首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amyotrophic lateral sclerosis (ALS) involves the progressive degeneration of motor neurons in the spinal cord and the motor cortex. It has been shown that 15–20% of patients with familial ALS (FALS) have defects in the Sod1 gene, which encodes Cu,Zn-superoxide dismutase (SOD). To elucidate the pathological role of mutated Cu,Zn-SOD, we examined the issue of whether mutated Cu,Zn-SOD affects the cell cycle. Mouse neuroblastoma Neuro-2a cells were transfected with human wild-type or mutated (G37R, G93A) Cu,Zn-SOD. Mutated, Cu,Zn-SOD-transfected cells exhibited marked retardation in cell growth and G2/M arrest. They also displayed lower reactivity to phalloidin, indicating that the cytoskeleton was disrupted. Immunoprecipitation, two-dimensional gel electrophoresis, and Western blot analysis indicated that mutated Cu,Zn-SOD associates with actin. Similar results were obtained by in vitro incubation experiments with purified actin and mutated Cu,Zn-SOD (G93A). These results suggest that mutated Cu,Zn-SOD in FALS causes cytoskeletal changes by associating with actin, which subsequently causes G2/M arrest and growth retardation. amyotrophic lateral sclerosis; copper; zinc superoxide dismutase; G2/M arrest; neurodegenerative disease  相似文献   

2.
Eight mutant Cu,Zn-superoxide dismutases (SODs) related to familial amyotrophic lateral sclerosis (FALS) were produced in a baculovirus/insect cell expression system and their molecular properties in terms of hydroxyl radical formation and aggregation were compared with the wild-type enzyme. Treatment of the enzymes with Chelex 100 resin decreased Cu contents as well as SOD activities in all mutant Cu,Zn-SODs, indicating that the affinities of the enzymes for copper ion were decreased. Contrary to previous reports, all the mutant Cu,Zn-SODs exhibited less reactive oxidant producing ability in the presence of hydrogen peroxide than the wild-type enzyme. Both SOD activities and their reactive oxidant forming correlated well with the copper ion content of the molecules. In addition, the proteins spontaneously aggregated and were precipitated by simple centrifugation at 12,000g for 20 min in keeping their enzyme activities. Since hyaline inclusions found in FALS patients with SOD1 mutations contained components which were reactive to anti-Cu,Zn-SOD antibody, a primary reaction caused by mutant SOD1 may be attributed to their propensity to form aggregates. Aggregated but still active mutant SOD1 would be expected to mediate the formation of reactive oxygen species and nitrosylation in a more condensed state.  相似文献   

3.
Eight mutant Cu,Zn-superoxide dismutases (SODs) related to familial amyotrophic lateral sclerosis (FALS) were produced in a baculovirus/insect cell expression system and their molecular properties in terms of hydroxyl radical formation and aggregation were compared with the wild-type enzyme. Treatment of the enzymes with Chelex 100 resin decreased Cu contents as well as SOD activities in all mutant Cu,Zn-SODs, indicating that the affinities of the enzymes for copper ion were decreased. Contrary to previous reports, all the mutant Cu,Zn-SODs exhibited less reactive oxidant producing ability in the presence of hydrogen peroxide than the wild-type enzyme. Both SOD activities and their reactive oxidant forming correlated well with the copper ion content of the molecules. In addition, the proteins spontaneously aggregated and were precipitated by simple centrifugation at 12,000g for 20 min in keeping their enzyme activities. Since hyaline inclusions found in FALS patients with SOD1 mutations contained components which were reactive to anti-Cu,Zn-SOD antibody, a primary reaction caused by mutant SOD1 may be attributed to their propensity to form aggregates. Aggregated but still active mutant SOD1 would be expected to mediate the formation of reactive oxygen species and nitrosylation in a more condensed state.  相似文献   

4.
Although more than 100 mutations have been identified in the copper/zinc superoxide dismutase (Cu/Zn-SOD) in familial amyotrophic lateral sclerosis (FALS), the mechanism responsible for FALS remains unclear. The finding of the present study shows that FALS-causing mutant Cu/Zn-SOD proteins (FALS mutant SODs), but not wild-type SOD, are barely detected by three monoclonal antibodies (mAbs) in Western blot analyses. The enzyme-linked immunosorbent assay for denatured FALS mutant SODs by dithiothreitol, SDS, or heat treatment also showed a lowered immunoreactivity against the mAbs compared with wild-type SOD. Because all the epitopes of these mAbs are mapped within the Greek key loop (residues 102-115 in human Cu/Zn-SOD), these data suggest that different conformational changes occur in the loop between wild-type and FALS mutant SODs during the unfolding process. Circular dichroism measurements revealed that the FALS mutant SODs are sensitive to denaturation by dithiothreitol, SDS, or heat treatment, but these results do not completely explain the different recognition by the mAbs between wild-type and FALS mutant SODs under the denatured conditions. The study on the conformational changes in local areas monitoring with mAbs may provide a new insight into the etiology of FALS.  相似文献   

5.
Abstract: The Gly93→Ala mutation in the Cu,Zn superoxide dismutase (Cu,Zn-SOD) gene (SOD1) found in some familial amyotrophic lateral sclerosis (FALS) patients has been shown to result in an aberrant increase in hydroxyl radical production by the mutant enzyme that may cause oxidative injury to spinal motor neurons. In the present study, we analyzed the extent of oxidative injury to lumbar and cervical spinal cord proteins in transgenic FALS mice that overexpress the SOD1 mutation [TgN(SOD1-G93A)G1H] in comparison with nontransgenic mice. Total protein oxidation was examined by spectrophotometric measurement of tissue protein carbonyl content by the dinitrophenylhydrazine (DNPH) assay. Four ages were investigated: 30 (pre-motor neuron pathology and clinical disease), 60 (after initiation of pathology, but pre-disease), 100 (~50% loss of motor neurons and function), and 120 (near complete hindlimb paralysis) days. Protein carbonyl content in 30-day-old TgN(SOD1-G93A)G1H mice was twice as high as the level found in age-matched nontransgenic mice. However, at 60 and 100 days of age, the levels were the same. Then, between 100 and 120 days of age, the levels in the TgN(SOD1-G93A)G1H mice increased dramatically (557%) compared with either the nontransgenic mice or transgenic animals that overexpress the wild-type human Cu,Zn-SOD [TgN(SOD1)N29]. The 100–120-day increase in spinal cord protein carbonyl levels was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoretic separation and western blot immunoassay, which enabled the identification of heavily oxidized individual proteins using a monoclonal antibody against DNPH-derivatized proteins. One of the more heavily oxidized protein bands (14 kDa) was identified by immunoprecipitation as largely Cu,Zn-SOD. Western blot comparison of the extent of Cu,Zn-SOD protein carbonylation revealed that the level in spinal cord samples from 120-day-old TgN(SOD1-G93A)G1H mice was significantly higher than that found in age-matched nontransgenic or TgN(SOD1)N29 mice. These results suggest that the increased hydroxyl radical production associated with the G93A SOD1 mutation and/or lipid peroxidation-derived radical species (peroxyl or alkoxyl) causes extensive protein oxidative injury and that the Cu,Zn-SOD itself is a key target, which may compromise its antioxidant function.  相似文献   

6.
Abstract: Mutations in the enzyme copper/zinc superoxide dismutase-1 (SOD1) are associated with familial amyotrophic lateral sclerosis (FALS). The means by which the mutations cause FALS appears to be due to an adverse property of the mutant SOD1 protein that may involve increased generation of free radicals. We used in vivo microdialysis to measure the conversion of 4-hydroxybenzoic acid to 3,4-dihydroxybenzoic acid (3,4-DHBA) as a measure of "hydroxyl radical-like" production in transgenic amyotrophic lateral sclerosis (ALS) mice with the G93A mutation as well as littermate controls. The conversion of 4-hydroxybenzoic acid to 3,4-DHBA was significantly increased in the striatum of transgenic ALS mice at baseline but not in mice overexpressing wild-type human SOD1. Following administration of 3-nitropropionic acid 3,4-DHBA generation was significantly increased as compared with baseline, and the increase in the transgenic ALS mice was significantly greater than those in controls, whereas the increase in mice overexpressing wild-type human SOD1 was significantly attenuated. The present results provide in vivo evidence that expression of mutations in SOD1 can lead to increased generation of "hydroxyl radical-like" activity, which further implicates oxidative damage in the pathogenesis of ALS.  相似文献   

7.
Calcineurin is a serine/threonine phosphatase involved in a wide range of cellular responses to calcium mobilizing signals. Previous evidence supports the notion of the existence of a redox regulation of this enzyme, which might be relevant for neurodegenerative processes, where an imbalance between generation and removal of reactive oxygen species could occur. In a recent work, we have observed that calcineurin activity is depressed in two models for familial amyotrophic lateral sclerosis (FALS) associated with mutations of the antioxidant enzyme Cu,Zn superoxide dismutase (SOD1), namely in neuroblastoma cells expressing either SOD1 mutant G93A or mutant H46R and in brain areas from G93A transgenic mice. In this work we report that while wild-type SOD1 has a protective effect, calcineurin is oxidatively inactivated by mutant SOD1s in vitro; this inactivation is mediated by reactive oxygen species and can be reverted by addition of reducing agents. Furthermore, we show that calcineurin is sensitive to oxidation only when it is in an 'open', calcium-activated conformation, and that G93A-SOD1 must have its redox-active copper site available to substrates in order to exert its pro-oxidant properties on calcineurin. These findings demonstrate that both wild-type and mutant SOD1s can interfere directly with calcineurin activity and further support the possibility of a relevant role for calcineurin-regulated biochemical pathways in the pathogenesis of FALS.  相似文献   

8.
Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H2O2, mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation.  相似文献   

9.
Mutations in the gene encoding cytosolic Cu,Zn-superoxide dismutase (SOD1) have been linked to familial amyotrophic lateral sclerosis (FALS). However the molecular mechanisms of motor neuron death are multi-factorial and remain unclear. Here we examined DNA damage, p53 activity and apoptosis in SH-SY5Y human neuroblastoma cells transfected to achieve low-level expression of either wild-type or mutant Gly93  Ala (G93A) SOD1, typical of FALS. DNA damage was investigated by evaluating the levels of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) and DNA strand breaks. Significantly higher levels of DNA damage, increased p53 activity, and a greater percentage of apoptotic cells were observed in SH-SY5Y cells transfected with G93A SOD1 when compared to cells overexpressing wild-type SOD1 and untransfected cells. Western blot, FACS, and confocal microscopy analysis demonstrated that G93A SOD1 is present in the nucleus in association with DNA. Nuclear G93A SOD1 has identical superoxide dismutase activity but displays increased peroxidase activity when compared to wild-type SOD1. These results indicate that the G93A mutant SOD1 association with DNA might induce DNA damage and trigger the apoptotic response by activating p53. This toxic activity of mutant SOD1 in the nucleus may play an important role in the complex mechanisms associated with motor neuron death observed in ALS pathogenesis.  相似文献   

10.
Abstract: Autosomal dominant familial amyotrophic lateral sclerosis (FALS) is associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Previous studies have implicated the involvement of metabolic dysfunction in ALS pathogenesis. To further investigate the biochemical features of FALS and sporadic ALS (SALS), we examined SOD activity and mitochondrial oxidative phosphorylation enzyme activities in motor cortex (Brodmann area 4), parietal cortex (Brodmann area 40), and cerebellum from control subjects, FALS patients with and without known SOD mutations, SALS patients, and disease controls (Pick's disease, progressive supranuclear palsy, diffuse Lewy body disease). Cytosolic SOD activity, predominantly Cu/Zn SOD, was decreased ∼50% in all regions in FALS patients with SOD mutations but was not significantly altered in other patient groups. Marked increases in complex I and II–III activities were seen in FALS patients with SOD mutations but not in SALS patients. We also measured electron transport chain enzyme activities in a transgenic mouse model of FALS. Complex I activity was significantly increased in the forebrain of 60-day-old G93A transgenic mice overexpressing human mutant SOD1, relative to levels in transgenic wild-type animals, supporting the hypothesis that the motor neuron disorder associated with SOD1 mutations involves a defect in mitochondrial energy metabolism.  相似文献   

11.
Over 90 different mutations in the gene encoding copper/zinc superoxide dismutase (SOD1) cause approximately 2% of amyotrophic lateral sclerosis (ALS) cases by an unknown mechanism. We engineered 14 different human ALS-related SOD1 mutants and obtained high yields of biologically metallated proteins from an Sf21 insect cell expression system. Both the wild type and mutant "as isolated" SOD1 variants were deficient in copper and were heterogeneous by native gel electrophoresis. By contrast, although three mutant SOD1s with substitutions near the metal binding sites (H46R, G85R, and D124V) were severely deficient in both copper and zinc ions, zinc deficiency was not a consistent feature shared by the as isolated mutants. Eight mutants (A4V, L38V, G41S, G72S, D76Y, D90A, G93A, and E133 Delta) exhibited normal SOD activity over pH 5.5-10.5, per equivalent of copper, consistent with the presumption that bound copper was in the proper metal-binding site and was fully active. The H48Q variant contained a high copper content yet was 100-fold less active than the wild type enzyme and exhibited a blue shift in the visible absorbance peak of bound Cu(II), indicating rearrangement of the Cu(II) coordination geometry. Further characterization of these as-isolated SOD1 proteins may provide new insights regarding mutant SOD1 enzyme toxicity in ALS.  相似文献   

12.
When replete with zinc and copper, amyotrophic lateral sclerosis (ALS)-associated mutant SOD proteins can protect motor neurons in culture from trophic factor deprivation as efficiently as wild-type SOD. However, the removal of zinc from either mutant or wild-type SOD results in apoptosis of motor neurons through a copper- and peroxynitrite-dependent mechanism. It has also been shown that motor neurons isolated from transgenic mice expressing mutant SODs survive well in culture but undergo apoptosis when exposed to nitric oxide via a Fas-dependent mechanism. We combined these two parallel approaches for understanding SOD toxicity in ALS and found that zinc-deficient SOD-induced motor neuron death required Fas activation, whereas the nitric oxide-dependent death of G93A SOD-expressing motor neurons required copper and involved peroxynitrite formation. Surprisingly, motor neuron death doubled when Cu,Zn-SOD protein was either delivered intracellularly to G93A SOD-expressing motor neurons or co-delivered with zinc-deficient SOD to nontransgenic motor neurons. These results could be rationalized by biophysical data showing that heterodimer formation of Cu,Zn-SOD with zinc-deficient SOD prevented the monomerization and subsequent aggregation of zinc-deficient SOD under thiol-reducing conditions. ALS mutant SOD was also stabilized by mutating cysteine 111 to serine, which greatly increased the toxicity of zinc-deficient SOD. Thus, stabilization of ALS mutant SOD by two different approaches augmented its toxicity to motor neurons. Taken together, these results are consistent with copper-containing zinc-deficient SOD being the elusive “partially unfolded intermediate” responsible for the toxic gain of function conferred by ALS mutant SOD.  相似文献   

13.
An animal model of familial amyotrophic lateral sclerosis (FALS) has been generated by overexpression of human CuZn superoxide dismutase (SOD1) containing a substitution of glycine to alanine at position 93 in transgenic G93A mice. The loss of motoneurons shown in this model has been attributed to a dominant gain of function of this mutated enzyme, which might be due to copper toxicity. This hypothesis was tested in purified spinal motoneurons cultures originating from G93A transgenic embryos. Spinal motoneurons were isolated from E13 embryos by several steps including density gradient centrifugation. The effect of copper chelators on survival and neurite growth of motoneurons was investigated. Survival of G93A motoneurons was decreased by 46% as compared to wild-type motoneurons. Moreover, G93A motoneurons showed reduced neurite outgrowth. Copper chelators strikingly increased viability of G93A motoneurons (by over 200%) but had no effect on wild-type cells. Presence of DDC in the medium increases the length of neurites from G93A motoneurons. The present results suggest the capacity of copper chelators to reduce the effect of reverse function of mutated SOD1 on motoneurons.  相似文献   

14.
We report the thermal stability of wild type (WT) and 14 different variants of human copper/zinc superoxide dismutase (SOD1) associated with familial amyotrophic lateral sclerosis (FALS). Multiple endothermic unfolding transitions were observed by differential scanning calorimetry for partially metallated SOD1 enzymes isolated from a baculovirus system. We correlated the metal ion contents of SOD1 variants with the occurrence of distinct melting transitions. Altered thermal stability upon reduction of copper with dithionite identified transitions resulting from the unfolding of copper-containing SOD1 species. We demonstrated that copper or zinc binding to a subset of "WT-like" FALS mutants (A4V, L38V, G41S, G72S, D76Y, D90A, G93A, and E133Delta) conferred a similar degree of incremental stabilization as did metal ion binding to WT SOD1. However, these mutants were all destabilized by approximately 1-6 degrees C compared with the corresponding WT SOD1 species. Most of the "metal binding region" FALS mutants (H46R, G85R, D124V, D125H, and S134N) exhibited transitions that probably resulted from unfolding of metal-free species at approximately 4-12 degrees C below the observed melting of the least stable WT species. We conclude that decreased conformational stability shared by all of these mutant SOD1s may contribute to SOD1 toxicity in FALS.  相似文献   

15.
Abstract: Mutations in the free radical-scavenging enzyme copper/zinc superoxide dismutase (Cu/Zn-SOD) are associated with neuronal death in humans and mice. Here, we examine the effects of human wild-type (WT SOD) and mutant (Gly93→ Ala; G93A) Cu/Zn-SOD enzyme on the fate of postnatal midbrain neurons. One-week-old cultures from transgenic mice expressing WT SOD enzyme had significantly more midbrain neurons and fewer necrotic and apoptotic neurons than non-transgenic cultures. In contrast, 1-week-old cultures from transgenic G93A mice expressing mutant SOD enzyme had significantly fewer midbrain neurons and more necrotic and apoptotic neurons than nontransgenic cultures. To subject postnatal midbrain neurons to oxidative stress, cultures were incubated with l -DOPA. l -DOPA at 200 µ M caused ∼50% loss of tyrosine hydroxylase (TH)-positive neurons in nontransgenic cultures and even greater loss in transgenic G93A cultures; no alterations were noted in GABA neuron numbers. In contrast, 200 µ M l -DOPA did not cause any significant reductions in TH-positive or GABA neuron numbers in transgenic WT SOD cultures. l -DOPA at 50 µ M had opposite effects, in that it significantly increased TH-positive, but not GABA neuron numbers in transgenic WT SOD and G93A and in nontransgenic cultures. These results indicate that increased amounts of WT SOD enzyme promote cell survival and protect against l -DOPA-induced dopaminergic neurotoxicity, whereas increased amounts of mutated Cu/Zn-SOD enzyme have inverse effects. As the spontaneous loss and l -DOPA-induced loss of postnatal dopaminergic midbrain neurons appear to be mediated by free radicals, our study supports the view that mutated Cu/Zn-SOD enzyme kills cells by oxidative stress.  相似文献   

16.
Abstract: In some families with amyotrophic lateral sclerosis (ALS), the disease is linked to mutations in the gene encoding CuZn-superoxide dismutase. The mutant CuZn-superoxide dismutases appear to cause motor neuron degeneration by a toxic property, suggested to be linked to an altered reactivity of the active-site Cu ions. Asp90Ala mutant CuZn-superoxide dismutase was isolated from six patients with ALS, allowing properties of the mutant enzyme synthesized and conditioned in patients with ALS to be examined. The molecular mass of the Asp90Ala mutant CuZn-superoxide dismutase was 45 Da lower than that of the wild-type enzyme, as expected from the amino acid exchange. The mobility after sodium dodecyl sulfate-polyacrylamide gel electrophoresis was markedly increased, however, suggesting altered properties of the polypeptide. The mutant CuZn-superoxide dismutase showed a minimal reduction in stability but did not differ significantly from the wild-type enzyme in enzymic activity, in content and affinity for active-site Cu ions and in the propensity to catalyze formation of hydroxyl radicals. Our findings suggest that the deleterious effect of mutant CuZn-superoxide dismutases on motor neurons in ALS is not related to altered reactivity of active-site Cu ions, resulting in increased oxidant stress. Attention should therefore also be directed at other mechanisms and properties of the mutant polypeptides and their degradation products.  相似文献   

17.
18.
The presence of the copper ion at the active site of human wild type copper-zinc superoxide dismutase (CuZnSOD) is essential to its ability to catalyze the disproportionation of superoxide into dioxygen and hydrogen peroxide. Wild type CuZnSOD and several of the mutants associated with familial amyotrophic lateral sclerosis (FALS) (Ala(4) --> Val, Gly(93) --> Ala, and Leu(38) --> Val) were expressed in Saccharomyces cerevisiae. Purified metal-free (apoproteins) and various remetallated derivatives were analyzed by metal titrations monitored by UV-visible spectroscopy, histidine modification studies using diethylpyrocarbonate, and enzymatic activity measurements using pulse radiolysis. From these studies it was concluded that the FALS mutant CuZnSOD apoproteins, in direct contrast to the human wild type apoprotein, have lost their ability to partition and bind copper and zinc ions in their proper locations in vitro. Similar studies of the wild type and FALS mutant CuZnSOD holoenzymes in the "as isolated" metallation state showed abnormally low copper-to-zinc ratios, although all of the copper acquired was located at the native copper binding sites. Thus, the copper ions are properly directed to their native binding sites in vivo, presumably as a result of the action of the yeast copper chaperone Lys7p (yeast CCS). The loss of metal ion binding specificity of FALS mutant CuZnSODs in vitro may be related to their role in ALS.  相似文献   

19.
A subset of superoxide dismutase 1 (Cu/Zn-SOD1) mutants that cause familial amyotrophic lateral sclerosis (FALS) have heightened reactivity with (-)ONOO and H(2)O(2) in vitro. This reactivity requires a copper ion bound in the active site and is a suggested mechanism of motor neuron injury. However, we have found that transgenic mice that express SOD1-H46R/H48Q, which combines natural FALS mutations at ligands for copper and which is inactive, develop motor neuron disease. Using a direct radioactive copper incorporation assay in transfected cells and the established tools of single crystal x-ray diffraction, we now demonstrate that this variant does not stably bind copper. We find that single mutations at copper ligands, including H46R, H48Q, and a quadruple mutant H46R/H48Q/H63G/H120G, also diminish the binding of radioactive copper. Further, using native polyacrylamide gel electrophoresis and a yeast two-hybrid assay, the binding of copper was found to be related to the formation of the stable dimeric enzyme. Collectively, our data demonstrate a relationship between copper and assembly of SOD1 into stable dimers and also define disease-causing SOD1 mutants that are unlikely to robustly produce toxic radicals via copper-mediated chemistry.  相似文献   

20.
Lynch SM  Boswell SA  Colón W 《Biochemistry》2004,43(51):16525-16531
Over 100 mutants of the enzyme Cu/Zn superoxide dismutase (SOD) have been implicated in the neurodegenerative disease familial amyotrophic lateral sclerosis (FALS). Growing evidence suggests that the aggregation of SOD mutants may play a causative role in FALS and that aberrant copper chemistry, decreased thermodynamic stability, and decreased affinity for metals may contribute independently or synergistically to this process. Since the loss of the copper and zinc ions significantly decreases the thermodynamic stability of SOD, it is expected that this would also decrease its kinetic stability, thereby facilitating partial or global unfolding transitions that may lead to misfolding and aggregation. Here we used wild-type (WT) SOD and five FALS-related mutants (G37R, H46R, G85R, D90A, and L144F) to show that the metals contribute significantly to the kinetic stability of the protein, with demetalated (apo) SOD showing acid-induced unfolding rates about 60-fold greater than the metalated (holo) protein. However, the unfolding rates of SOD WT and mutants were similar to each other in both the holo and apo states, indicating that regardless of the effect of mutation on thermodynamic stability, the kinetic barrier toward SOD unfolding is dependent on the presence of metals. Thus, these results suggest that pathogenic SOD mutations that do not significantly alter the stability of the protein may still lead to SOD aggregation by compromising its ability to bind or retain its metals and thereby decrease its kinetic stability. Furthermore, the mutant-like decrease in the kinetic stability of apo WT SOD raises the possibility that the loss of metals in WT SOD may be involved in nonfamilial forms of ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号