首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Glucose stimulates insulin secretion from pancreatic beta cells by inducing the recruitment and fusion of insulin vesicles to the plasma membrane. However, little is currently known about the mechanism of the initial docking or tethering of insulin vesicles prior to fusion. Here, we examined the role of the SEC6-SEC8 (exocyst) complex, implicated in trafficking of secretory vesicles to fusion sites in the plasma membrane in yeast and in regulating glucose-stimulated insulin secretion from pancreatic MIN6 beta cells. We show first that SEC6 is concentrated on insulin-positive vesicles, whereas SEC5 and SEC8 are largely confined to the cytoplasm and the plasma membrane, respectively. Overexpression of truncated, dominant-negative SEC8 or SEC10 mutants decreased the number of vesicles at the plasma membrane, whereas expression of truncated SEC6 or SEC8 inhibited overall insulin secretion. When single exocytotic events were imaged by total internal reflection fluorescence microscopy, the fluorescence of the insulin surrogate, neuropeptide Y-monomeric red fluorescent protein brightened, diffused, and then vanished with kinetics that were unaffected by overexpression of truncated SEC8 or SEC10. Together, these data suggest that the exocyst complex serves to selectively regulate the docking of insulin-containing vesicles at sites of release close to the plasma membrane.  相似文献   

2.
Insulin stimulates translocation of the glucose transporter isoform 4 (Glut4) from an intracellular storage compartment to the plasma membrane in fat and skeletal muscle cells. At present, the nature of the Glut4 storage compartment is unclear. According to one model, this compartment represents a population of preformed small vesicles that fuse with the plasma membrane in response to insulin stimulation. Alternatively, Glut4 may be retained in large donor membranes, and insulin stimulates the formation of transport vesicles that deliver Glut4 to the cell surface. Finally, insulin can induce plasma membrane fusion of the preformed vesicles and, also, stimulate the formation of new vesicles. In extracts of fat and skeletal muscle cells, Glut4 is predominantly found in small insulin-sensitive 60-70 S membrane vesicles that may or may not artificially derive from large donor membranes during cell homogenization. Here, we use a cell-free reconstitution assay to demonstrate that small Glut4-containing vesicles are formed from large rapidly sedimenting donor membranes in a cytosol-, ATP-, time-, and temperature-dependent fashion and, therefore, do not represent an artifact of homogenization. Thus, small insulin-responsive vesicles represent the major form of Glut4 storage in the living adipose cell. Fusion of these vesicles with the plasma membrane may be largely responsible for the primary effect of insulin on glucose transport in fat tissue. In addition, our results suggest that insulin may also stimulate the formation of Glut4 vesicles and accelerate Glut4 recycling to the plasma membrane.  相似文献   

3.
AS160 (TBC1D4) is a known Akt substrate that is phosphorylated downstream of insulin action and that leads to regulated traffic of GLUT4. As GLUT4 vesicle fusion with the plasma membrane is a highly regulated step in GLUT4 traffic, we investigated whether AS160 and 14-3-3 interactions are involved in this process. Fusion was inhibited by a human truncated AS160 variant that encompasses the first N-terminal phosphotyrosine-binding (PTB) domain, by either of the two N-terminal PTB domains, and by a tandem construct of both PTB domains of rat AS160. We also found that in vitro GLUT4 vesicle fusion was strongly inhibited by the 14-3-3-quenching inhibitors R18 and fusicoccin. To investigate the mode of interaction of AS160 and 14-3-3, we examined insulin-dependent increases in the levels of these proteins on GLUT4 vesicles. 14-3-3γ was enriched on insulin-stimulated vesicles, and its binding to AS160 on GLUT4 vesicles was inhibited by the AS160 tandem PTB domain construct. These data suggest a model for PTB domain action on GLUT4 vesicle fusion in which these constructs inhibit insulin-stimulated 14-3-3γ interaction with AS160 rather than AS160 phosphorylation.  相似文献   

4.
Dual-mode of insulin action controls GLUT4 vesicle exocytosis   总被引:2,自引:0,他引:2  
Insulin stimulates translocation of GLUT4 storage vesicles (GSVs) to the surface of adipocytes, but precisely where insulin acts is controversial. Here we quantify the size, dynamics, and frequency of single vesicle exocytosis in 3T3-L1 adipocytes. We use a new GSV reporter, VAMP2-pHluorin, and bypass insulin signaling by disrupting the GLUT4-retention protein TUG. Remarkably, in unstimulated TUG-depleted cells, the exocytic rate is similar to that in insulin-stimulated control cells. In TUG-depleted cells, insulin triggers a transient, twofold burst of exocytosis. Surprisingly, insulin promotes fusion pore expansion, blocked by acute perturbation of phospholipase D, which reflects both properties intrinsic to the mobilized vesicles and a novel regulatory site at the fusion pore itself. Prolonged stimulation causes cargo to switch from approximately 60 nm GSVs to larger exocytic vesicles characteristic of endosomes. Our results support a model whereby insulin promotes exocytic flux primarily by releasing an intracellular brake, but also by accelerating plasma membrane fusion and switching vesicle traffic between two distinct circuits.  相似文献   

5.
Sendai virus fuses efficiently with small and large unilamellar vesicles of the lipid 1,2-di-n-hexadecyloxypropyl-4- (beta-nitrostyryl) phosphate (DHPBNS) at pH 7.4 and 37 degrees C, as shown by lipid mixing assays and electron microscopy. However, fusion is strongly inhibited by oligomerization of the head groups of DHPBNS in the bilayer vesicles. The enthalpy associated with fusion of Sendai virus with DHPBNS vesicles was measured by isothermal titration microcalorimetry, comparing titrations of Sendai virus into (i) solutions of DHPBNS vesicles (which fuse with the virus) and (ii) oligomerized DHPBNS vesicles (which do not fuse with the virus), respectively. The observed heat effect of fusion of Sendai virus with DHPBNS vesicles is strongly dependent on the buffer medium, reflecting a partial charge neutralization of the Sendai F and HN proteins upon insertion into the negatively-charged vesicle membrane. No buffer effect was observed for the titration of Sendai virus into oligomerized DHPBNS vesicles, indicating that inhibition of fusion is a result of inhibition of insertion of the fusion protein into the target membrane. Fusion of Sendai virus with DHPBNS vesicles is endothermic and entropy-driven. The positive enthalpy term is dominated by heat effects resulting from merging of the protein-rich viral envelope with the lipid vesicle bilayers rather than by the fusion of the viral with the vesicle bilayers per se.  相似文献   

6.
A novel imaging technology, high-speed microscopy, has been used to visualize the process of GLUT4 translocation in response to insulin in single 3T3-L1 adipocytes. A key advantage of this technology is that it requires extremely low light exposure times, allowing the quasi-continuous capture of information over 20-30 min without photobleaching or photodamage. The half-time for the accumulation of GLUT4-eGFP (enhanced green fluorescent protein) at the plasma membrane in a single cell was found to be of 5-7 min at 37 degrees C. This half-time is substantially longer than that of exocytic vesicle fusion in neuroendocrine cells, suggesting that additional regulatory mechanisms are involved in the stimulation of GLUT4 translocation by insulin. Analysis of four-dimensional images (3-D over time) revealed that, in response to insulin, GLUT4-eGFP-enriched vesicles rapidly travel from the juxtanuclear region to the plasma membrane. In nontransfected adipocytes, impairment of microtubule and actin filament function inhibited insulin-stimulated glucose transport by 70 and 50%, respectively. When both filament systems were impaired insulin-stimulated glucose transport was completely inhibited. Taken together, the data suggest that the regulation of long-range motility of GLUT4-containing vesicles through the interaction with microtubule- and actin-based cytoskeletal networks plays an important role in the overall effect of insulin on GLUT4 translocation.  相似文献   

7.
Total internal reflection fluorescence (TIRF) microscopy reveals highly mobile structures containing enhanced green fluorescent protein-tagged glucose transporter 4 (GLUT4) within a zone about 100 nm beneath the plasma membrane of 3T3-L1 adipocytes. We developed a computer program (Fusion Assistant) that enables direct analysis of the docking/fusion kinetics of hundreds of exocytic fusion events. Insulin stimulation increases the fusion frequency of exocytic GLUT4 vesicles by approximately 4-fold, increasing GLUT4 content in the plasma membrane. Remarkably, insulin signaling modulates the kinetics of the fusion process, decreasing the vesicle tethering/docking duration prior to membrane fusion. In contrast, the kinetics of GLUT4 molecules spreading out in the plasma membrane from exocytic fusion sites is unchanged by insulin. As GLUT4 accumulates in the plasma membrane, it is also immobilized in punctate structures on the cell surface. A previous report suggested these structures are exocytic fusion sites (Lizunov et al., J. Cell Biol. 169:481-489, 2005). However, two-color TIRF microscopy using fluorescent proteins fused to clathrin light chain or GLUT4 reveals these structures are clathrin-coated patches. Taken together, these data show that insulin signaling accelerates the transition from docking of GLUT4-containing vesicles to their fusion with the plasma membrane and promotes GLUT4 accumulation in clathrin-based endocytic structures on the plasma membrane.  相似文献   

8.
Glucose transport in adipose cells is regulated by changing the distribution of glucose transporter 4 (GLUT4) between the cell interior and the plasma membrane (PM). Insulin shifts this distribution by augmenting the rate of exocytosis of specialized GLUT4 vesicles. We applied time-lapse total internal reflection fluorescence microscopy to dissect intermediates of this GLUT4 translocation in rat adipose cells in primary culture. Without insulin, GLUT4 vesicles rapidly moved along a microtubule network covering the entire PM, periodically stopping, most often just briefly, by loosely tethering to the PM. Insulin halted this traffic by tightly tethering vesicles to the PM where they formed clusters and slowly fused to the PM. This slow release of GLUT4 determined the overall increase of the PM GLUT4. Thus, insulin initially recruits GLUT4 sequestered in mobile vesicles near the PM. It is likely that the primary mechanism of insulin action in GLUT4 translocation is to stimulate tethering and fusion of trafficking vesicles to specific fusion sites in the PM.  相似文献   

9.
We have studied, by fluorescence methods, the association of insulin to liposomes, the modification of lipid fluidity, and the fusion of vesicles induced by insulin. All parameters showed a similar dependence on pH and ionic strength of the medium and on negative charges in liposomes. The influence of temperature indicated that the association of insulin to liposomes per se was not sufficient to produce a decrease in lipid fluidity and fusion of liposomes. The modification of lipid fluidity induced by insulin in biological membranes is discussed as a possible general event in the action of the hormone.  相似文献   

10.
Summary Fusion between unilamellar vesicles of both egg phosphatidylcholine and bovine phosphatidylserine was induced by polyethylene glycol. Aggregation and fusion events were monitored by electron microscopy and turbidity measurements. The threshold concentration of polyethylene glycol for aggregation and fusion is found to be independent of lipid concentration. Typically, aggregation of phosphatidylcholine vesicles starts at 2.5% (wt/wt) polyethylene glycol, but fusion is not significant until the polyethylene glycol concentration reaches 35%. Multilamellar vesicles were formed as a result of fusion.Abbreviations PEG Polyethylene glycol - IMP Intramembranous particle - PC Phosphatidylcholine - PS Phosphatidylserine - SUV Small unilamellar vesicles - MLV Multilamellar vesicles - DPPC Dipalmitoyl phosphatidylcholine - DSC Differential scanning calorimetry  相似文献   

11.
GLUT4在胰岛素调控葡萄糖转运中作用   总被引:1,自引:0,他引:1  
机体的血糖平衡调节主要依赖于胰岛素,其中一个重要的机制是胰岛素通过调控GLUT4的囊泡运转来调节脂肪细胞和肌细胞对葡萄糖的摄取。由胰岛素受体介导的一系列磷酸化过程能调节一些关键的GLUT4转运相关蛋白质的活性,这些蛋白质包括小GTP酶、拴系复合体和囊泡融合体。而这些蛋白质又反过来通过内膜系统调节GLUT4储存囊泡的生成、滞留,并调控这些囊泡的靶向出胞方式。了解这些过程有助于解释2型糖尿病中胰岛素耐受的机制,并可能为糖尿病提供新的靶向治疗方法。  相似文献   

12.
The effect of incorporation of glycophorin, the major integral sialoglycoprotein of the erythrocyte membrane, into bovine brain phosphatidylserine (PS) vesicles on the Ca2+-induced fusion of these vesicles has been investigated. Fusion was monitored by the terbium-dipicolinic acid fluorescence assay for the mixing of aqueous contents of the vesicles and by a resonance energy transfer assay that follows the intermixing of membrane lipids. The Ca2+-induced fusion of PS vesicles is completely prevented by incorporation of glycophorin (molar ratio of PS/glycophorin = 400-500:1) for Ca2+ concentrations up to 50 mM. The ability to fuse is partially restored after treating the glycophorin-containing vesicles with neuraminidase, which removes the negatively charged sialic acid residues of glycophorin. Fusion is further facilitated by trypsin treatment, removing the entire extravesicular glycosylated head group of glycophorin. However, Ca2+-induced fusion of enzyme-treated glycophorin-PS vesicles proceeds at a slower rate and to a smaller extent than fusion of protein-free PS vesicles. The influence of the aggregation state of the glycophorin molecules on fusion has been investigated in experiments using wheat germ agglutinin (WGA). Addition of WGA to the glycophorin-PS vesicles does not induce fusion. However, upon subsequent addition of Ca2+, distinct fusion occurs concomitantly with release of vesicle contents. The inhibition of Ca2+-induced fusion of PS vesicles by incorporation of glycophorin is explained by a combination of steric hindrance and electrostatic repulsion between the vesicles by the glycosylated head group of glycophorin and a direct bilayer stabilization by the intramembranous hydrophobic part of the glycophorin molecule.  相似文献   

13.
Purified G-protein from vesicular stomatitis virus was reconstituted into egg phosphatidylcholine vesicles by detergent dialysis of octyl glucoside. A homogeneous population of reconstituted vesicles could be obtained, provided the protein to lipid ratio was high (about 0.3 mol % protein) and the detergent removal was slow. The reconstituted vesicles were assayed for fusion activity using electron microscopy and fluorescence energy transfer. The fusion activity mediated by the viral envelope protein was dependent upon pH, temperature, and target membrane lipid composition. Incubation of reconstituted vesicles at low pH with small unilamellar vesicles containing negatively charged lipids resulted in the appearance of large cochleate structures, as shown by electron microscopy using negative stain. This process did not cause leakage of a vesicle-encapsulated aqueous marker. The rate of fusion was pH-dependent with a pK of about 4 and the apparent energy of activation for the fusion was 16 +/- 1 kcal/mol. G-protein-mediated fusion showed a large preference for target membranes which contain phosphatidylserine or phosphatidic acid. Inclusion of 36% cholesterol in any of the lipid compositions had no effect on the rate of fusion. These reconstituted vesicles provide a system to study the mechanism of pH-dependent fusion induced by a viral spike protein.  相似文献   

14.
Exocytosis of secretory vesicles begins with a fusion pore connecting the vesicle lumen to the extracellular space. This pore may then expand or it may close to recapture the vesicle intact. The contribution of the latter, termed kiss-and-run, to exocytosis of pancreatic beta cell large dense-core vesicles (LDCVs) is controversial. Examination of single vesicle fusion pores demonstrated that rat beta cell LDCVs can undergo exocytosis by rapid pore expansion, by the formation of stable pores, or via small transient kiss-and-run fusion pores. Elevation of cAMP shifted LDCV fusion pore openings to the transient mode. Under this condition, the small fusion pores were sufficient for release of ATP, stored within LDCVs together with insulin. Individual ATP release events occurred coincident with amperometric "stand alone feet" representing kiss-and-run. Therefore, the LDCV kiss-and-run fusion pores allow small transmitter release but likely retain the larger insulin peptide. This may represent a mechanism for selective intraislet signaling.  相似文献   

15.
Insulin receptor kinase, affinity-purified by adsorption and elution from immobilized insulin, is stimulated 2-3-fold by insulin in detergent solution. Reconstitution of the receptor kinase into leaky vesicles containing phosphatidylcholine and phosphatidylethanolamine (1:1, w/w) by detergent removal on Sephadex G-50 results in the complete loss of receptor kinase sensitivity to activation by insulin. Insulin receptors in these vesicles also exhibit an increase in their apparent affinity for 125I-insulin (Kd = 0.12 nM versus 0.76 nM). Inclusion of 8.3-16.7% phosphatidylserine into the reconstituted vesicles restores 40-50% of the insulin-sensitivity to the receptor kinase. An elevated apparent affinity for 125I-insulin of insulin receptors in vesicles containing phosphatidylcholine and phosphatidylethanolamine is also restored to the value observed in detergent solution by the inclusion of phosphatidylserine in the reconstituted system. The effect of phosphatidylserine on insulin receptor kinase appears specific, because cholesterol, phosphatidylinositol and phosphatidic acid are all unable to restore insulin-sensitivity to the receptor kinase. Autophosphorylation sites on the insulin receptor as analysed by h.p.l.c. of tryptic 32P-labelled receptor phosphopeptides are not different for insulin receptors autophosphorylated in detergent solution or for the reconstituted vesicles in the presence or absence of phosphatidylserine. These data indicate that the phospholipid environment of insulin receptors can modulate its binding and kinase activity, and phosphatidylserine acts to restore insulin-sensitivity to the receptor kinase incorporated into phosphatidylcholine/phosphatidylethanolamine vesicles.  相似文献   

16.
Glucose homeostasis is controlled in part by regulation of glucose uptake into muscle and adipose tissue. Intracellular membrane vesicles containing the GLUT4 glucose transporter move towards the cell cortex in response to insulin and then fuse with the plasma membrane. Here we show that the fusion step is retarded by the inhibition of phosphatidylinositol (PI) 3-kinase. Treatment of insulin-stimulated 3T3-L1 adipocytes with the PI 3-kinase inhibitor LY294002 causes the accumulation of GLUT4-containing vesicles just beneath the cell surface. This accumulation of GLUT4-containing vesicles near the plasma membrane prior to fusion requires an intact cytoskeletal network and the unconventional myosin motor Myo1c. Remarkably, enhanced Myo1c expression under these conditions causes extensive membrane ruffling and overrides the block in membrane fusion caused by LY294002, restoring the display of GLUT4 on the cell exterior. Ultrafast microscopic analysis revealed that insulin treatment leads to the mobilization of GLUT4-containing vesicles to these regions of Myo1c-induced membrane ruffles. Thus, localized membrane remodeling driven by the Myo1c motor appears to facilitate the fusion of exocytic GLUT4-containing vesicles with the adipocyte plasma membrane.  相似文献   

17.
Preincubation of 3T3-L1 adipocytes in high glucose or glucosamine decreases acute insulin (100 nm)-stimulated glucose transport provided that insulin (0.6 nm) is included during preincubation. GLUT4 expression is unchanged (Nelson, B. A., Robinson, K. A., and Buse, M. G. (2000) Diabetes 49, 981-991). Munc18-c, a Syntaxin 4-binding protein, is a proposed regulator of the docking/fusion of GLUT4-containing vesicles with the plasma membrane. We examined the subcellular distribution of Munc18-c in response to acute (15-min) insulin (100 nm) stimulation after preincubation in 5 or 25 mm glucose +/- 0.6 nm insulin. Immunoblotting detected Munc18-c mainly in the Triton X-100-soluble plasma membrane (TS-PM) and the Triton X-100-insoluble low density microsomal (TI-LDM) fraction. Under each condition except high glucose + insulin preincubation, acute insulin increased Munc18-c (50-200%) in TS-PM and decreased Munc18-c (60%) in TI-LDM. Munc18-c traffic was time-dependent with a lag time of 3 min compared with GLUT4. Preincubation with high glucose + 0.6 nm insulin significantly impaired acute insulin-stimulated Munc18-c trafficking and decreased basal Munc18-c in the TI-LDM. Preincubation with glucosamine + insulin had similar effects. Total cellular Munc18-c remained unchanged. In conclusion, acute insulin stimulation promotes the translocation of Munc18-c, apparently from a TI-LDM-associated compartment to the TS-PM. Chronically increased glucose flux or exposure to glucosamine disrupts this process, which may negatively impact the fusion of GLUT4-containing vesicles with the plasma membrane.  相似文献   

18.
Reconstituted vesicles of hemagglutinin glycoproteins into egg yolk phosphatidylcholine/spin-labeled phosphatidylcholine/cholesterol (molar ratio 1.6:0.4:1) were prepared by dialysis. Preparations at appropriate protein-to-lipid ratios (1:44 and 1:105 mol/mol) contained vesicles with a diameter of 100-300 nm and a high density of spikes on the surface. These vesicles showed low pH-induced membrane fusion activity. At pH 5.2 and 37 degrees C, fusion with erythrocyte membranes took place very rapidly within 1-2 min and reached a plateau at 63-66% fusion. The fusion was negligibly small at neutral pH and was induced to occur at pH values lower than 6.0. The reconstituted vesicles caused hemolysis and fusion of human erythrocyte cells in the same pH range as that of the fusion with erythrocyte membranes. The low pH-induced fusion activity of the reconstituted vesicles is essentially the same as that of the parent virus. These vesicles can be used to deliver some reagents or drugs into target cell cytoplasm via fusion at lysosomes.  相似文献   

19.
The fusion of Sendai virus at pH 4-7 with artificial lipid vesicles composed of phosphatidylserine or phosphatidylcholine was quantified by measuring fluorescence energy transfer from N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-phosphatidylethanolamine to N-(lissamine-rhodamine-B-sulfonyl)-phosphatidylethanolamine in the target membranes. About 60% of the phosphatidylserine vesicles and virus appeared to fuse at pH 4 and about 100% at pH 5. Fusion was much less under all other conditions. The apparent fusion at pH 4, however, was due to a decrease in absorption of the acceptor probe, instead of dilution of acceptor as a result of fusion of labeled vesicles with unlabeled virus. After correction for this fusion-independent effect of Sendai virus, the extent of fusion was only 4-20% at pH 4 but still 80-100% at pH 5. These findings paralleled the loss of hemagglutinating and hemolytic activities of the virus induced by incubation at pH 4 but not at pH 5. Vesicle-virus hybrids were observed with the electron microscope after incubation at pH 5 but not at pH 7. The assay of membrane fusion by fluorescence energy transfer can be misleading unless correction is made for changes in energy transfer due to fusion-independent effects.  相似文献   

20.
Studies on membrane fusion. III. The role of calcium-induced phase changes.   总被引:12,自引:0,他引:12  
The interaction of phosphatidylserine vesicles with Ca2+ and Mg2+ has been examined by several techniques to study the mechanism of membrane fusion. Data are presented on the effects of Ca2+ and Mg2+ on vesicle permeability, thermotropic phase transitions and morphology determined by differential scanning calorimetry, X-ray diffraction, and freeze-fracture electron microscopy. These data are discussed in relation to information concerning Ca2+ binding, charge neutralization, molecular packing, vesicle aggregation, phase transitions, phase separations and vesicle fusion. The results indicate that at Ca2+ concentrations of 1.0-2.0 mM, a highly cooperative phenomenon occurs which results in increased vesicle permeability, aggregation and fusion of the vesicles. Under these conditions the hydrocarbon chains of the lipid bilayers undergo a phase change from a fluid to a crystalline state. The aggregation of vesicles that is observed during fusion is not sufficient range of 2.0-5.0 mM induces aggregation of phosphatidylserine vesicles but no significant fusion nor a phase change. From the effect of variations in pH, temperature, Ca2+ and Mg2+ concentration on the fusion of vesicles, it is concluded that the key event leading to vesicle membrane fusion is the isothermic phase change induced by the bivalent metals. It is proposed that this phase change induces a transient destabilization of the bilayer membranes that become susceptible to fusion at domain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号