as bioscouring agents of cotton fabrics. In order to monitor the scouring degree of cotton fabrics quantificationally, a kinetic study of the degradation of pectins in cotton by an alkaline pectinase ‘Bioprep 3000L’ was performed and the influences of initial pectinase concentration and treatment time on bioscouring were evaluated quantitatively. The results showed that although the degradation products increased as pectinase concentration grew higher at same incubation time, the growth multiples of the maximum degradation rate which was used as the starting degradation rate were less than those of initial enzyme concentration. The degradation kinetics of pectins in cotton fibers with a pectinase could be described by modified Ghose–Walseth kinetic empirical equations which had been previously applied to the degradation reaction of cellulose.  相似文献   

7.
Chimeric proteins combining the catalytic N-terminal region of native EngD with its proline-threonine-threonine (PT) linker region, hydrophilic domain (HLD) and cellulose binding domain (CBD) of cellulose binding protein A (CbpA) from Clostridium cellulovorans were constructed, expressed, and analyzed. The chimeric proteins with CBD(CbpA) all demonstrated strong affinity to Avicel. The chimeric protein with the PT region of EngD and the HLD had the best catalytic activity and the highest estimated percentage of soluble protein amongst the chimeric proteins. Native EngD and two of the chimeric proteins (EngD-PT-HLD-CBD and EngD-CBD) were purified and their characteristics analyzed. Their binding affinities to Avicel as well as their enzymatic activities against various substrates were found to be consistent with the results we saw from protein lysate samples, which was good binding to Avicel but a decrease in solubility and catalytic activities in chimeric proteins without PT and/or HLD. The reasons for these are discussed. These fusion proteins may be important in applications, such as immobilization to solid cellulose substrate for purification of proteins and enrichment/aggregation of protein complexes.  相似文献   

8.
Lehtiö J  Teeri TT  Nygren PA 《Proteins》2000,41(3):316-322
A disulfide bridge-constrained cellulose binding domain (CBD(WT)) derived from the cellobiohydrolase Cel7A from Trichoderma reesei has been investigated for use in scaffold engineering to obtain novel binding proteins. The gene encoding the wild-type 36 aa CBD(WT) domain was first inserted into a phagemid vector and shown to be functionally displayed on M13 filamentous phage as a protein III fusion protein with retained cellulose binding activity. A combinatorial library comprising 46 million variants of the CBD domain was constructed through randomization of 11 positions located at the domain surface and distributed over three separate beta-sheets of the domain. Using the enzyme porcine alpha-amylase (PPA) as target in biopannings, two CBD variants showing selective binding to the enzyme were characterized. Reduction and iodoacetamide blocking of cysteine residues in selected CBD variants resulted in a loss of binding activity, indicating a conformation dependent binding. Interestingly, further studies showed that the selected CBD variants were capable of competing with the binding of the amylase inhibitor acarbose to the enzyme. In addition, the enzyme activity could be partially inhibited by addition of soluble protein, suggesting that the selected CBD variants bind to the active site of the enzyme.  相似文献   

9.
The major cellulose-binding domain (CBD) from the cellulosome of Clostridium thermocellum YS was cloned and overexpressed in Escherichia coli. The expressed protein was purified efficiently by a modification of a novel procedure termed affinity digestion. The properties of the purified polypeptide were compared with those of a related CBD derived from a cellulosome-like complex of a similar (but mesophilic) clostridial species, Clostridium cellulovorans. The binding properties of the two proteins with their common substrate were found to be very similar. Despite the similarity in the amino acid sequences of the two CBDs, polyclonal antibodies raised against the CBD from C. thermocellum failed to interact with the protein from C. cellulovorans. Chemical modification of the single cysteine of the CBD had little effect on the binding to cellulose. Biotinylation of this cysteine allowed the efficient binding of avidin to cellulose, and the resultant matrix is appropriate for use as a universal affinity system.  相似文献   

10.
The immobilization of recombinant staphylococci onto cellulose fibers through surface display of a fungal cellulose-binding domain (CBD) was investigated. Chimeric proteins containing the CBD from Trichoderma reesei cellulase Cel6A were found to be correctly targeted to the cell wall of Staphylococcus carnosus cells, since full-length proteins could be extracted and affinity-purified. Furthermore, surface accessibility of the CBD was verified using a monoclonal antibody and functionality in terms of cellulose-binding was demonstrated in two different assays in which recombinant staphylococci were found to efficiently bind to cotton fibers. The implications of this strategy of directed immobilization for the generation of whole-cell microbial tools for different applications will be discussed.  相似文献   

11.
Cellobiohydrolase I (CBHI) is the major cellulase of Trichoderma reesei. The enzyme contains a discrete cellulose-binding domain (CBD), which increases its binding and activity on crystalline cellulose. We studied cellulase-cellulose interactions using site-directed mutagenesis on the basis of the three-dimensional structure of the CBD of CBHI. Three mutant proteins which have earlier been produced in Saccharomyces cerevisiae were expressed in the native host organism. The data presented here support the hypothesis that a conserved tyrosine (Y492) located on the flat and more hydrophilic surface of the CBD is essential for the functionality. The data also suggest that the more hydrophobic surface is not directly involved in the CBD function. The pH dependence of the adsorption revealed that electrostatic repulsion between the bound proteins may also control the adsorption. The binding of CBHI to cellulose was significantly affected by high ionic strength suggesting that the interaction with cellulose includes a hydrophobic effect. High ionic strength increased the activity of the isolated core and of mutant proteins on crystalline cellulose, indicating that once productively bound, the enzymes are capable of solubilizing cellulose even with a mutagenized or with no CBD. © 1995 Wiley-Liss, Inc.  相似文献   

12.
为研究纤维素酶纤维素结合结构域的结构与功能 ,进而深入了解天然纤维素的生物降解机制和提高纤维素酶的生物工艺学价值 ,采用 PCR技术体外扩增了携带微紫青霉外切葡聚糖纤维二糖水解酶 ( CBH ) CBD编码区的 DNA片段 ,将 CBD编码区 DNA片段插入带有 Erwiniacarotovora pe1 B前导肽序列的大肠杆菌质粒 p KK- tac- new上进行了表达 .携带微紫青霉 CBDCBH 编码区的大肠杆菌重组菌株 DH5α( p KK- tac- new- 8)产生有活性的分泌型 CBDCBH 蛋白 .SDS-PAGE检测显示所产生的 CBDCBH 蛋白分子量约 1 0 .8k D.在 IPTG诱导下 ,该菌株所产生的CBDCBH 蛋白含量达 45.2 mg/L,且 90 %以上的 CBD蛋白分泌到培养物上清液中 .结晶纤维素 CF-1 1溶液经 CBDCBH 处理后 ,浊度比对照提高了 1 2 8.9% ,天然棉花纤维结构经 CBDCBH 处理后产生一定程度的非水解性降解作用 ,表明微紫青霉 CBDCBH 具有解聚天然结晶纤维素的作用 .  相似文献   

13.
N- or C-terminal fusions of red-fluorescent protein (RFP) with various fungal cellulose-binding domains (CBDs) belonging to carbohydrate binding module (CBM) family 1 were expressed in a Pichia pastoris expression system, and the resulting fusion proteins were used to examine the feasibility of large-scale affinity purification of CBD-tagged proteins on cellulose columns. We found that RFP fused with CBD from Trichoderma reesei CBHI (CBD(Tr)(CBHI)) was expressed at up to 1.2g/l in the culture filtrate, which could be directly injected into the cellulose column. The fusion protein was tightly adsorbed on the cellulose column in the presence of a sufficient amount of ammonium sulfate and was efficiently eluted with pure water. Bovine serum albumin (BSA) was not captured under these conditions, whereas both BSA and the fusion protein were adsorbed on a phenyl column, indicating that the cellulose column can be used for the purification of not only hydrophilic proteins but also for hydrophobic proteins. Recovery of various fusion proteins exceeded 80%. Our results indicate that protein purification by expression of a target protein as a fusion with a fungal family 1 CBD tag in a yeast expression system, followed by affinity purification on a cellulose column, is simple, effective and easily scalable.  相似文献   

14.
Different chimeric proteins combining the non-catalytic C-terminal putative cellulose binding domain of Clostridium cellulovorans endoglucanase-xylanase D (EngD) with its proline-threonine rich region PT-linker, PTCBD(EngD), cellulose binding domain of C. cellulovorans cellulose binding protein A, CBD(CbpA), cohesin domains Cip7, Coh6 and CipC1 from different clostridial species and recombinant antibody binding protein LG were constructed, expressed, purified and analyzed. The solubilities of chimeric proteins containing highly soluble domains Cip7, CipC1 and LG were not affected by fusion with PTCBD(EngD). Insoluble domain Coh6 was solubilized when fused with PTCBD(EngD). In contrast, fusion with CBD(CbpA) resulted in only a slight increase in solubility of Coh6 and even decreased solubility of CipC1 greatly. PTCBD(EngD) and Cip7-PTCBD(EngD) were shown to bind regenerated commercial amorphous cellulose Cuprophan. The purity of Cip7-PTCBD(EngD) eluted from Cuprophan was comparable to that purified by conventional ion exchange chromatography. The results demonstrated that PTCBD(EngD) can serve as a bi-functional fusion tag for solubilization of fusion partners and as a domain for the immobilization, enrichment and purification of molecules or cells on regenerated amorphous cellulose.  相似文献   

15.
An innovative approach addressing ecological problems associated with scouring of cotton‐based textiles was developed. The innovative scouring method is based on the use of β‐cyclodextrin in the presence of a wetting agent. β‐cyclodextrin is able to accommodate the wax in its cavity, complex with it and dissolve it together with other cotton impurities by the aid of a wetting agent, thereby effecting their removal. The work comprises treatment of desized cotton and polyester/cotton fabrics with β‐cyclodextrin and a wetting agent under a variety of conditions. Variables studied include concentration of β‐cyclodextrin, chemical nature and concentration of the wetting agent, pH of the scouring bath, and temperature and time of scouring. The samples were monitored for the residual wax percent and wettability. The scouring performance of the innovative method was compared with that of the conventional method. Chemical oxygen demand, total dissolved solids and conductivity of the wastewater effluent discharged by the two methods were also determined and compared. The comparison reveals the advantages of the new method in minimizing the degradation of the cotton and polyester/cotton fabrics, which occur during conventional scouring and the persistence of such advantage even after bleaching. The mode of wax removal during the innovative scouring and the impact of the latter on the environment were discussed.  相似文献   

16.
A family II cellulose-binding domain (CBD) of an exoglucanase/xylanase (Cex) from the bacterium Cellulomonas fimi was replaced with the family I CBD of cellobiohydrolase I (CbhI) from the fungus Trichoderma reesei. Expression of the hybrid gene in Escherichia coli yielded up to 50 mg of the hybrid protein, CexCBDCbhI, per liter of culture supernatant. The hybrid was purified to homogeneity by affinity chromatography on cellulose. The relative association constants (Kr) for the binding of Cex, CexCBDCbhI, the catalytic domain of Cex (p33), and CbhI to bacterial microcrystalline cellulose (BMCC) were 14.9, 7.8, 0.8, and 10.6 liters g-1, respectively. Cex and CexCBDCbhI had similar substrate specificities and similar activities on crystalline and amorphous cellulose. Both released predominantly cellobiose and cellotriose from amorphous cellulose. CexCBDCbhI was two to three times less active than Cex on BMCC, but significantly more active than Cex on soluble cellulose and on xylan. Unlike Cex, the hybrid protein neither bound to alpha-chitin nor released small particles from dewaxed cotton fibers.  相似文献   

17.
We describe a method for the isolation of recombinant single-chain antibodies in a biologically active form. The single-chain antibodies are fused to a cellulose binding domain as a single-chain protein that accumulates as insoluble inclusion bodies upon expression in Escherichia coli. The inclusion bodies are then solubilized and denatured by an appropriate chaotropic solvent, then reversibly immobilized onto a cellulose matrix via specific interaction of the matrix with the cellulose binding domain (CBD) moiety. The efficient immobilization that minimizes the contact between folding protein molecules, thus preventing their aggregation, is facilitated by the robustness of the Clostridium thermocellum CBD we use. This CBD is unique in retaining its specific cellulose binding capability when solubilized in up to 6 M urea, while the proteins fused to it are fully denatured. Refolding of the fusion proteins is induced by reducing with time the concentration of the denaturing solvent while in contact with the cellulose matrix. The refolded single-chain antibodies in their native state are then recovered by releasing them from the cellulose matrix in high yield of 60% or better, which is threefold or higher than the yield obtained by using published refolding protocols to recover the same scFvs. The described method should have general applicability for the production of many protein-CBD fusions in which the fusion partner is insoluble upon expression.  相似文献   

18.
Cellulose-binding domain (CBD) enriches cellulolytic enzymes on cellulosic surfaces and contributes to the catalytic efficiency by increasing enzyme-substrate complex formations. Thus, high affinity CBDs are essential for the development of efficient cellulose-degrading enzymes. Here, we present a microtiter plate-based assay system to measure the binding affinity of CBDs to cellulose. The assay uses a periplasmic alkaline phosphatase (AP) as a fusion reporter and its activity is detected using a fluorogenic substrate, 4-methylumbelliferyl phosphate. Lignocellulose discs of 6 mm in diameter were used as substrates in 96-well plate. As a result, the enzyme-linked assay detected the binding of CBDs on the cellulosic discs in a highly sensitive manner, detecting from 0.05 to 1.0 μg/mL of APCBD proteins, which is several hundred times more sensitive than conventional protein measurements. The proposed method was applied to compare the binding affinity of different CBDs from Cellulomonas fimi to lignocellulose discs.  相似文献   

19.
Cellulose-binding protein A (CbpA) has been previously shown to mediate the interaction between crystalline cellulose substrates and the cellulase enzyme complex of Clostridium cellulovorans. CbpA contains a family III cellulose-binding domain (CBD) which, when expressed independently, binds specifically to crystalline cellulose. A series of N- and C-terminal deletions and a series of small internal deletions of the CBD were created to determine whether the entire region previously described as a CBD is required for the cellulose-binding function. The N- and C-terminal deletions reduced binding affinity by 10- to 100-fold. Small internal deletions of the CBD resulted in substantial reduction of CBD function. Some, but not all, point mutations throughout the sequence had significant disruptive effects on the binding ability of the CBD. Thus, mutations in any region of the CBD had effects on the binding of the fragment to cellulose. The results indicate that the entire 163-amino-acid region of the CBD is required for maximal binding to crystalline cellulose.  相似文献   

20.
Specific adhesion of Eshcherichia coli with surface-exposed cellulose-binding domain (CBD) to cellulosic materials was investigated. Whole-cell immobilization was very specific, forming essentially a monolayer of cells onto the different supports. Cells with surface-exposed CBD bound specifically and tightly to cellulose supports at a wide range of pH. In contrast to CBD, which shows the highest binding to cellulose at 4 degrees C, highest cell loading was observed at 37 degrees C. The extent of immobilization was dependent on the amount of surface-exposed CBD. Cells binding increased with increasing amount of CBD until binding was saturated. Even induction of very low level of CBD (0.05 mM IPTG) was sufficient to provide specific and tight binding to cellulose support. Because optimal binding can be obtained under physiological conditions such as pH 7 and 37 degrees C, the results demonstrate the general utility of surface-exposed CBD as an efficient means of whole-cell immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号