首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Ghrelin and obestatin are encoded by the preproghrelin gene and originate from posttranslational processing of the preproghrelin peptide. The fetal rat pancreas contains acylated and desacylated ghrelin peptides, as well as growth hormone secretagogue receptor -1a mRNA. Acylated ghrelin inhibits insulin secretion. We investigated the plasma and tissue ontogeny of ghrelin and obestatin in the rat. METHODS: We measured obestatin and acylated and total ghrelin concentrations in plasma, pancreas and stomach from rat fetuses (F20) and neonates at postnatal day (PN) 1, 6, 12 and 21). RESULTS: Overall, obestatin concentrations were markedly lower than total ghrelin concentrations. In plasma, total ghrelin concentrations decreased abruptly after birth (p < 0.05), contrasting with a 3 times increase in the concentration of acylated ghrelin between F20 and PN1 (p < 0.05). In pancreas, total ghrelin and obestatin concentrations decreased progressively from PN1 to PN21 but acylated ghrelin concentrations increased 6-7 times from F20 (18 [6] pg/ml) to PN6 (122 [59] pg/ml). The percent of acylated ghrelin increased from 1.8 (0.6) at F20 to 39.7 (13.0) % of total ghrelin immunoreactivity at PN12 (p < 0.05). There were significant positive correlations between postnatal obestatin, acylated or total ghrelin and insulin concentrations in the pancreas (all p < 0.02, r(2) > 0.21) and between postnatal total ghrelin and obestatin (in pancreas, r(2) = 0.37) or acylated ghrelin (in stomach, r(2) = 0.27) (p < 0.001). CONCLUSION: Ghrelin and obestatin are present in the perinatal pancreas where they could potentially affect insulin secretion.  相似文献   

2.
In this study, we investigated the way in which fetal insulin secretion is influenced by interrelated changes in blood glucose and sympathoadrenal activity. Experiments were conducted in late gestation sheep fetuses prepared with chronic peripheral and adrenal catheters. The fetus mounted a brisk insulin response to hyperglycemia but with only a minimal change in the glucose-to-insulin ratio, indicating a tight coupling between insulin secretion and plasma glucose. In well-oxygenated fetuses, alpha(2)-adrenergic blockade by idazoxan effected no change in fetal insulin concentration, indicating the absence of a resting sympathetic inhibitory tone for insulin secretion. With hypoxia, fetal norepinephrine (NE) and epinephrine secretion and plasma NE increased markedly; fetal insulin secretion decreased strikingly with the degree of change related to extant plasma glucose concentration. Idazoxan blocked this effect showing the hypoxic inhibition of insulin secretion to be mediated by a specific alpha(2)-adrenergic mechanism. alpha(2)-Blockade in the presence of sympathetic activation secondary to hypoxic stress also revealed the presence of a potent beta-adrenergic stimulatory effect for insulin secretion. However, based on an analysis of data at the completion of the study, this beta-stimulatory mechanism was seen to be absent in all six fetuses that had been subjected to a prior experimentally induced hypoxic stress but in only one of nine fetuses not subjected to this perturbation. We speculate that severe hypoxic stress in the fetus may, at least in the short term, have a residual effect in suppressing the beta-adrenergic stimulatory mechanism for insulin secretion.  相似文献   

3.
Plasma glucose and insulin have been studied during lethargy and spontaneous arousal of hibernating edible dormouse. During lethargy blood glucose was low while plasma insulin remained at the same level as in other seasons. Plasma glucose and insulin did not fluctuate along the phase of lethargy. During spontaneous arousal plasma insulin rose strongly from the 17 degrees C stage, reaching the higher values at 26 degrees C while blood glucose was only 85 mg/100 ml, then decreased at 37 degrees C. The effect of glucose and temperature on insulin secretion was studied using perfused pancreas preparation from hibernating edible dormice. During the rewarming of the edible dormouse pancreas the insulin release did not occur in response to the absolute extracellular glucose level but occurred in response to a B cell membrane phenomenon which was dependent on the changing rate of glucose level. The effect of glucose and temperature on insulin secretion from perfused pancreas was compared between edible dormouse and homeotherm permanent, the rat. The B cell response to glucose of the dormouse pancreas increased up to 15 degrees C whereas that of the rat only from 25 degrees C. The dormouse insulin secretion reached a peak value at the 30 degrees C of temperature, whereas that of the rat progressively increased until 37 degrees C. These results showed that some biochemical adjustment or process of acclimatization took place in the B cells of the hibernators.  相似文献   

4.
The effects of chemical diabetes and fasting on fuel metabolism and insulin secretory activity in late pregnancy were investigated. Female Wistar rats were made chemically diabetic (CD) by intravenous injection of streptozotocine (30 mg/kg) 2 weeks before conception. When CD pregnant rats were fed, plasma glucose and insulin levels were not significantly different from those of normal pregnant rats. Ketone body levels, however, were higher in CD pregnant rats than in normal pregnant rats, indicating insulin resistance in CD rats. Insulin secretion from the perfused pancreas caused by arginine or glucose was markedly decreased in CD pregnant rats. The pregnant rats were fasted for 2 days, from day 19 to 21 of gestation. Plasma glucose and insulin concentrations decreased similarly in the two groups, whereas ketone body concentrations in CD pregnant rats were significantly higher than those in normal pregnant rats. Glucose-induced insulin secretion by the perfused pancreas was markedly attenuated by fasting and was not significantly different in normal and CD pregnant rats. These observations suggest that diabetes mellitus accelerates starvation in late gestation, due to increased insulin resistance and poor insulin secretion, and that fasting in diabetic pregnancy amplifies ketogenesis.  相似文献   

5.
Insulin secretion tests were carried out before and after treatment in patients with severe congestive heart failure. Before treatment the plasma insulin level and the insulin secretion response to intravenous tolbutamide were significantly reduced in all patients. In patients who made a good clinical recovery the plasma insulin level and the insulin secretion response were significantly improved. Patients who had a poor response to medical treatment showed little improvement in their insulin secretion test. This suppression of insulin secretion is probably due to the reduced blood flow to the pancreas together with a high level of circulating catecholamines.  相似文献   

6.

Aim

Glucocorticoids (GCs) take part in the direct control of cell lineage during the late phase of pancreas development when endocrine and exocrine cell differentiation occurs. However, other tissues such as the vasculature exert a critical role before that phase. This study aims to investigate the consequences of overexposure to exogenous glucocorticoids during different time-windows of gestation for the development of the fetal endocrine pancreas.

Methods

Pregnant Wistar rats received dexamethasone acetate in their drinking water (1 µg/ml) during the last week or throughout gestation. Fetuses and their pancreases were analyzed at day 15 and 21 of gestation. Morphometrical analysis was performed on pancreatic sections after immunohistochemistry techniques and insulin secretion was evaluated on fetal islets collected in vitro.

Results

Dexamethasone given the last week or throughout gestation reduced the beta-cell mass in 21-day-old fetuses by respectively 18% or 62%. This was accompanied by a defect in insulin secretion. The alpha-cell mass was reduced similarly. Neither islet vascularization nor beta-cell proliferation was affected when dexamethasone was administered during the last week, which was however the case when given throughout gestation. When given from the beginning of gestation, dexamethasone reduced the number of cells expressing the early marker of endocrine lineage neurogenin-3 when analyzed at 15 days of fetal age.

Conclusions

GCs reduce the beta- and alpha-cell mass by different mechanisms according to the stage of development during which the treatment was applied. In fetuses exposed to glucocorticoids the last week of gestation only, beta-cell mass is reduced due to impairment of beta-cell commitment, whereas in fetuses exposed throughout gestation, islet vascularization and lower beta-cell proliferation are involved as well, amplifying the reduction of the endocrine mass.  相似文献   

7.
The injection of streptozotocin to 18-day-old rat fetuses induced, 2 days later, a 50% fall in plasma insulin and a twofold increase in plasma glucagon concentrations and liver cAMP levels. Phosphoenolpyruvate carboxykinase mRNA that were undetectable in the fetal rat liver, accumulated 48 h after streptozotocin injection, their concentration being 30% of that found in the liver of 1-day-old newborn rats in whom liver phosphoenolpyruvate carboxykinase gene expression is maximal. Physiological concentrations of glucagon (0.7 +/- 0.2 nM) induced, within 2 h, phosphoenolpyruvate carboxykinase mRNA accumulation in cultured hepatocytes from 20-day-old fetuses. The addition of insulin (0.01-100 nM) inhibits, by no more than 30%, the glucagon-induced phosphoenolpyruvate carboxykinase mRNA accumulation. Exposure of fetal hepatocytes to insulin for 24 h did not change the glucagon dose/response curve and did not lead to a more efficient inhibition of the glucagon-induced phosphoenolpyruvate carboxykinase mRNA accumulation, despite a clear stimulatory effect on the rate of lipogenesis. In contrast, when hepatocytes were cultured in the presence of dexamethasone, the glucagon-induced phosphoenolpyruvate carboxykinase mRNA accumulation can be totally inhibited by pharmacological concentrations of insulin (10 nM). From these in-vivo and in-vitro studies, it is concluded that, under physiological conditions, the postnatal rise in plasma glucagon concentration is more important than the fall in the plasma insulin concentration for the primary induction of liver phosphoenolpyruvate carboxykinase gene expression.  相似文献   

8.
The control of insulin and glucagon secretion from isolated pancreatic islets of lean and genetically obese mice has been compared. The enlarged islets of obese mouse pancreas and islets of obese mouse pancreas and islets of obese mice maintained on a restricted diet manifested a greater response to glucose stimulation of insulin secretion than the lean mice islets. The glucagon content of the islets, the secretion of glucagon in a medium containing 150 mg% glucose and the stimulation of glucagon secretion by arginine did not differ significantly in the two groups. Adrenaline stimulated glucagon secretion in vitro from obese mice but not from lean mice. Antinsulin serum injections into obese mice increased the plasma glucagon levels about twofold and had no effect on glucagon levels in lean mice, although the level of hyperglycaemia was the same in both groups. It is suggested that the suppression of glucagon release by glucose requires a higher concentration of insulin in the obese mouse pancreas than in lean mice.  相似文献   

9.
Oxytocin (OT) infusion in normal dogs increases plasma insulin and glucagon levels and increases rates of glucose production and uptake. The purpose of this study was to determine whether the effects of OT on glucose metabolism were direct or indirect. The studies were carried out in normal, unanesthetized dogs in which OT infusion was superimposed on infusion of either somatostatin, which suppresses insulin and glucagon secretion, or clonidine, which suppresses insulin secretion only. Infusion of 0.2 microgram/kg/min of somatostatin suppressed basal levels of plasma insulin and glucagon and inhibited the OT-induced rise of these hormones by about 60-80% of that seen with OT alone. The rates of glucose production and uptake by tissues, measured with [6-3H] glucose, were significantly lower than those seen with OT alone, and the rise in glucose clearance was completely inhibited. Clonidine (30 micrograms/kg, sc), given along with an insulin infusion to replace basal levels of insulin, completely prevented the OT-induced rise in plasma insulin and markedly reduced the glucose uptake seen with OT alone, but did not reduce the usual increase in plasma glucose and glucagon levels or glucose production. To determine whether the OT-induced rise in plasma insulin was in response to the concomitant increase in plasma glucose, similar plasma glucose levels were established in normal dogs by a continuous infusion of glucose and an OT infusion was superimposed. OT did not raise plasma glucose levels further, but plasma insulin levels were increased, indicating that OT can stimulate insulin secretion independently of the plasma glucose changes. Studies by others have shown that the addition of OT to pancreatic islets or intact pancreas can stimulate insulin and glucagon secretion, indicating a direct effect. Our studies agree with that and suggest that in vivo, OT raises plasma insulin levels, at least in part, through a direct action on the pancreas. These studies also show that OT increases glucose production by increasing glucagon secretion and, in addition, a direct effect of OT on glucose production is likely. The OT-induced increase in glucose uptake is mediated largely by increased insulin secretion.  相似文献   

10.
We measured in vivo and in vitro nutrient-stimulated insulin secretion in late gestation fetal sheep to determine whether an intrinsic islet defect is responsible for decreased glucose-stimulated insulin secretion (GSIS) in response to chronic hypoglycemia. Control fetuses responded to both leucine and lysine infusions with increased arterial plasma insulin concentrations (average increase: 0.13 +/- 0.05 ng/ml leucine; 0.99 +/- 0.26 ng/ml lysine). In vivo lysine-stimulated insulin secretion was decreased by chronic (0.37 +/- 0.18 ng/ml) and acute (0.27 +/- 0.19 ng/ml) hypoglycemia. Leucine did not stimulate insulin secretion following acute hypoglycemia but was preserved with chronic hypoglycemia (0.12 +/- 0.09 ng/ml). Isolated pancreatic islets from chronically hypoglycemic fetuses had normal insulin and DNA content but decreased fractional insulin release when stimulated with glucose, leucine, arginine, or lysine. Isolated islets from control fetuses responded to all nutrients. Therefore, chronic late gestation hypoglycemia causes defective in vitro nutrient-regulated insulin secretion that is at least partly responsible for diminished in vivo GSIS. Chronic hypoglycemia is a feature of human intrauterine growth restriction (IUGR) and might lead to an islet defect that is responsible for the decreased insulin secretion patterns seen in human IUGR fetuses and low-birth-weight human infants.  相似文献   

11.
The effect of endogenous luteinizing hormone-releasing hormone (LHRH) on the proliferation induced by concanavalin A (Con A) in rat fetal thymocytes was studied. A selective antagonist (2 microg per fetus) or antibodies to LHRH (20 microl per fetus) were injected in utero into 20-day-old rat fetuses, and this resulted in a two- or fivefold decrease in the Con A-induced proliferation of thymocytes, respectively. In combined culture of the antagonist (10-5-10-6 M) with fetal thymocytes, the proliferative response was not decreased. The concentration of LHRH was determined by radioimmunoassay in tissues of immunocompetent organs and in blood serum of 18- and 21-day-old fetuses, and the hormone was found in the hypothalamus, thymus, and peripheral blood. The initially low level of LHRH in the thymus increased by 65 and 40%, respectively, on the first day after birth and became similar to the level in the hypothalamus. In the fetal blood serum, the LHRH level was significantly higher than in the thymus and hypothalamus of fetuses of the same age. The hormone concentration was greatest in the 18-day-old fetuses, and it decreased twofold by the 21st day. The findings indicate that LHRH is involved in regulation of T-cell immunity even during prenatal ontogenesis.  相似文献   

12.
We developed and analyzed two types of transgenic mice: rat insulin II promoter-ghrelin transgenic (RIP-G Tg) and rat glucagon promoter-ghrelin transgenic mice (RGP-G Tg). The pancreatic tissue ghrelin concentration measured by C-terminal radioimmunoassay (RIA) and plasma desacyl ghrelin concentration of RIP-G Tg were about 1000 and 3.4 times higher than those of nontransgenic littermates, respectively. The pancreatic tissue n-octanoylated ghrelin concentration measured by N-terminal RIA and plasma n-octanoylated ghrelin concentration of RIP-G Tg were not distinguishable from those of nontransgenic littermates. RIP-G Tg showed suppression of glucose-stimulated insulin secretion. Arginine-stimulated insulin secretion, pancreatic insulin mRNA and peptide levels, beta cell mass, islet architecture, and GLUT2 and PDX-1 immunoreactivity in RIP-G Tg pancreas were not significantly different from those of nontransgenic littermates. Islet batch incubation study did not show suppression of insulin secretion of RIP-G Tg in vitro. The insulin tolerance test showed lower tendency of blood glucose levels in RIP-G Tg. Taking lower tendency of triglyceride level of RIP-G Tg into consideration, these results may indicate that the suppression of insulin secretion is likely due to the effect of desacyl ghrelin on insulin sensitivity. RGP-G Tg, in which the pancreatic tissue ghrelin concentration measured by C-RIA was about 50 times higher than that of nontransgenic littermates, showed no significant changes in insulin secretion, glucose metabolism, islet mass, and islet architecture. The present study raises the possibility that desacyl ghrelin may have influence on glucose metabolism.  相似文献   

13.
We previously demonstrated that fetuses from undernourished pregnant rats exhibited increased beta-cell mass and hyperinsulinemia, whereas keeping food restriction until adult age caused reduced beta-cell mass, hypoinsulinemia, and decreased insulin secretion. Because these alterations can be related to insulin availability, we have now investigated early and long-term effects of protein calorie food restriction on insulin mRNA levels as well as the possible mechanisms that could modulate the endogenous insulin mRNA content. We used fetuses at 21.5 days of gestation proceeding from food-restricted rats during the last week of pregnancy and 70-day-old rats undernourished from day 14 of gestation until adult age and with respective controls. Insulin mRNA levels, glucose transporters, and total glycolysis and mitochondrial oxidative fluxes were evaluated. We additionally analyzed undernutrition effects on signals implicated in glucose-mediated insulin gene expression, especially pancreatic duodenal homeobox-1 (PDX-1), stress-activated protein kinase-2 (p38/SAPK2), and phosphatidylinositol 3-kinase. Undernourished fetuses showed increased insulin mRNA, oxidative glucose metabolism, and p38/SAPK2 levels, whereas undernutrition until adult age provoked a decrease in insulin gene expression, oxidative glucose metabolism, and PDX-1 levels. The results indicate that food restriction caused changes in insulin gene expression and content leading to alterations in glucose-stimulated insulin secretion. The molecular events, increased p38/SAPK2 levels in fetuses and decreased PDX-1 levels in adults, seem to be the responsible for the altered insulin mRNA expression. Moreover, because PDX-1 activation appears to be regulated by glucose-derived metabolite(s), the altered glucose oxidation caused by undernutrition could in some manner affect insulin mRNA expression.  相似文献   

14.
The involvement of intestinal hormones in the development of insulin release from rat fetal pancreas was investigated. B-cell responses were determined by changes in the concentration of immunoreactive insulin after glucose addition to the incubation medium. Coincubation of fragments of fetal pancreas and duodenum from adult and newborn rats and from 21.5-day-old fetus has shown that intestinal factors can recover the response of pancreas to glucose in fetuses with experimentally removed hypothalamus and hypophysis. Besides, the intestinal factors in the fetus were found to potentiate the effect of high glucose concentrations on B cells, but had no insulinotropic effect at physiological glucose concentration in the medium. The data obtained suggest that even in the antenatal period the intestinal, along with cephalic factors, can serve as modulators of glucose action on islet B cells.  相似文献   

15.
The pathophysiology of TallyHo mouse, a recently established animal model for type 2 diabetes mellitus, was analyzed at prediabetic state to examine the inherent defects which contribute to the development of diabetes. At 4 weeks of age, the TallyHo mice already revealed glucose intolerance while their peripheral tissues exhibited normal insulin sensitivity. On the other hand, decreased plasma insulin concentration was observed with little differences in pancreatic insulin contents, indicating the impaired insulin secretion. Such defect, however, was not found in the isolated islets, which suggests a role of endocrine factor in impaired insulin secretion of TallyHo mice. Treatment of leptin inhibited the glucose-stimulated insulin secretion from the isolated islets of TallyHo mice, while in vivo administration of anti-leptin antibody lowered plasma glucose concentration with increased insulin level in TallyHo mice. Expression of glucokinase mRNA was decreased both in whole pancreas and leptin treated islets of TallyHo mice compared with whole pancreas in C57BL/6 mice and untreated islets of TallyHo mice, respectively. These results suggest that elevated plasma leptin can, through the inhibition of insulin secretion, induce glucose intolerance in TallyHo mice.  相似文献   

16.
The contribution of drug metabolites to cyproheptadine (CPH)-induced alterations in endocrine pancreatic -cells was investigated by examining the inhibitory activity of CPH and its biotransformation products, desmethylcyproheptadine (DMCPH), CPH-epoxide and DMCPH-epoxide, on hormone biosynthesis and secretion in pancreatic islets isolated from 50-day-old rats. Measurement of (pro)insulin (proinsulin and insulin) synthesis using incorporation of 3H-leucine showed that DMCPH-epoxide, DMCPH and CPH-epoxide were 22, 10 and 4 times, respectively, more potent than CPH in inhibiting hormone synthesis. The biosynthesis of (pro)insulin was also inhibited by CPH and DMCPH-epoxide in islets isolated from 21-day-old rat fetuses. The inhibitory action of CPH and its metabolites was apparently specific for (pro)insulin, and the synthesis of other islet proteins was not affected. Other experiments showed the metabolites of CPH were active in inhibiting glucose-stimulated insulin secretion but were less potent than the parent drug in producing this effect. CPH and its structurally related metabolites, therefore, have differential inhibitory activities on insulin synthesis and release. The observation that CPH metabolites have higher potency than CPH to inhibit (pro)insulin synthesis, when considered with published reports on the disposition of the drug in rats, indicate that CPH metabolites, particularly DMCPH-epoxide, are primarily responsible for the insulin depletion observed when the parent compound is given to fetal and adult animals.Abbreviations CPH cyproheptadine - CPH-epoxide cyproheptadine-10-11-epoxide - DMCPH desmethylcyproheptadine - DMCPH-epoxide desmethylcyproheptadine-10,11-epoxide - HPLC high-performance liquid chromatography - KBB Krebs biocarbonate buffer Recipient of a Society of Toxicology Predoctoral Research Fellowship.Present address: Department of Biochemistry, The University of Hong Kong, Hong Kong.  相似文献   

17.
Orexin-A and orexin-B are members of a family of newly described orexigenic hypothalamic neuropeptides. Scanty data are available suggesting the involvement of orexins in regulation of the secretion of pituitary hormones and in control of energy homeostasis. Present studies aimed to explain whether orexins affect blood insulin concentration and insulin secretion in the rat. To check this possibility, adult female rats were subcutaneously injected with different doses (1 or 2 nmol) of orexin-A or orexin-B. A bolus administration of orexin-A resulted in an increase in blood insulin (up to min 120) and glucose (60 min after injection) concentration. The higher dose of orexin-B, on the other hand, exerted effect on insulin secretion only at min 60 of experiment and neither doses changed blood glucose level. Only orexin-A stimulated insulin secretion in an in vitro perfusion system of the rat pancreas preparation, while orexin-B was less effective. The results demonstrate that orexins belong to a group of neuropeptides influencing insulin secretion and acting directly on the pancreas. Direct, at least partial, effect of orexin on insulin secretion may be connected with the regulation of metabolism by this peptide.  相似文献   

18.
The effects of a maternal intravenous glucose load on the fetal plasma levels of glucose and insulin have been studied in 11 patients before the onset of labour. Within five minutes the fetal plasma glucose concentration rose significantly, indicating a rapid transfer of glucose across the placenta. Following this, the rate of fall in fetal plasma glucose closely reflected that in the mother.Serial fetal insulin estimations carried out in 8 of the 11 subjects following maternal glucose showed an early rise in fetal insulin in four and a delayed rise in one; in the remaining three there was no definite change.It is concluded that the blood glucose level of the fetus is controlled by that of the mother, but that the fetal pancreas at term may respond to hyperglycaemia by the secretion of insulin.  相似文献   

19.
Glucagon, growth hormone, and cortisol secretion was studied in seven male insulin-dependent diabetics under conventional subcutaneous insulin therapy and after three days of blood glucose normalization attained by the artificial endocrine pancreas (Biostator-GCIIS). The diurnal hormonal profiles under the two types of therapy were compared. Six healthy male students served as control group. A three-day period of blood glucose normalization in insulin-dependent diabetic can restore glucagon secretion to normal. Growth hormone secretion is decreased but not completely normalised. Cortisol secretion is slightly decreased. It is concluded that prolonged normoglycemia achieved by means of an artificial endocrine pancreas may completely control endocrine abnormalities in insulin-dependent diabetics.  相似文献   

20.
To investigate whether correction of fasting hyperglycemia per se improves the insulin secretion in type 2 diabetic subjects, plasma insulin response to 75 g oral glucose load has been studied after acute and chronic normalization of fasting plasma glucose levels in 7 overt type 2 diabetic subjects. For the acute normalization of elevated fasting plasma glucose levels, an artificial endocrine pancreas was employed. Although fasting plasma glucose concentrations were normalized before the oral glucose challenge, insulin response to oral glucose was not improved compared to those without normalization of fasting plasma glucose levels. After 1-3 month control of hyperglycemia, the insulin response to glucose in the subjects was significantly improved compared to those without treatments. Results indicate that chronic metabolic control is essential for the improvement of insulin response to glucose in type 2 diabetic subjects, and also suggest that the impaired insulin secretion in type 2 diabetes is not due to hyperglycemia per se, but due to the metabolic derangements which lead to chronic hyperglycemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号