首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct communication of neighboring cells by gap junction channels is essential for the development of tissues and organs in the body. Whereas vertebrate gap junctions are composed of members of the connexin family of transmembrane proteins, in invertebrates gap junctions consist of Innexin channel proteins. Innexins display very low sequence homology to connexins. In addition, very little is known about their cellular role during developmental processes. In this report, we examined the function and the distribution of Drosophila Innexin 2 protein in embryonic epithelia. Both loss-of-function and gain-of-function innexin 2 mutants display severe developmental defects due to cell death and a failure of proper epithelial morphogenesis. Furthermore, immunohistochemical analyses using antibodies against the Innexins 1 and 2 indicate that the distribution of Innexin gap junction proteins to specific membrane domains is regulated by tissue specific factors. Finally, biochemical interaction studies together with genetic loss- and gain-of-function experiments provide evidence that Innexin 2 interacts with core proteins of adherens and septate junctions. This is the first study, to our knowledge, of cellular distribution and protein-protein interactions of an Innexin gap junctional channel protein in the developing epithelia of Drosophila.  相似文献   

2.
Changes in cell shape and position drive morphogenesis in epithelia and depend on the polarized nature of its constituent cells. The spectrin-based membrane skeleton is thought to be a key player in the establishment and/or maintenance of cell shape and polarity. We report that apical beta(Heavy)-spectrin (beta(H)), a terminal web protein that is also associated with the zonula adherens, is essential for normal epithelial morphogenesis of the Drosophila follicle cell epithelium during oogenesis. Elimination of beta(H) by the karst mutation prevents apical constriction of the follicle cells during mid-oogenesis, and is accompanied by a gross breakup of the zonula adherens. We also report that the integrity of the migratory border cell cluster, a group of anterior follicle cells that delaminates from the follicle epithelium, is disrupted. Elimination of beta(H) prevents the stable recruitment of alpha-spectrin to the apical domain, but does not result in a loss of apicobasal polarity, as would be predicted from current models describing the role of spectrin in the establishment of cell polarity. These results demonstrate a direct role for apical (alphabeta(H))(2)-spectrin in epithelial morphogenesis driven by apical contraction, and suggest that apical and basolateral spectrin do not play identical roles in the generation of apicobasal polarity.  相似文献   

3.
Chiu WL  Chang W 《Journal of virology》2002,76(19):9575-9587
Vaccinia virus, a member of the poxvirus family, contains a conserved J1R open reading frame that encodes a late protein of 17.8 kDa. The 18-kDa J1R protein is associated mainly with the membrane fraction of intracellular mature virus particles. This study examines the biological function of J1R protein in the vaccinia virus life cycle. A recombinant vaccinia virus was constructed to conditionally express J1R protein in an isopropyl-beta-D-galactopyranoside (IPTG)-inducible manner. When J1R is not expressed during vaccinia virus infection, the virus titer is reduced approximately 100-fold. In contrast, J1R protein is not required for viral gene expression, as indicated by protein pulse-labeling. J1R protein is also not required for DNA processing, as the resolution of the concatemer junctions of replicated viral DNA was detected without IPTG. A deficiency of J1R protein caused a severe delay in the processing of p4a and p4b into mature core proteins 4a and 4b, indicating that J1R protein participates in virion morphogenesis. Infected cells grown in the absence of IPTG contained very few intracellular mature virions in the cytoplasm, and enlarged viroplasm structures accumulated with viral crescents attached at the periphery. Abundant intermediate membrane structures of abnormal shapes were observed, and many immature virions were either empty or partially filled, indicating that J1R protein is important for DNA packaging into immature virions. J1R protein also coimmunoprecipited with A45R protein in infected cells. In summary, these results indicate that vaccinia virus J1R is a membrane protein that is required for virus growth and plaque formation. J1R protein interacts with A45R protein and performs an important role during immature virion formation in cultured cells.  相似文献   

4.
Proteins of the 4.1 family play a key role in the integrity of the cytoskeleton and in epithelial tissue movement, as shown by the disruption of the actin cytoskeleton in human erythrocytes caused by genetic loss of protein 4.1, and the failure of epithelial tissue migration during Drosophila embryogenesis caused by genetic loss of the 4.1 homolog Coracle. Here we report the genetic characterization of Yurt, a novel protein 4.1 family member in Drosophila that is associated with the plasma membrane of epithelial cells. Homozygous loss-of-function mutations in the yurt gene cause failure of germ-band retraction, dorsal closure, and head involution, associated with degeneration of the amnioserosa and followed by embryonic lethality. A mammalian homolog of Yurt is up-regulated in metastatic melanoma cells. These novel cytoskeletal proteins appear to play important roles in epithelial cell movements and in the morphogenetic tissue changes that depend on them.  相似文献   

5.
In this study, we examined the contribution of microtubules to epithelial morphogenesis in primary thyroid cell cultures. Thyroid follicles consist of a single layer of polarized epithelial cells surrounding a closed compartment, the follicular lumen. Freshly isolated porcine thyroid cells aggregate and reorganize to form follicles when grown in primary cultures. Follicular reorganization is principally a morphogenetic process that entails the assembly of biochemically distinct apical and basolateral membrane domains, delimited by tight junctions. The establishment of cell surface polarity during folliculogenesis coincided with the polarized redistribution of microtubules, predominantly in the developing apical poles of cells. Disruption of microtubule integrity using either colchicine or nocodazole caused loss of defined apical membrane domains, tight junctions and follicular lumina. Apical membrane and tight junction markers became randomly distributed at the outer surfaces of aggregates. In contrast, the basolateral surface markers, E-cadherin and Na(+),K(+)-ATPase, remained correctly localized at sites of cell-cell contact and at the free surfaces of cell aggregates. These findings demonstrate that microtubules play a necessary role in thyroid epithelial morphogenesis. Specifically, microtubules are essential to preserve the correct localization of apical membrane components within enclosed cellular aggregates, a situation that is also likely to pertain where lumina must be formed from solid aggregates of epithelial precursors.  相似文献   

6.
Ezrin, Radixin, and Moesin (the ERM proteins) supply regulated linkage between membrane proteins and the actin cytoskeleton. The study of mammalian ERM proteins has been hampered by presumed functional overlap. We have found that Ezrin, the only ERM detected in epithelial cells of the developing intestine, provides an essential role in configuring the mouse intestinal epithelium. Surprisingly, Ezrin is not absolutely required for the formation of brush border microvilli or for the establishment or maintenance of epithelial polarity. Instead, Ezrin organizes the apical terminal web region, which is critical for the poorly understood process of de novo lumen formation and expansion during villus morphogenesis. Our data also suggest that Ezrin controls the localization and/or function of certain apical membrane proteins that support normal intestinal function. These in vivo studies highlight the critical function of Ezrin in the formation of a multicellular epithelium rather than an individual epithelial cell.  相似文献   

7.
D R Burgess 《Tissue & cell》1976,8(1):147-158
During the period of early morphogenetic folding of the intestinal epithelium, changes in the epithelial-mesenchymal interface were observed by light microscopy, scanning and transmission electron microscopy. The epithelium in cross-section, appears first as a circle, then an ellipse and finally by a triangle prior to the formation of the first three previllous ridges. The bases of all epithelial cells are flat at the circular stage. At the ellipse and triangle stages the bases of the epithelial cells occupying the sides possess lobopodia that do not penetrate the basal lamina. The immediate mesenchymal cells subjacent to those epithelial cells on the sides of the ellipse and triangle alter their orientation to being rounded-up or perpendicular to the plane of the basal lamina. Large numbers of fine mesenchymal pseudopodia in addition to many extracellular fibrils are revealed by transmission and scanning electron microscopy at the epithelial-mesenchymal interface. The fine mesenchymal pseudopodia come into close contact but do not penetrate the ruthenium red-staining basal lamina. The possible roles of close contact between epithelium and mesenchyme, the alteration in orientation of mesenchyme cells, and of the basal lamina in tissue interaction are discussed.  相似文献   

8.
We present an in-depth study of spatio-temporal patterns in a simplified version of a mechanical model for pattern formation in mesenchymal morphogenesis. We briefly motivate the derivation of the model and show how to choose realistic boundary conditions to make the system well-posed. We firstly consider one-dimensional patterns and carry out a nonlinear perturbation analysis for the case where the uniform steady state is linearly unstable to a single mode. In two-dimensions, we show that if the displacement field in the model is represented as a sum of orthogonal parts, then the model can be decomposed into two sub-models, only one of which is capable of generating pattern. We thus focus on this particular sub-model. We present a nonlinear analysis of spatio-temporal patterns exhibited by the sub-model on a square domain and discuss mode interaction. Our analysis shows that when a two-dimensional mode number admits two or more degenerate mode pairs, the solution of the full nonlinear system of partial differential equations is a mixed mode solution in which all the degenerate mode pairs are represented in a frequency locked oscillation.  相似文献   

9.
It is now well established that epithelial-mesenchymal interactions are essential for the formation of many organs in the development of the animals. Chicken digestive organs provide a valuable model system for analysis of the mechanisms underlying the epithelial-mesenchymal interactions. Here we will present our recent data indicating that the mesenchymal factors necessary for the epithelial differentiation in the chicken stomach are composed of several components such as growth factors and extracellular matrices. The possible involvement of bone morphogenetic protein-2 will be discussed.  相似文献   

10.
11.
During Caenorhabditis elegans development, the embryo acquires its vermiform shape due to changes in the shape of epithelial cells, a process that requires an apically localized actin cytoskeleton. We show that SMA-1, an ortholog of beta(H)-spectrin required for normal morphogenesis, localizes to the apical membrane of epithelial cells when these cells are rapidly elongating. In spc-1 alpha-spectrin mutants, SMA-1 localizes to the apical membrane but its organization is altered, consistent with the hypothesis these proteins act together to form an apically localized spectrin-based membrane skeleton (SBMS). SMA-1 is required to maintain the association between actin and the apical membrane; sma-1 mutant embryos fail to elongate because actin, which provides the driving force for cell shape change, dissociates from the apical membrane skeleton during morphogenesis. Analysis of sma-1 expression constructs and mutant strains indicates SMA-1 maintains the association between actin and the apical membrane via interactions at its N-terminus and this activity is independent of alpha-spectrin. SMA-1 also preserves dynamic changes in the organization of the apical membrane skeleton. Taken together, our results show the SMA-1 SBMS plays a dynamic role in converting changes in actin organization into changes in epithelial cell shape during C. elegans embryogenesis.  相似文献   

12.
A finite elements model imitating the morphogenesis of smoothly curved tubular epithelial rudiments is suggested. It is based upon the experimentally proved assumption of the lateral (tangential) pressure between adjacent epithelial cells. The main idea of the model is that under a non-zero local curvature the lateral cell-cell pressure acquires the radial components which are absent under zero curvature. In the framework of the model we investigate the roles of initial geometry, the different coefficients relating the local curvatures and radial cell shifts, and of visco-elastical cell-cell linkages in the shaping process. We also employ the different temporal regimes (both periodical and constant) of the lateral pressure exerted and the different overall durations of the modelling. As a result, we get a set of biologically realistical shapes, almost all of them belonging to the same basical "trefoiled" archetype. Among the variables explored, shaping was most affected by the changes in visco-elastical coefficients, in the temporal regimes and in the overall duration of the modelling. The model shows that rather complicated and realistical shapes of epithelial rudiments can be obtained without assuming any initial regional differences inside cell layers. The model may be useful for understanding the principles underlying both genetical and epigenetical regulation of the morphogenesis.  相似文献   

13.
We have already cloned the cDNA for the HPC-1 antigen, a neuron-specific protein antigen from the rat brain. Here we report the molecular cloning of the bovine HPC-1 antigen homologue, and much strong sequence conservation between rat and bovine. By searching the recent protein data base, it was found that the HPC-1 antigen revealed unusual similarity to epimorphin which was mesenchymal factor related to the morphogenesis of primitive epidermal tissues in embryonic stages. We also found that the HPC-1 antigen was identical to p35A (syntaxin) which bound both to a synaptic vesicle protein and to N-type calcium channel. Although the relationship of the physiological functions, structures and topologies along cellular membrane between the HPC-1 antigen and epimorphin have not been consistent yet, these two proteins belong to a novel protein family.  相似文献   

14.
15.
16.
17.
18.
During development of the Drosophila tracheal (respiratory) system, the cell bodies and apical and basal surfaces of the tracheal epithelium normally move in concert as new branches bud and grow out to form tubes. We show that mutations in the Drosophila ribbon (rib) gene disrupt this coupling: the basal surface continues to extend towards its normal targets, but movement and morphogenesis of the tracheal cell bodies and apical surface is severely impaired, resulting in long basal membrane protrusions but little net movement or branch formation. rib mutant tracheal cells are still responsive to the Branchless fibroblast growth factor (FGF) that guides branch outgrowth, and they express apical membrane markers normally. This suggests that the defect lies either in transmission of the FGF signal from the basal surface to the rest of the cell or in the apical cell migration and tubulogenesis machinery. rib encodes a nuclear protein with a BTB/POZ domain and Pipsqueak DNA-binding motif. It is expressed in the developing tracheal system and other morphogenetically active epithelia, many of which are also affected in rib mutants. We propose that Rib is a key regulator of epithelial morphogenesis that promotes migration and morphogenesis of the tracheal cell bodies and apical surface and other morphogenetic movements.  相似文献   

19.
Segregation of the apical and basolateral plasma membrane domains is the key distinguishing feature of epithelial cells. A series of interrelated cues and processes follow this primary polarization event, resulting in the morphogenesis of the mammalian epithelium. This review focuses on the role of the interactions between the extracellular matrix and neighbouring cells during the initiation and establishment of epithelial polarity, and the role that membrane transport and polarity complexes play in this process. An overview of the formation of the apical junctional complexes is given in relation to the generation of distinct membrane domains characterized by the asymmetric distribution of phosphoinositides and proteins. The mechanisms and machinery utilized by the trafficking pathways involved in the generation and maintenance of this apical-basolateral polarization are expounded, highlighting processes of apical-directed transport. Furthermore, the current proposed mechanisms for the organization of entire networks of cells into a structured, polarized three-dimensional structure are described, with an emphasis on the proposed mechanisms for the formation and expansion of the apical lumen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号