首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A rapid and sensitive method for determining protein concentrations using fluorescamine has been characterized for use in the analysis of intact lipoproteins. It was shown that there is no interference with the assay due to the presence of lipid-associated turbidity or primary amine content. The assay was shown to be sensitive to as little as 0.3 microgram of lipoprotein and to yield similar results when compared to the Lowry method.  相似文献   

2.
The degradation of insulin and glucagon by a highly purified enzyme isolated from rat skeletal muscle was investigated. A sensitive assay for proteolytic degradation of insulin and glucagon using fluorescamine to detect an increase in primary amine groups was established. As measured by an increase in fluorescamine reactive materials, insulin was rapidly degraded by this highly purified enzyme without requiring initial disulfide cleavage. Associated with the increase in fluorescamine reactive materials was a decrease in immunoassayable insulinmglucagon wal also proteolytically degraded by this enzyme but a number of other peptides and proteins including proinsulin, and A and B chains of insulin were not degraded. Thus, we have demonstrated that insulin (and glucagon) can be proteolytically degraded by an enzyme isolated from an insulin sensitive tissue, skeletal muscle. Proteolytic degradation by this enzyme requires the intact insulin molecule rather than separate A and B chains.  相似文献   

3.
A method is described for the conversion of secondary amino acids to primary amines which can be assayed with fluorescamine (I). Secondary amino acids undergo oxidative decar?ylation when reacted with halogenating agents. The resulting imines are hydrolyzed to primary amines, which are subsequently allowed to react with fluorescamine (I) to yield fluorescent pyrrolinones (II). This reaction sequence provides an efficient fluorometric assay for secondary amino acids. Thus, the fluorescamine procedure is now applicable to the full array of natural amino acids.  相似文献   

4.
The effects of sodium dodecyl sulfate on the fluorescent labeling of proteins were studied. Of 57 primary amine groups in bovine serum albumin, no more than 7 are titrable by fluorescamine. Fluorescamine labeling does not cause appreciable conformational changes of proteins. The extent of labeling of proteins decreases as the concentrations of sodium dodecyl sulfate increases. The fluorescence properties of labeled primary amine are only slightly affected by the polarities of the solvents. The inhibitory effects of sodium dodecyl sulfate upon labelings are interpreted as the low permeability of fluorescamine toward the highly charged envelopes of sodium dodecyl sulfate-protein micelles.  相似文献   

5.
Fluorescamine is a useful reagent for the fluorometric assay of primary amines. The extent of the reaction between fluorescamine and primary amines, as well as the fluorescence intensities of the resulting fluorophors depend on pH, solvent composition and reagent concentration. Optimum values for these variables further depend on the amine under study. The influence of these parameters on the fluorogenic reaction of representative amines, and on their fluorophoric derivatives has been investigated, and the results are reported here.  相似文献   

6.
A system is described for the separation of the amino acids commonly found in protein hydrolysates at the picomole level using a single ion exchange column and for their quantitation by the fluorescamine (4-phenylspiro[furan-2 (3H),1′-phthalan]-3,3′-dione) reaction. Three sodium citrate buffers were required for the separation of the amino acids with an analysis time of approximately 3 hr. The amino acids in 1 μg of hydrolyzed bovine serum albumin were separated using a single ion exchange column and were detected in the effluent from the column by the fluorescamine assay. The results were compared with those obtained using a commercial amino acid analyzer and 150 μg of hydrolyzed bovine serum albumin. The chromatogram produced by the more sensitive analyzer utilizing the fluorescamine reaction to detect the amino acids compared favorably with the chromatogram produced by the commercial analyzer utilizing the ninhydrin reaction with the exception that the proline peak was missing. Proline and hydroxyproline fail to yield fluorescence on reaction with fluorescamine unless converted from imines to primary amines.  相似文献   

7.
The paper describes a fluorimetric technique for determining the overall amount of primary amines and protein using fluorescamine directly in suspensions of yeast and bacterial microorganisms. The optimal conditions are selected for the reaction. The technique is highly sensitive and has an advantage over biochemical methods when one has to make many assays of amine containing compounds in biological material. The technique can find wide application in industrial practice.  相似文献   

8.
Amylin is a pancreatic hormone that plays important roles in overall metabolism and in glucose homeostasis. The therapeutic restoration of postprandial and basal amylin levels is highly desirable for patients with diabetes who need to avoid glucose excursions. Protein conjugation with polyethylene glycol (PEG) has long been known to be a convenient approach for extending the biological effects of biopharmaceuticals. We have investigated the reactivity of amylin with methoxy polyethylene glycol succinimidyl carbonate and methoxy polyethylene glycol succinimidyl propionate, which have an average molecular weight of 5 kDa. The reaction, which was conducted in both aqueous and organic (dimethyl sulfoxide) solvents, occurred within a few minutes and resulted in at least four detectable products with distinct kinetic phases. These results suggest a kinetic selectivity for PEGylation by succinimidyl derivatives; these derivatives exhibit enhanced reactivity with primary amine groups, as indicated by an evaluation of the remaining amino groups using fluorescamine. The analysis of tryptic fragments from mono- and diPEGylated amylin revealed that conjugation occurred within the 1-11 amino acid region, most likely at the two amine groups of Lys1. The reaction products were efficiently separated by C-18 reversed phase chromatography. Binding assays confirmed the ability of mono- and diPEGylated amylin to interact with the amylin co-receptor receptor activity-modifying protein 2. Subcutaneous administration in mice revealed the effectiveness of monoPEG-amylin and diPEG-amylin in reducing glycemia; both compounds exhibited prolonged action compared to unmodified amylin. These features suggest the potential use of PEGylated amylin to restore basal amylin levels.  相似文献   

9.
The sensitivity of the fluorescamine assay is increased by hydrolysis of the protein sample in 2 n NaOH. The assay is linear from 0.125 to 10 μg of protein and can measure concentrations as low as 0.5 μg/ml. The presence of several detergents including Triton X-100 in both the protein sample (up to 10%) and in the fluorescamine assay itself (up to 0.33%) does not interfere.  相似文献   

10.
With recent advances in protein microchemistry, compatible methods for the preparation and quantitation of proteins and peptides are required. Fluorescamine, a reagent which reacts with primary amino groups has been used successfully to detect amino acids, peptides, and proteins in various micromethods. This article discusses these methods which include (1) amino acid analysis of protein and peptide hydrolysates with postcolumn fluorescamine derivatization; (2) purification and characterization of proteins and peptides by reversed-phase HPLC with postcolumn fluorescamine derivatization; (3) purification of peptides by two-dimensional chromatography and electrophoresis on thin-layer cellulose with fluorescamine staining; and (4) electroblotting of protein bands from SDS-PAGE to glass fiber filters and polyvinylidene difluoride (PVDF) membranes with fluorescamine staining. In addition, this article also compares a postcolumn fluorescamine detection system with a UV detection system in the applications of amino acid analysis and reversed-phase HPLC protein/peptide analysis.  相似文献   

11.
Here we report a new fluorescence-based assay for measuring MshB (N-acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside deacetylase) activity. The current assay for measuring MshB activity requires the fluorescent labeling of reaction mixtures and subsequent analysis using high-performance liquid chromatography (HPLC), resulting in a significant amount of processing time per sample. Here we describe a more rapid fluorescnce-based assay for the measurement of MshB activity that does not require HPLC analysis and can be carried out in multiwell plates. This fluorescamine (FSA)-based assay was used to determine the steady-state parameters for the deacetylation of N-acetyl-glucosamine (GlcNAc) by MshB, and the results from these experiments support the hypothesis that the inositol moiety primarily contributes to the affinity of GlcNAc-Ins (N-acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside) for MshB. The rapid nature of this assay will aid efforts toward a more detailed biochemical characterization of MshB. Furthermore, because this assay relies on the formation of a primary amine, it could be adapted to measure the activity of mycothiol-S-conjugate amidase, a metal-dependent amidase that is a potential drug target involved in the mycothiol detoxification pathway.  相似文献   

12.
A system is presented for automatically monitoring primary amines in preparative column effluents by fluorescamine assay. A small portion of column effluent, containing nanograms of protein or picomoles of peptide, is diverted via a sampling valve into the detection system, while the remainder is recovered in a fraction collector.  相似文献   

13.
Fluorescamine was used as a fluorescent label for intact human erythrocytes and slices of corn coleoptile tissue. This reagent has a greater affinity for membranous than for soluble proteins, and also labels membrane lipids which contain primary amine groups. In addition, some membrane fractions from labeled coleoptiles have a higher affinity for fluorescamine than do others. The relative labeling of the various fractions can be altered by changing the pH of the external labeling medium. Because the pH of the medium determines the rate of hydrolysis of fluorescamine to an unreactive form, this result suggests that the specificity of this reagent towards different cellular structures is determined by the lifetime of the active reagent. Fluorescamine was not found to be a specific reagent for the cell surface.  相似文献   

14.
Metal ions and complexes that hydrolyze peptides under nondenaturing conditions of temperature and pH hold great promise for use in protein structural studies. However, the extreme stability of the peptide amide bond has placed limits on the number of reagents available. In addition, the development of new cleavage strategies has been hindered by the fact that no facile procedure exists for the detection and characterization of metal-assisted peptide hydrolysis. Here we describe a rapid assay in which a microplate reader is used to detect fluorescence produced by the reaction of fluorescamine with hydrolyzed peptides. We have employed this assay to detect Zn(II) and Pd(II)-assisted peptide hydrolysis in multiple samples and in each case have extended our approach to a successful analysis of reaction kinetics. Aliquots from multiple time points are treated with fluorescamine in a single 96-well plate. Because the plate is scanned in a microplate reader in only 58 s, the assay is very convenient compared to conventional approaches which rely on NMR and HPLC to monitor individual reactions. Using our assay, rate constants and half-lives are easily derived from the kinetic data by means of linear regression curve fits of triplicate runs.  相似文献   

15.
Recent studies have shown that the covalent attachment of poly(ethylene glycol), abbreviated as PEG, to the surface of human red blood cells (RBC) leads to masking of membrane antigenic sites and inhibition of RBC aggregation. The effects of PEG coating on the regions near the RBC glycocalyx were thus explored using cell micro-electrophoresis. Both linear (3.35, 18.5, 35.0) and an 8-arm 35.9 kDa reactive PEG were used; in one series, thick cross-linked coats were obtained using a branched PEG amine as a cross-linker. The results indicate marked decreases of RBC mobility (up to 90%) which were affected by polymer molecular mass and geometry. Since PEG is neutral and its covalent attachment is predominantly to primary amine groups, such decreases of mobility most likely reflect structural changes near and within the RBC glycocalyx rather than decreased surface charge density. Experimental data were analyzed using a theoretical approach which allows calculation of the thickness and friction of the polymer layers: (1) for linear PEGs, thickness increased and friction decreased with polymer mass; (2) compared to linear PEGs of similar molecular mass, thickness was less and friction was greater for the branched PEG; (3) cross-linked PEG coatings were more than 50 nm thick and were insensitive to changes of ionic strength. These observations are consistent with the aggregation behavior of PEG-coated RBC and indicate the usefulness of micro-electrophoresis methods for studies of covalently-attached polymers: the resulting calculated thickness and friction factors should be of value in achieving desired cellular surface characteristics or levels of cell-cell interaction.  相似文献   

16.
The reaction of fluorescamine with primary amino groups of tRNAs was investigated. The reagent was attached under mild conditions to the 3'-end of tRNAPhe-C-C-A(3'NH) from yeast and to the minor nucleoside x in E. coli tRNAArg, tRNALys, tRNAMet, tRNAIle and tRNAPhe. The primary aliphatic amino groups of these tRNAs react specifically so that the fluorescamine dye is not attached to the amino groups of the nucleobases. E. coli tRNA species modified on the minor nucleoside X47 can all be aminoacylated. An involvement of the minor modified nucleoside X47 in the tRNA: synthetase interaction is detected. Native tRNALys-C-C-A from E. coli can be phenylalanylated by phenylalanyl-tRNA synthetase from yeast, whereas this is not the case for fluorescamine treated tRNALys-C-C-A(XF47). Pre-tRNAPhe-C-C-A(XF47) forms a ternary complex with the elongation factor Tu:GTP from E. coli, binds enzymatically to the ribosomal A-site and is active in poly U dependent poly Phe synthesis. Fluorescamine-labelled E. coli tRNAs provide new substrates for the study of protein biosynthesis by spectroscopic methods.  相似文献   

17.
A fluorimetric assay which enables direct and accurate analysis of the adhesion of bacteria to solid particles was developed. The assay is based on labeling of the bacteria with fluorescamine, which reacts with primary amino groups on the cell surface to yield a yellow fluorescence that is easily detectable by both fluorescence microscopy and spectrofluorimetry. As an example, fluorescent labeling of Rhodococcus strain GIN-1 (NCIMB 40340) cells enabled the detection and quantitative determination of their adsorption to TiO(inf2) and coal fly ash particles. Exposure of the cells to 10% acetone during the labeling reaction affected neither their viability nor their ability to adhere to these particles. Only a small fraction (^sim2%) of the total cell protein was labeled by fluorescamine upon staining of intact bacterial cells, which may indicate preferential labeling of certain proteins. Specificity studies carried out with the fluorescence assay confirmed previous findings that Rhodococcus strain GIN-1 cells possess high affinities for TiO(inf2), ZnO, and coal fly ash and low affinities for other metal oxides. In principle, the newly developed fluorimetric assay may be used for determination of cell adhesion to any solid matrix by either microscopic examination or epifluorescence measurements. In the present work, the adhesion of several other microorganisms to TiO(inf2) particles was tested as well, but their ability to adhere to these particles was significantly lower than that of Rhodococcus strain GIN-1 cells.  相似文献   

18.
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is one of the key enzymes of bacterial lipid A biosynthesis, catalyzing the removal of the N-acetyl group of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine. The lpxC gene is essential in Gram-negative bacteria but absent from mammalian genomes, making it an attractive target for antibacterial drug discovery. Current assay methods for LpxC are not suitable for high throughput screening, since they require multiple product separation steps and the use of radioactively labeled material that is difficult to prepare. A homogeneous fluorescence-based assay was developed that uses UDP-3-O-(N-hexyl-propionamide)-N-acetylglucosamine as a surrogate substrate. This surrogate can be prepared from commercially available UDP-GlcNAc by enzymatic conversion to UDP-MurNAc, which is then chemically coupled to n-hexylamine. Following the LpxC reaction, the free amine of the deacetylation product can be derivatized by fluorescamine, thus generating a fluorescent signal. This surrogate substrate has a K(m) of 367 microM and k(cat) of 0.36 s(-1), compared to 2 microM and 1.5 s(-1) for the natural substrate. Since no separation is needed, the assay is easily adaptable to high throughput screening. IC(50)s of LpxC inhibitors determined using this assay method is similar to those measured by traditional method with the natural substrate.  相似文献   

19.
A fluorescamine assay for the detection of a spore-lytic enzyme from Clostridium perfringens is described. The substrate is prepared by treatment of cortical fragments with fluorescamine which reacts with amino terminal groups in the peptidoglycan which are not cross-linked, presumably diaminopimelic acid. Treatment of the labelled substrate with lytic enzymes results in the release of soluble fluorescent products which can be easily measured in a basic fluorometer. The assay is very sensitive, inexpensive and reproducible. As little as 1 μg of lysozyme can be detected by this assay.  相似文献   

20.
A Structure Activity Relationship (SAR) study was accomplished with six aromatic compounds which have a nitrogen mustard (N-mustard) substituent. N-mustard agents are very important for the clinical treatment of many types of cancers. All N-mustard agents synthesized alkylated a nucleophilic primary amine (p-chloroaniline) in aqueous solvent at pH 7.4 and 37 degrees C. Rate constants and rate equations were determined for the alkylation reactions by monitoring the formation of a fluorescent complex formed when fluorescamine complexes the unreacted p-chloroaniline. Fluorescamine complexation of the unreacted primary amine halts the alkylation reaction and allows the determination of remaining unreacted primary amine, which in turn permits the determination of rate constants and rate equations. The fluorescamine-amine complex shows a strong absorbance peak at a wavelength of 400 nanometers in aqueous solvent. The molar absorptivity (epsilon) was calculated to be 18.37 L/(mole x cm). First order rate constants ranged from 0.513E-2 minute(-1) to 1.32E-2 minute(-1) with second order rate constants from 2.85E-2 (M x minute)(-1) to 4.78E-2 (M x minute)(-1). The aromatic compounds included benzoic acid, m-chlorobenzoic acid, hydrocinnamic acid, m-toluic acid, and 3,4-dimethoxybenzoic acid. The synthesis procedure produced the N-mustard agents at > or = 90% yield and high purity. Partition coefficient Log(Kow)Log P values ranged from 2.66 to 4.18. The N-mustard agents consisted of greyish-yellow crystals which retained alkylation activity for more than ten weeks when stored at -10 degrees C and were soluble in water at 25 degrees C and 37 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号