首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species‐climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040–2069, 2070–2099), using downscaled climate projections, and calculated species turnover and changes in species‐specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species‐specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site‐level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses.  相似文献   

2.
3.
Climate change is expected to alter the dynamics of infectious diseases around the globe. Predictive models remain elusive due to the complexity of host–parasite systems and insufficient data describing how environmental conditions affect various system components. Here, we link host–macroparasite models with the Metabolic Theory of Ecology, providing a mechanistic framework that allows integrating multiple nonlinear environmental effects to estimate parasite fitness under novel conditions. The models allow determining the fundamental thermal niche of a parasite, and thus, whether climate change leads to range contraction or may permit a range expansion. Applying the models to seasonal environments, and using an arctic nematode with an endotherm host for illustration, we show that climate warming can split a continuous spring‐to‐fall transmission season into two separate transmission seasons with altered timings. Although the models are strategic and most suitable to evaluate broad‐scale patterns of climate change impacts, close correspondence between model predictions and empirical data indicates model applicability also at the species level. As the application of Metabolic Theory considerably aids the a priori estimation of model parameters, even in data‐sparse systems, we suggest that the presented approach could provide a framework for understanding and predicting climatic impacts for many host–parasite systems worldwide.  相似文献   

4.
Understanding how species respond to climate change is key to informing vulnerability assessments and designing effective conservation strategies, yet research efforts on wildlife responses to climate change fail to deliver a representative overview due to inherent biases. Bats are a species-rich, globally distributed group of organisms that are thought to be particularly sensitive to the effects of climate change because of their high surface-to-volume ratios and low reproductive rates. We systematically reviewed the literature on bat responses to climate change to provide an overview of the current state of knowledge, identify research gaps and biases and highlight future research needs. We found that studies are geographically biased towards Europe, North America and Australia, and temperate and Mediterranean biomes, thus missing a substantial proportion of bat diversity and thermal responses. Less than half of the published studies provide concrete evidence for bat responses to climate change. For over a third of studied bat species, response evidence is only based on predictive species distribution models. Consequently, the most frequently reported responses involve range shifts (57% of species) and changes in patterns of species diversity (26%). Bats showed a variety of responses, including both positive (e.g. range expansion and population increase) and negative responses (range contraction and population decrease), although responses to extreme events were always negative or neutral. Spatial responses varied in their outcome and across families, with almost all taxonomic groups featuring both range expansions and contractions, while demographic responses were strongly biased towards negative outcomes, particularly among Pteropodidae and Molossidae. The commonly used correlative modelling approaches can be applied to many species, but do not provide mechanistic insight into behavioural, physiological, phenological or genetic responses. There was a paucity of experimental studies (26%), and only a small proportion of the 396 bat species covered in the examined studies were studied using long-term and/or experimental approaches (11%), even though they are more informative about the effects of climate change. We emphasise the need for more empirical studies to unravel the multifaceted nature of bats' responses to climate change and the need for standardised study designs that will enable synthesis and meta-analysis of the literature. Finally, we stress the importance of overcoming geographic and taxonomic disparities through strengthening research capacity in the Global South to provide a more comprehensive view of terrestrial biodiversity responses to climate change.  相似文献   

5.

Aim

Understanding how grain size affects our ability to characterize species responses to ongoing climate change is of crucial importance in the context of an increasing awareness for the substantial difference that exists between coarse spatial resolution macroclimatic data sets and the microclimate actually experienced by organisms. Climate change impacts on biodiversity are expected to peak in mountain areas, wherein the differences between macro and microclimates are precisely the largest. Based on a newly generated fine-scale environmental data for the Canary Islands, we assessed whether data at 100 m resolution is able to provide more accurate predictions than available data at 1 km resolution. We also analysed how future climate suitability predictions of island endemic bryophytes differ depending on the grain size of grids.

Location

Canary Islands.

Time period

Present (1979–2013) and late-century (2071–2100).

Taxa

Bryophytes.

Methods

We compared the accuracy and spatial predictions using ensemble of small models for 14 Macaronesian endemic bryophyte species. We used two climate data sets: CHELSA v1.2 (~1 km) and CanaryClim v1.0 (100 m), a downscaled version of the latter utilizing data from local weather stations. CanaryClim also encompasses future climate data from five individual model intercomparison projects for three warming shared socio-economic pathways.

Results

Species distribution models generated from CHELSA and CanaryClim exhibited a similar accuracy, but CanaryClim predicted buffered warming trends in mid-elevation ridges. CanaryClim consistently returned higher proportions of newly suitable pixels (8%–28%) than CHELSA models (0%–3%). Consequently, the proportion of species predicted to occupy pixels of uncertain suitability was higher with CHELSA (3–8 species) than with CanaryClim (0–2 species).

Main conclusions

The resolution of climate data impacted the predictions rather than the performance of species distribution models. Our results highlight the crucial role that fine-resolution climate data sets can play in predicting the potential distribution of both microrefugia and new suitable range under warming climate.  相似文献   

6.
7.
The rush to assess species’ responses to anthropogenic climate change (CC) has underestimated the importance of interannual population variability (PV). Researchers assume sampling rigor alone will lead to an accurate detection of response regardless of the underlying population fluctuations of the species under consideration. Using population simulations across a realistic, empirically based gradient in PV, we show that moderate to high PV can lead to opposite and biased conclusions about CC responses. Between pre‐ and post‐CC sampling bouts of modeled populations as in resurvey studies, there is: (i) A 50% probability of erroneously detecting the opposite trend in population abundance change and nearly zero probability of detecting no change. (ii) Across multiple years of sampling, it is nearly impossible to accurately detect any directional shift in population sizes with even moderate PV. (iii) There is up to 50% probability of detecting a population extirpation when the species is present, but in very low natural abundances. (iv) Under scenarios of moderate to high PV across a species’ range or at the range edges, there is a bias toward erroneous detection of range shifts or contractions. Essentially, the frequency and magnitude of population peaks and troughs greatly impact the accuracy of our CC response measurements. Species with moderate to high PV (many small vertebrates, invertebrates, and annual plants) may be inaccurate ‘canaries in the coal mine’ for CC without pertinent demographic analyses and additional repeat sampling. Variation in PV may explain some idiosyncrasies in CC responses detected so far and urgently needs more careful consideration in design and analysis of CC responses.  相似文献   

8.
The expectation that atmospheric warming will be most pronounced at higher latitudes means that Arctic and montane systems, with predominantly organic soils, will be particularly influenced by climate change. One group of soil fauna, the enchytraeids, is commonly the major soil faunal component in specific biomes, frequently exceeding above‐ground fauna in biomass terms. These organisms have a crucial role in carbon turnover in organic rich soils and seem particularly sensitive to temperature changes. In order to predict the impacts of climate change on this important group of soil organisms we reviewed data from 44 published papers using a combination of conventional statistical techniques and meta‐analysis. We focused on the effects of abiotic factors on total numbers of enchytraeids (a total of 611 observations) and, more specifically, concentrated on total numbers, vertical distribution and age groupings of the well‐studied species Cognettia sphagnetorum (228 observations). The results highlight the importance of climatic factors, together with vegetation and soil type in determining global enchytraeid distribution; in particular, cold and wet environments with mild summers are consistently linked to greater densities of enchytraeids. Based on the upper temperature distribution limits reported in the literature, and identified from our meta‐analyses, we also examined the probable future geographical limits of enchytraeid distribution in response to predicted global temperature changes using the HadCM3 model climate output for the period between 2010 and 2100. Based on the existing data we identify that a maximum mean annual temperature threshold of 16 °C could be a critical limit for present distribution of field populations, above which their presence would decline markedly, with certain key species, such as C. sphagnetorum, being totally lost from specific regions. We discuss the potential implications for carbon turnover in these organic soils where these organisms currently dominate and, consequently, their future role as C sink/source in response to climate change.  相似文献   

9.
Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent.  相似文献   

10.
River ecosystems are driven by linked physical, chemical, and biological subsystems, which operate over different temporal and spatial domains. This complexity increases uncertainty in ecological forecasts, and impedes preparation for the ecological consequences of climate change. We describe a recently developed “multi-modeling” system for ecological forecasting in a 7600 km2 watershed in the North American Great Lakes Basin. Using a series of linked land cover, climate, hydrologic, hydraulic, thermal, loading, and biological response models, we examined how changes in both land cover and climate may interact to shape the habitat suitability of river segments for common sport fishes and alter patterns of biological integrity. In scenario-based modeling, both climate and land use change altered multiple ecosystem properties. Because water temperature has a controlling influence on species distributions, sport fishes were overall more sensitive to climate change than to land cover change. However, community-based biological integrity metrics were more sensitive to land use change than climate change; as were nutrient export rates. We discuss the implications of this result for regional preparations for climate change adaptation, and the extent to which the result may be constrained by our modeling methodology.  相似文献   

11.
On a global scale, changing climates are affecting ecological systems across multiple levels of biological organization. Moreover, climates are changing at rates unprecedented in recent geological history. Thus, one of the most pressing concerns of the modern era is to understand the biological responses to climate such that society can both adapt and implement measures that attempt to offset the negative impacts of a rapidly changing climate. One crucial question, to understand organismal responses to climate, is whether the ability of organisms to adapt can keep pace with quickly changing environments. To address this question, a syntheses of knowledge from a broad set of biological disciplines will be needed that integrates information from the fields of ecology, behavior, physiology, genetics, and evolution. This symposium assembled a diverse group of scientists from these subdisciplines to present their perspectives regarding the ability of organisms to adapt to changing climates. Specifically, the goals of this symposia were to (1) highlight what each discipline brings to a discussion of organismal responses to climate, (2) to initiate and foster a discussion to break barriers in the transfer of knowledge across disciplines, and (3) to synthesize an approach to address ongoing issues concerning biological responses to climate.  相似文献   

12.
Understanding how biodiversity will respond to future climate change is a major conservation and societal challenge. Climate change is predicted to force many species to shift their ranges in pursuit of suitable conditions. This study aims to use landscape genetics, the study of the effects of environmental heterogeneity on the spatial distribution of genetic variation, as a predictive tool to assess how species will shift their ranges to track climatic changes and inform conservation measures that will facilitate movement. The approach is based on three steps: 1) using species distribution models (SDMs) to predict suitable ranges under future climate change, 2) using the landscape genetics framework to identify landscape variables that impede or facilitate movement, and 3) extrapolating the effect of landscape connectivity on range shifts in response to future climate change. I show how this approach can be implemented using the publicly available genetic dataset of the grey long-eared bat, Plecotus austriacus, in the Iberian Peninsula. Forest cover gradient was the main landscape variable affecting genetic connectivity between colonies. Forest availability is likely to limit future range shifts in response to climate change, primarily over the central plateau, but important range shift pathways have been identified along the eastern and western coasts. I provide outputs that can be directly used by conservation managers and review the viability of the approach. Using landscape genetics as a predictive tool in combination with SDMs enables the identification of potential pathways, whose loss can affect the ability of species to shift their range into future climatically suitable areas, and the appropriate conservation management measures to increase landscape connectivity and facilitate movement.  相似文献   

13.
The Forest ecosystem genomics Research: supporTing Transatlantic Cooperation project (FoResTTraC, http://www.foresttrac.eu/) sponsored a workshop in August 2010 to evaluate the potential for using a landscape genomics approach for studying plant adaptation to the environment and the potential of local populations for coping with changing climate. This paper summarizes our discussions and articulates a vision of how we believe forest trees offer an unparalleled opportunity to address fundamental biological questions, as well as how the application of landscape genomic methods complement to traditional forest genetic approaches that provide critical information needed for natural resource management. In this paper, we will cover four topics. First, we begin by defining landscape genomics and briefly reviewing the unique situation for tree species in the application of this approach toward understanding plant adaptation to the environment. Second, we review traditional approaches in forest genetics for studying local adaptation and identifying loci underlying locally adapted phenotypes. Third, we present existing and emerging methods available for landscape genomic analyses. Finally, we briefly touch on how these approaches can aid in understanding practical topics such as management of tree populations facing climate change.  相似文献   

14.
Cicadas are large hemipteran insects characterized by unique life‐history traits, such as extraordinarily long life cycles, a subterranean/terrestrial habitat transition, xylem sap‐feeding and melodious sound production. These fascinating features of cicadas have attracted much attention in the research fields of physiology and ecology, resulting in an accumulation of knowledge about the underlying mechanisms and their adaptive significance. Although community‐level responses to recent climate change have already been documented for cicada fauna, an understanding of their causal relationships is still at the initial stages. In this review, we summarize current knowledge about environmental adaptations of cicadas to facilitate a deeper understanding of the ecophysiological consequences of climate change. We first outline the diverse responses of cicadas to environmental factors, mainly temperature, and their strategies to cope with naturally fluctuating environments. Then, we discuss the consequence of upcoming climate change by consolidating the current findings. This review highlights the fact that fitness‐relevant activities are fine‐tuned to a species‐specific temperature optimum to achieve habitat segregation among coexisting species, implying that cicada diversity is highly susceptible to climate warming. As a result of their conspicuous large bodies and species‐specific calling songs, cicadas are promising candidates for use as bioindicator species to monitor ecological impacts of climate change. We encourage future works that continuously quantify population‐ and community‐level responses to upcoming climate change, as well as unveil mechanistic links between physiological traits and ecological consequences.  相似文献   

15.
The Arctic is undergoing rapid and accelerating change in response to global warming, altering biodiversity patterns, and ecosystem function across the region. For Arctic endemic species, our understanding of the consequences of such change remains limited. Spectacled eiders (Somateria fischeri), a large Arctic sea duck, use remote regions in the Bering Sea, Arctic Russia, and Alaska throughout the annual cycle making it difficult to conduct comprehensive surveys or demographic studies. Listed as Threatened under the U.S. Endangered Species Act, understanding the species response to climate change is critical for effective conservation policy and planning. Here, we developed an integrated population model to describe spectacled eider population dynamics using capture–mark–recapture, breeding population survey, nest survey, and environmental data collected between 1992 and 2014. Our intent was to estimate abundance, population growth, and demographic rates, and quantify how changes in the environment influenced population dynamics. Abundance of spectacled eiders breeding in western Alaska has increased since listing in 1993 and responded more strongly to annual variation in first‐year survival than adult survival or productivity. We found both adult survival and nest success were highest in years following intermediate sea ice conditions during the wintering period, and both demographic rates declined when sea ice conditions were above or below average. In recent years, sea ice extent has reached new record lows and has remained below average throughout the winter for multiple years in a row. Sea ice persistence is expected to further decline in the Bering Sea. Our results indicate spectacled eiders may be vulnerable to climate change and the increasingly variable sea ice conditions throughout their wintering range with potentially deleterious effects on population dynamics. Importantly, we identified that different demographic rates responded similarly to changes in sea ice conditions, emphasizing the need for integrated analyses to understand population dynamics.  相似文献   

16.
Future ecosystem properties of grasslands will be driven largely by belowground biomass responses to climate change, which are challenging to understand due to experimental and technical constraints. We used a multi-faceted approach to explore single and combined impacts of elevated CO2 and warming on root carbon (C) and nitrogen (N) dynamics in a temperate, semiarid, native grassland at the Prairie Heating and CO2 Enrichment experiment. To investigate the indirect, moisture mediated effects of elevated CO2, we included an irrigation treatment. We assessed root standing mass, morphology, residence time and seasonal appearance/disappearance of community-aggregated roots, as well as mass and N losses during decomposition of two dominant grass species (a C3 and a C4). In contrast to what is common in mesic grasslands, greater root standing mass under elevated CO2 resulted from increased production, unmatched by disappearance. Elevated CO2 plus warming produced roots that were longer, thinner and had greater surface area, which, together with greater standing biomass, could potentially alter root function and dynamics. Decomposition increased under environmental conditions generated by elevated CO2, but not those generated by warming, likely due to soil desiccation with warming. Elevated CO2, particularly under warming, slowed N release from C4—but not C3—roots, and consequently could indirectly affect N availability through treatment effects on species composition. Elevated CO2 and warming effects on root morphology and decomposition could offset increased C inputs from greater root biomass, thereby limiting future net C accrual in this semiarid grassland.  相似文献   

17.
Global climate change and its impact on public health exemplify the challenge of managing complexity and uncertainty in health research. The Canadian North is currently experiencing dramatic shifts in climate, resulting in environmental changes which impact Inuit livelihoods, cultural practices, and health. For researchers investigating potential climate change impacts on Inuit health, it has become clear that comprehensive and meaningful research outcomes depend on taking a systemic and transdisciplinary approach that engages local citizens in project design, data collection, and analysis. While it is increasingly recognised that using approaches that embrace complexity is a necessity in public health, mobilizing such approaches from theory into practice can be challenging. In 2009, the Rigolet Inuit Community Government in Rigolet, Nunatsiavut, Canada partnered with a transdisciplinary team of researchers, health practitioners, and community storytelling facilitators to create the Changing Climate, Changing Health, Changing Stories project, aimed at developing a multi-media participatory, community-run methodological strategy to gather locally appropriate and meaningful data to explore climate-health relationships. The goal of this profile paper is to describe how an EcoHealth approach guided by principles of transdisciplinarity, community participation, and social equity was used to plan and implement this climate-health research project. An overview of the project, including project development, research methods, project outcomes to date, and challenges encountered, is presented. Though introduced in this one case study, the processes, methods, and lessons learned are broadly applicable to researchers and communities interested in implementing EcoHealth approaches in community-based research.  相似文献   

18.
Protected area systems and conservation corridors can help mitigate the impacts of climate change on Amazonian biodiversity. We propose conservation design criteria that will help species survive in situ or adjust range distributions in response to increased drought. The first priority is to protect the western Amazon, identified as the 'Core Amazon', due to stable rainfall regimes and macro-ecological phenomena that have led to the evolution of high levels of biodiversity. Ecotones can buffer the impact from climate change because populations are genetically adapted to climate extremes, particularly seasonality, because high levels of habitat diversity are associated with edaphic variability. Future climatic tension zones should be surveyed for geomorphological features that capture rain or conserve soil moisture to identify potential refugia for humid forest species. Conservation corridors should span environmental gradients to ensure that species can shift range distributions. Riparian corridors provide protection to both terrestrial and aquatic ecosystems. Multiple potential altitudinal corridors exist in the Andes, but natural and anthropogenic bottlenecks will constrain the ability of species to shift their ranges and adapt to climate change. Planned infrastructure investments are a serious threat to the potential to consolidate corridors over the short and medium term.  相似文献   

19.
Species may respond to climate change in many ecological and evolutionary ways. In this simulation study, we focus on the concurrent evolution of three traits in response to climate change, namely dispersal probability, temperature tolerance (or niche width), and temperature preference (optimal habitat). More specifically, we consider evolutionary responses in host species involved in different types of interaction, that is parasitism or commensalism, and for low or high costs of a temperature tolerance–fertility trade‐off (cost of generalization). We find that host species potentially evolve all three traits simultaneously in response to increasing temperature but that the evolutionary response interacts and may be compensatory depending on the conditions. The evolutionary adjustment of temperature preference is slower in the parasitism than in commensalism scenario. Parasitism, in turn, selects for higher temperature tolerance and increased dispersal. High costs for temperature tolerance (i.e. generalization) restrict evolution of tolerance and thus lead to a faster response in temperature preference than that observed under low costs. These results emphasize the possible role of biotic interactions and the importance of ‘multidimensional’ evolutionary responses to climate change.  相似文献   

20.
There is ample evidence for ecological responses to recent climate change. Most studies to date have concentrated on the effects of climate change on individuals and species, with particular emphasis on the effects on phenology and physiology of organisms as well as changes in the distribution and range shifts of species. However, responses by individual species to climate change are not isolated; they are connected through interactions with others at the same or adjacent trophic levels. Also from this more complex perspective, recent case studies have emphasized evidence on the effects of climate change on biotic interactions and ecosystem services. This review highlights the ‘knowns’ but also ‘unknowns’ resulting from recent climate impact studies and reveals limitations of (linear) extrapolations from recent climate-induced responses of species to expected trends and magnitudes of future climate change. Hence, there is need not only to continue to focus on the impacts of climate change on the actors in ecological networks but also and more intensively to focus on the linkages between them, and to acknowledge that biotic interactions and feedback processes lead to highly complex, nonlinear and sometimes abrupt responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号