首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has recently been demonstrated that phosphatidylinositol 4,5-bisphosphate (PIP2) is localized at the cleavage furrow in dividing cells and its hydrolysis is required for complete cytokinesis, suggesting a pivotal role of PIP2 in cytokinesis. Here, we report that at least three mammalian isoforms of phosphoinositide-specific phospholipase C (PLC), PLCdelta1, PLCdelta3 and PLCbeta1, are localized to the cleavage furrow during cytokinesis. Targeting of the delta1 isoform to the furrow depends on the specific interaction between the PH domain and PIP2 in the plasma membrane. The necessity of active PLC in animal cell cytokinesis was confirmed using the specific inhibitors for PIP2 hydrolysis. These results support the model that activation of selected PLC isoforms at the cleavage furrow controls progression of cytokinesis through regulation of PIP2 levels: induction of the cleavage furrow by a contractile ring consisting of actomyosin is regulated by PIP2-dependent actin-binding proteins and formation of specific lipid domains required for membrane separation is affected by alterations in the lipid composition of the furrow.  相似文献   

2.
Cytokinesis is a crucial step in the creation of two daughter cells by the formation and ingression of the cleavage furrow. Here, we show that sphingomyelin (SM), one of the major sphingolipids in mammalian cells, is required for the localization of phosphatidylinositol-4,5-bisphosphate (PIP(2)) to the cleavage furrow during cytokinesis. Real-time observation with a labeled SM-specific protein, lysenin, revealed that SM is concentrated in the outer leaflet of the furrow at the time of cytokinesis. Superresolution fluorescence microscopy analysis indicates a transbilayer colocalization between the SM-rich domains in the outer leaflet and PIP(2)-rich domains in the inner leaflet of the plasma membrane. The depletion of SM disperses PIP(2) and inhibits the recruitment of the small GTPase RhoA to the cleavage furrow, leading to abnormal cytokinesis. These results suggest that the formation of SM-rich domains is required for the accumulation of PIP(2) to the cleavage furrow, which is a prerequisite for the proper translocation of RhoA and the progression of cytokinesis.  相似文献   

3.
The cleavage signal transferred to the future cleavage cortex during anaphase has been proposed as "cleavage stimulus," but no signal has proved to induce cleavage furrows. The local Ca2+ transient along the cleavage furrow has been reported, but the Ca2+ source has remained unknown. To address these questions, we studied functions of Ca2+ stores in dividing newt eggs and found that microinjection of the Ca2+ store-enriched microsome fraction to the dividing newt egg induced a local extra-cleavage furrow at the injection site in 64-67% of the injected newt eggs while coinjection with inositol 1,4, 5-trisphosphate receptor (IP(3)R) antagonists heparin or anti-type 1-IP(3)R antibody clearly suppressed this induction (5 and 11% in induction rates, respectively). Injection of cerebellar microsomes from the type 1-IP(3)R-deficient mice induced extracleavage furrows albeit at a low rate (19%). Our observations strongly suggest that Ca2+ stores with IP(3)R induce and position a cleavage furrow via IP(3)-induced Ca2+ release (IICR) as Ca(2+)-releasing machinery and putative cleavage stimulus itself.  相似文献   

4.
We report that the first localized Ca(2+) transient visualized in the blastodisc cortex of post-mitotic zebrafish zygotes has unique features. We confirm that this initial 'furrow positioning' Ca(2+) transient precedes the physical appearance of the first cleavage furrow at the blastodisc surface and that it has unique dynamics, which distinguish it from the subsequent furrow propagation transients that develop from it. This initial transient displays a distinct rising phase that peaks prior to the initiation of the two linear, subsurface, self-propagating Ca(2+) waves that constitute the subsequent furrow propagation transient. Through the carefully timed introduction of the Ca(2+) buffer, dibromo-BAPTA, we also demonstrate the absolute requirement of this initial rising phase Ca(2+) transient in positioning the furrow at the blastodisc surface: no rising phase transient, no cleavage furrow. Likewise, the introduction of the inositol 1,4,5-trisphosphate receptor (IP3R) antagonist, 2-aminoethoxydiphenyl borate, eliminates both the rising phase transient and the appearance of the furrow at the cell surface. On the other hand, antagonists of the ryanodine receptor and NAADP-sensitive channels, or simply bathing the zygote in Ca(2+)-free medium, have no effect on the generation of the rising phase positioning transient or the appearance of the furrow at the surface. This suggests that like the subsequent propagation and deepening/zipping Ca(2+) transients, the rising phase furrow positioning transient is also generated specifically by Ca(2+) released via IP3Rs. We propose, however, that despite being generated by a similar Ca(2+) release mechanism, the unique features of this initial transient suggest that it might be a distinct signal with a specific function associated with positioning the cleavage furrow at the blastodisc surface.  相似文献   

5.
Cell division ends up with the membrane separation of two daughter cells, presumably by a membrane fusion that requires dynamic changes of the distribution and the composition of membrane lipids. We have previously shown that a membrane lipid phosphatidylethanolamine (PE) is exposed on the cell surface of the cleavage furrow during late cytokinesis and that this PE movement is involved in regulation of the contractile ring disassembly. Here we show that immobilization of cell surface PE by a PE-binding peptide blocks the RhoA inactivation in the late stage of cytokinesis. Phosphatidylinositol 4-phosphate 5-kinase (PIP5K), but not other RhoA effectors, is co-localized with RhoA in the peptide-treated cells. Indeed, PIP5K and its product phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) are localized to the cleavage furrow of normally dividing cells. Both overexpression of a kinase-deficient PIP5K mutant and microinjection of anti-PI(4,5)P(2) antibodies compromise cytokinesis by preventing local accumulation of PI(4,5)P(2) in the cleavage furrow. These findings demonstrate that the localized production of PI(4,5)P(2) is required for the proper completion of cytokinesis and that the possible formation of a unique lipid domain in the cleavage furrow membrane may play a crucial role in coordinating the contractile rearrangement with the membrane remodeling during late cytokinesis.  相似文献   

6.
We reported that microinjection of Ca2+ store-enriched microsome fractions from cultured CHO cells and mouse cerebella to dividing newt eggs induced extra-cleavage furrows via inositol 1,4,5-trisphosphate-induced Ca2+ release (Mitsuyama et al., 1999). Our observation strongly suggested that Ca2+ stores with inositol 1,4,5-trisphosphate receptor (IP3R) induce and position a cleavage furrow, as Ca2+-releasing machinery, and that such is itself a putative cleavage stimulus. For confirmation, we immunocytochemically examined mitotic CHO cells using antibodies against Ca2+ store-related proteins. We found that polar dominant Ca2+ stores with IP3R during metaphase were re-distributed to the future cleavage cortex just preceding the onset of furrowing, and that this redistributing IP3R was present on microtubule bundles. When a microsome fraction from sacro/endoplasmic reticulum Ca2+-ATPase (SERCA)-GFP stably expressing CHO cells was microinjected into dividing newt eggs and observed by confocal microscopy, the microinjected Ca2+ stores with IP3R moved linearly toward the next cleavage furrow and this movement was blocked by nocodazole, a microtubule-depolarizing agent, but not by cytochalasin B, an F-actin-depolarizing agent. These observations strongly suggest that Ca2+ stores with IP3R are transferred and accumulate to the cleavage furrow by microtubule-based motility, as a cleavage stimulus.  相似文献   

7.
In cytokinesis, the contractile ring constricts the cleavage furrow. However, the formation and properties of the contractile ring are poorly understood. Fimbrin has two actin-binding domains and two EF-hand Ca(2+)-binding motifs. Ca(2+) binding to the EF-hand motifs inhibits actin-binding activity. In Tetrahymena, fimbrin is localized in the cleavage furrow during cytokinesis. In a previous study, Tetrahymena fimbrin was purified with an F-actin affinity column. However, the purified Tetrahymena fimbrin was broken in to a 60 kDa fragment of a 70 kDa full length fimbrin. In this study, we investigated the properties of recombinant Tetrahymena fimbrin. In an F-actin cosedimentation assay, Tetrahymena fimbrin bound to F-actin and bundled it in a Ca(2+)-independent manner, with a K(d) of 0.3 micro M and a stoichiometry at saturation of 1:1.4 (Tetrahymena fimbrin: actin). In the presence of 1 molecule of Tetrahymena fimbrin to 7 molecules of actin, F-actin was bundled. Immunofluorecence microscopy showed that a dotted line of Tetrahymena fimbrin along the cleavage furrow formed a ring structure. The properties and localization of Tetrahymena fimbrin suggest that it bundles actin filaments in the cleavage furrow and plays an important role in contractile ring formation during cytokinesis.  相似文献   

8.
We have previously visualized three Ca2+ transients, generated by release from intracellular stores, which are associated with cytokinesis during the early cell division cycles of zebrafish embryos: the furrow positioning, propagation and deepening transients. Here we demonstrate the requirement of the latter for furrow deepening, and identify the Ca2+ release channels responsible for generating the deepening transient. The introduction of the Ca2+ buffer 5,5'-dibromo-BAPTA, at an appropriate time to challenge only the deepening transient, resulted in the dissipation of this transient and an inhibition of furrow deepening. Introduction of antagonists of the inositol 1,4,5-trisphosphate (IP3) receptor (heparin and 2-aminoethoxydiphenylborate; 2-APB) at the appropriate time, blocked the furrow deepening transient and resulted in an inhibition of furrow deepening. In contrast, antagonists of the ryanodine receptor and the NAADP-sensitive channel had no effect on either the furrow deepening transient or on furrow deepening. In addition, microinjection of IP3 led to the release of calcium from IP3-sensitive stores, whereas the introduction of caffeine or cADPR failed to induce any increase in intracellular Ca2+. Our new data thus support the idea that Ca2+ released via IP3 receptors is essential for generating the furrow deepening transient and demonstrate a requirement for a localized cytosolic Ca2+ riseforthe furrow deepening process. We also present data to show that the endoplasmic reticulum and IP3 receptors are localized on either side of the cleavage furrow, thus providing the intracellular Ca2+ store and release mechanism for generating the deepening transient.  相似文献   

9.
At the time of fertilization, an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) underlies egg activation and initiation of development in all species studied to date. The inositol 1,4,5-trisphosphate receptor (IP(3)R1), which is mostly located in the endoplasmic reticulum (ER) mediates the majority of this Ca(2+) release. The sensitivity of IP(3)R1, that is, its Ca(2+) releasing capability, is increased during oocyte maturation so that the optimum [Ca(2+)](i) response concurs with fertilization, which in mammals occurs at metaphase of second meiosis. Multiple IP(3)R1 modifications affect its sensitivity, including phosphorylation, sub-cellular localization, and ER Ca(2+) concentration ([Ca(2+)](ER)). Here, we evaluated using mouse oocytes how each of these factors affected IP(3)R1 sensitivity. The capacity for IP(3)-induced Ca(2+) release markedly increased at the germinal vesicle breakdown stage, although oocytes only acquire the ability to initiate fertilization-like oscillations at later stages of maturation. The increase in IP(3)R1 sensitivity was underpinned by an increase in [Ca(2+)](ER) and receptor phosphorylation(s) but not by changes in IP(3)R1 cellular distribution, as inhibition of the former factors reduced Ca(2+) release, whereas inhibition of the latter had no impact. Therefore, the results suggest that the regulation of [Ca(2+)](ER) and IP(3)R1 phosphorylation during maturation enhance IP(3)R1 sensitivity rendering oocytes competent to initiate oscillations at the expected time of fertilization. The temporal discrepancy between the initiation of changes in IP(3)R1 sensitivity and acquisition of mature oscillatory capacity suggest that other mechanisms that regulate Ca(2+) homeostasis also shape the pattern of oscillations in mammalian eggs.  相似文献   

10.
Critical role of PIP5KI{gamma}87 in InsP3-mediated Ca(2+) signaling   总被引:2,自引:0,他引:2  
Wang YJ  Li WH  Wang J  Xu K  Dong P  Luo X  Yin HL 《The Journal of cell biology》2004,167(6):1005-1010
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) is the obligatory precursor of inositol 1,4,5-trisphosphate (InsP(3) or IP(3)) and is therefore critical to intracellular Ca(2+) signaling. Using RNA interference (RNAi), we identified the short splice variant of type I phosphatidylinositol 4-phosphate 5-kinase gamma (PIP5KIgamma87) as the major contributor of the PIP(2) pool that supports G protein-coupled receptor (GPCR)-mediated IP(3) generation. PIP5KIgamma87 RNAi decreases the histamine-induced IP(3) response and Ca(2+) flux by 70%. Strikingly, RNAi of other PIP5KI isoforms has minimal effect, even though some of these isoforms account for a larger percent of total PIP(2) mass and have previously been implicated in receptor mediated endocytosis or focal adhesion formation. Therefore, PIP5KIgamma87's PIP(2) pool that supports GPCR-mediated Ca(2+) signaling is functionally compartmentalized from those generated by the other PIP5KIs.  相似文献   

11.
The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), an IP(3)-gated Ca(2+) channel located on intracellular Ca(2+) stores, modulates intracellular Ca(2+) signaling. During apoptosis of the human T-cell line, Jurkat cells, as induced by staurosporine or Fas ligation, IP(3)R type 1 (IP(3)R1) was found to be cleaved. IP(3)R1 degradation during apoptosis was inhibited by pretreatment of Jurkat cells with the caspase-3 (-like protease) inhibitor, Ac-DEVD-CHO, and the caspases inhibitor, z-VAD-CH(2)DCB but not by the caspase-1 (-like protease) inhibitor, Ac-YVAD-CHO, suggesting that IP(3)R1 was cleaved by a caspase-3 (-like) protease. The recombinant caspase-3 cleaved IP(3)R1 in vitro to produce a fragmentation pattern consistent with that seen in Jurkat cells undergoing apoptosis. N-terminal amino acid sequencing revealed that the major cleavage site is (1888)DEVD*(1892)R (mouse IP(3)R1), which involves consensus sequence for caspase-3 cleavage (DEVD). To determine whether IP(3)R1 is cleaved by caspase-3 or is proteolyzed in its absence by other caspases, we examined the cleavage of IP(3)R1 during apoptosis in the MCF-7 breast carcinoma cell line, which has genetically lost caspase-3. Tumor necrosis factor-alpha- or staurosporine-induced apoptosis in caspase-3-deficient MCF-7 cells failed to demonstrate cleavage of IP(3)R1. In contrast, MCF-7/Casp-3 cells stably expressing caspase-3 showed IP(3)R1 degradation upon apoptotic stimuli. Therefore IP(3)R1 is a newly identified caspase-3 substrate, and caspase-3 is essential for the cleavage of IP(3)R1 during apoptosis. This cleavage resulted in a decrease in the channel activity as IP(3)R1 was digested, indicating that caspase-3 inactivates IP(3)R1 channel functions.  相似文献   

12.
BACKGROUND INFORMATION: The IP(3)R (inositol 1,4,5-trisphosphate receptor) is a tetrameric channel that accounts for a large part of the intracellular Ca(2+) release in virtually all cell types. We have previously demonstrated that caspase-3-mediated cleavage of IP(3)R1 during cell death generates a C-terminal fragment of 95 kDa comprising the complete channel domain. Expression of this truncated IP(3)R increases the cellular sensitivity to apoptotic stimuli, and it was postulated to be a constitutively active channel. RESULTS: In the present study, we demonstrate that expression of the caspase-3-cleaved C-terminus of IP(3)R1 increased the rate of thapsigargin-mediated Ca(2+) leak and decreased the rate of Ca(2+) uptake into the ER (endoplasmic reticulum), although it was not sufficient by itself to deplete intracellular Ca(2+) stores. We detected the truncated IP(3)R1 in different cell types after a challenge with apoptotic stimuli, as well as in aged mouse oocytes. Injection of mRNA corresponding to the truncated IP(3)R1 blocked sperm factor-induced Ca(2+) oscillations and induced an apoptotic phenotype. CONCLUSIONS: In the present study, we show that caspase-3-mediated truncation of IP(3)R1 enhanced the Ca(2+) leak from the ER. We suggest a model in which, in normal conditions, the increased Ca(2+) leak is largely compensated by enhanced Ca(2+)-uptake activity, whereas in situations where the cellular metabolism is compromised, as occurring in aging oocytes, the Ca(2+) leak acts as a feed-forward mechanism to divert the cell into apoptosis.  相似文献   

13.
We have shown that the caveolar Na/K-ATPase transmits ouabain signals via multiple signalplexes. To obtain the information on the composition of such complexes, we separated the Na/K-ATPase from the outer medulla of rat kidney into two different fractions by detergent treatment and density gradient centrifugation. Analysis of the light fraction indicated that both PLC-gamma1 and IP3 receptors (isoforms 2 and 3, IP3R2 and IP3R3) were coenriched with the Na/K-ATPase, caveolin-1 and Src. GST pulldown assays revealed that the central loop of the Na/K-ATPase alpha1 subunit interacts with PLC-gamma1, whereas the N-terminus binds IP3R2 and IP3R3, suggesting that the signaling Na/K-ATPase may tether PLC-gamma1 and IP3 receptors together to form a Ca(2+)-regulatory complex. This notion is supported by the following findings. First, both PLC-gamma1 and IP3R2 coimmunoprecipitated with the Na/K-ATPase and ouabain increased this interaction in a dose- and time-dependent manner in LLC-PK1 cells. Depletion of cholesterol abolished the effects of ouabain on this interaction. Second, ouabain induced phosphorylation of PLC-gamma1 at Tyr(783) and activated PLC-gamma1 in a Src-dependent manner, resulting in increased hydrolysis of PIP2. It also stimulated Src-dependent tyrosine phosphorylation of the IP3R2. Finally, ouabain induced Ca(2+) release from the intracellular stores via the activation of IP3 receptors in LLC-PK1 cells. This effect required the ouabain-induced activation of PLC-gamma1. Inhibition of Src or depletion of cholesterol also abolished the effect of ouabain on intracellular Ca(2+).  相似文献   

14.
Alpha(1)-aderenoceptor-mediated constriction of rabbit inferior vena cava (IVC) is signaled by asynchronous wavelike Ca(2+) oscillations in the in situ smooth muscle. We have shown previously that a putative nonselective cationic channel (NSCC) is required for these oscillations. In this report, we show that the application of 2-aminoethoxyphenyl borate (2-APB) to antagonize inositol 1,4,5-trisphosphate (InsP(3))-sensitive Ca(2+) release channels (IP(3)R channels) can prevent the initiation and abolish ongoing alpha(1)-aderenoceptor-mediated tonic constriction of the venous smooth muscle by inhibiting the generation of these intracellular Ca(2+) concentration ([Ca(2+)](i)) oscillations. The observed effects of 2-APB can only be attributed to its selective inhibition on the IP(3)R channels, not to its slight inhibition of the L-type voltage-gated Ca(2+) channel and the sarco(endo)plasmic reticulum Ca(2+) ATPase. Furthermore, 2-APB had no effect on the ryanodine-sensitive Ca(2+) release channel and the store-operated channel (SOC) in the IVC. These results indicate that the putative NSCC involved in refilling the sarcoplasmic reticulum (SR) and maintaining the tonic contraction is most likely an SOC-type channel because it appears to be activated by IP(3)R-channel-mediated SR Ca(2+) release or store depletion. This is in accordance with its sensitivity to Ni(2+) and La(3+) (SOC blockers). More interestingly, RT-PCR analysis indicates that transient receptor potential (Trp1) mRNA is strongly expressed in the rabbit IVC. The Trp1 gene is known to encode a component of the store-operated NSCC. These new data suggest that the activation of both the IP(3)R channels and the SOC are required for PE-mediated [Ca(2+)](i) oscillations and constriction of the rabbit IVC.  相似文献   

15.
The developmental competence of mammalian eggs is compromised by postovulatory aging. We and others have found that in these eggs, the intracellular calcium ([Ca(2+)](i)) responses required for egg activation and initiation of development are altered. Nevertheless, the mechanism(s) underlying this defective Ca(2+) release is not well known. Here, we investigated if the function of IP(3)R1, the major Ca(2+) release channel at fertilization, was undermined in in vitro-aged mouse eggs. We found that in aged eggs, IP(3)R1 displayed reduced function as many of the changes acquired during maturation that enhance IP(3)R1 Ca(2+) conductivity, such as phosphorylation, receptor reorganization and increased Ca(2+) store content ([Ca(2+)](ER)), were lost with increasing postovulatory time. IP(3)R1 fragmentation, possibly associated with the activation of caspase-3, was also observed in these eggs. Many of these changes were prevented when the postovulatory aging of eggs was carried out in the presence of caffeine, which minimized the decline in IP(3)R(1) function and maintained [Ca(2+)](ER) content. Caffeine also maintained mitochondrial membrane potential, as measured by JC-1 fluorescence. We therefore conclude that [Ca(2+)](i) responses in aged eggs are undermined by reduced IP(3)R1 sensitivity, decreased [Ca(2+)](ER) , and compromised mitochondrial function, and that addition of caffeine ameliorates most of these aging-associated changes. Understanding the molecular basis of the protective effects of caffeine will be useful in elucidating, and possibly reversing, the signaling pathway(s) compromised by in vitro culture of eggs.  相似文献   

16.
Ca(2+) microdomains or locally restricted Ca(2+) increases in the cell have recently been reported to regulate many essential physiological events. Ca(2+) increases through the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)/Ca(2+) release channels contribute to the formation of a class of such Ca(2+) microdomains, which were often observed and referred to as Ca(2+) puffs in their isolated states. In this report, we visualized IP(3)-evoked Ca(2+) microdomains in histamine-stimulated intact HeLa cells using a total internal reflection fluorescence microscope, and quantitatively characterized the spatial profile by fitting recorded images to a two-dimensional Gaussian distribution. Ca(2+) concentration profiles were marginally spatially anisotropic, with the size increasing linearly even after the amplitude began to decline. We found the event centroid drifted with an apparent diffusion coefficient of 4.20 ± 0.50 μm(2)/s, which is significantly larger than those estimated for IP(3)Rs. The sites of maximal Ca(2+) increase, rather than initiation or termination sites, were detected repeatedly at the same location. These results indicate that Ca(2+) microdomains in intact HeLa cell are generated from spatially distributed multiple IP(3)R clusters or Ca(2+) puff sites, rather than a single IP(3)R cluster reported in cells loaded with Ca(2+) buffers.  相似文献   

17.
《The Journal of cell biology》1995,131(6):1539-1545
Cytokinesis, a key step in cell division, is known to be precisely regulated both in its timing and location. At present, the regulatory mechanism of cytokinesis is not well understood, although it has been suggested that calcium signaling may play an important role in this process. To test this notion, we introduced a sensitive fluorescent Ca2+ indicator into the zebrafish embryo and used confocal microscopy to measure the spatiotemporal variation of intracellular free Ca2+ concentration ([Ca2+]i) during cell cleavage. It was evident that a localized elevation of [Ca2+]i is closely associated with cytokinesis. First, we found that during cytokinesis, the level of free Ca2+ was elevated locally precisely at the cleavage site. Second, the rise of free Ca2+ was very rapid and occurred just preceding the initiation of furrow contraction. These observations strongly suggest that cytokinesis may be triggered by a calcium signal. In addition, we found that this cytokinesis-associated calcium signal arose mainly from internal stores of Ca2+ rather than from external free Ca2+; it could be blocked by the antagonist of inositol trisphosphate (InsP3) receptors. These findings suggest that the localized elevation of [Ca2+]i is caused by the release of free Ca2+ from the endoplasmic reticulum through the InsP3-regulated calcium channels.  相似文献   

18.
Although Aurora B is important in cleavage furrow ingression and completion during cytokinesis, the mechanism by which kinase activity is targeted to the cleavage furrow and the molecule(s) responsible for this process have remained elusive. Here, we demonstrate that an essential mitotic kinesin MKlp2 requires myosin-II for its localization to the equatorial cortex, and this event is required to recruit Aurora B to the equatorial cortex in mammalian cells. This recruitment event is also required to promote the highly focused accumulation of active RhoA at the equatorial cortex and stable ingression of the cleavage furrow in bipolar cytokinesis. Specifically, in drug-induced monopolar cytokinesis, targeting Aurora B to the cell cortex by MKlp2 is essential for cell polarization and furrow formation. Once the furrow has formed, MKlp2 further recruits Aurora B to the growing furrow. This process together with continuous Aurora B kinase activity at the growing furrow is essential for stable furrow propagation and completion. In contrast, a MKlp2 mutant defective in binding myosin-II does not recruit Aurora B to the cell cortex and does not promote furrow formation during monopolar cytokinesis. This mutant is also defective in maintaining the ingressing furrow during bipolar cytokinesis. Together, these findings reveal that targeting Aurora B to the cell cortex (or the equatorial cortex) by MKlp2 is essential for the maintenance of the ingressing furrow for successful cytokinesis.  相似文献   

19.
Many important cell functions are controlled by Ca(2+) release from intracellular stores via the inositol 1,4,5-trisphosphate receptor (IP(3)R), which requires both IP(3) and Ca(2+) for its activity. Due to the Ca(2+) requirement, the IP(3)R and the cytoplasmic Ca(2+) concentration form a positive feedback loop, which has been assumed to confer regenerativity on the IP(3)-induced Ca(2+) release and to play an important role in the generation of spatiotemporal patterns of Ca(2+) signals such as Ca(2+) waves and oscillations. Here we show that glutamate 2100 of rat type 1 IP(3)R (IP(3)R1) is a key residue for the Ca(2+) requirement. Substitution of this residue by aspartate (E2100D) results in a 10-fold decrease in the Ca(2+) sensitivity without other effects on the properties of the IP(3)R1. Agonist-induced Ca(2+) responses are greatly diminished in cells expressing the E2100D mutant IP(3)R1, particularly the rate of rise of initial Ca(2+) spike is markedly reduced and the subsequent Ca(2+) oscillations are abolished. These results demonstrate that the Ca(2+) sensitivity of the IP(3)R is functionally indispensable for the determination of Ca(2+) signaling patterns.  相似文献   

20.
The endgame of cytokinesis can follow one of two pathways depending on developmental context: resolution into separate cells or formation of a stable intercellular bridge. Here we show that the four wheel drive (fwd) gene of Drosophila melanogaster is required for intercellular bridge formation during cytokinesis in male meiosis. In fwd mutant males, contractile rings form and constrict in dividing spermatocytes, but cleavage furrows are unstable and daughter cells fuse together, producing multinucleate spermatids. fwd is shown to encode a phosphatidylinositol 4-kinase (PI 4-kinase), a member of a family of proteins that perform the first step in the synthesis of the key regulatory membrane phospholipid PIP2. Wild-type activity of the fwd PI 4-kinase is required for tyrosine phosphorylation in the cleavage furrow and for normal organization of actin filaments in the constricting contractile ring. Our results suggest a critical role for PI 4-kinases and phosphatidylinositol derivatives during the final stages of cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号