首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pig brain was found to contain two calpain-specific, heat-stable inhibitory fractions which could be separated by DEAE-cellulose chromatography. CS-0.1, which was eluted from the column at 0.1 M NaCl, was identified as an ordinary, well-known calpastatin. CS-0.2, eluted at 0.2 M NaCl, was different from CS-0.1 in that it inhibited calpain 1 more strongly than calpain II and that it did not cross-react with anti-calpastatin antibodies. Partial purification indicated that CS-0.2 contained inhibitor proteins smaller than ordinary calpastatin, but whether they are the products derived from CS-0.1 or entirely different genetic products has not yet been determined.  相似文献   

2.
Two forms of Ca(++)-activated protease (calpain I and calpain II) associated with an endogenous inhibitor (calpastatin) were detected in a cytosolic fraction of the olfactory tissue of vertebrates (pig, rat). Using ion exchange chromatography on DEAE-cellulose column, calpain I is divided into 2 peaks (eluting by 0.07-0.15 and 0.22-0.25 M NaCl), and calpain II is eluted by 0.35-0.40 M NaCl. The calpain activity was detected in fractions eluted by 0.1-0.17 M NaCl. The Ca(++)-activated protease was demonstrated also in a fraction of cytoskeleton of olfactory tissue insoluble in a 1% solution of Triton X-100. The activity can be detected by Ca(++)-dependent destruction of exogenous substrate (casein), and by Ca(++)-dependent degradation of cytoskeletal endogenous proteins (16, 18 and 20 kDa), of which one may be calmodulin.  相似文献   

3.
Low and high Ca2+-requiring forms of Ca2+-dependent cysteine proteinase are known as calpain I and calpain II, respectively. We have obtained, for the first time, monospecific antibodies for calpain I and for calpain II. Using these antibodies and an electrophoretic blotting method, we have found that a small, but reproducible, amount of calpain I was associated with human erythrocyte membranes while the bulk of the protease was contained in the cytosol. Most of membrane-associated calpain I was extractable with 1% Triton X-100, but not with 0.1% detergent. In the presence of 0.1 mM Ca2+ and 5 mM cysteine, membrane-associated calpain I degraded the membrane protein band 4.1 preferentially and band 3 protein only slowly. The Ca2+-induced autodigestion of the membrane preparation was inhibited by leupeptin but not by a cytosolic calpain inhibitor, calpastatin, added to the incubation medium. No calpain II was detected in either erythrocyte cytosol or membranes when anti-calpain II antibody was used under the same conditions as those for the detection of calpain I.  相似文献   

4.
The intracellular Ca(2+)-dependent protease calpain and the specific calpain endogenous inhibitor calpastatin are widely distributed, with the calpastatin/calpain ratio varying among tissues and species. Increased Ca(2+) and calpain activation have been implicated in Alzheimer's disease (AD), with scant data available on calpastatin/calpain ratio in AD. Information is lacking on calpain activation and calpastatin levels in transgenic mice that exhibit AD-like pathology. We studied calpain and calpastatin in Tg2576 mice and in their wild type littermates (control mice). We found that in control mice calpastatin level varies among brain regions; it is significantly higher in the cerebellum than in the hippocampus, frontal and temporal cortex, whereas calpain levels are similar in all these regions. In the Tg2576 mice, calpain is activated, calpastatin is diminished, and calpain-dependent proteolysis is observed in brain regions affected in AD and in transgenic mice (especially hippocampus). In contrast, no differences are observed between the Tg2576 and the control mice in the cerebellum, which does not exhibit AD-like pathology. The results are consistent with the notion that a high level of calpastatin in the cerebellum renders the calpain in this brain region less liable to be activated; in the other brain parts, in which calpastatin is low, calpain is more easily activated in the presence of increased Ca(2+), and in turn the activated calpain leads to further diminution in calpastatin (a known calpain substrate). The results indicate that calpastatin is an important factor in the regulation of calpain-induced protein degradation in the brains of the affected mice, and imply a role for calpastatin in attenuating AD pathology. Promoting calpastatin expression may be used to ameliorate some manifestations of AD.  相似文献   

5.
Two forms of calpastatin, differing in their specificity for the homologous calpain isozymes I and II, have been separated from rat skeletal muscle extracts and purified to homogeneity. Calpastatin I, the first form to elute in chromatography on DE32, is more effective against calpain I, while calpastatin II is more effective as an inhibitor of calpain II. Based on their molecular mass (approximately 105 kDa) both calpastatin forms belong to the high molecular mass class found in muscles of other animal species (Murachi, T., 1989, Biochem. Int. 18, 263-294). For calpain I, which is active with low (mu-M) concentrations of Ca2+, maximum inhibition with either calpastatin form was observed over a wide range of Ca2+ concentrations. With calpain II, which requires high (mM) concentrations of Ca2+ for activity, maximum inhibition required Ca2+ concentrations above 1 mM. Both calpastatin forms were found to be highly sensitive to degradation by calpain II, but almost completely resistant to degradation by calpain I. Degradation of calpastatin by calpain II is competitively inhibited by the addition of a calpain substrate. Isovaleryl carnitine (IVC), an intermediate product of L-leucine catabolism, previously demonstrated to be a potent and specific activator of rat skeletal muscle calpain II (Pontremoli, S., Melloni, E., Viotti, P. L., Michetti, M., Di Lisa, F., and Siliprandi, N., 1990. Biochem. Biophys. Res. Commun. 167, 373-380) greatly enhances the rate of degradation of calpastatins by calpain II. IVC, which decreases the Ca2+ requirement for maximal calpain II activity, also decreases the concentration of Ca2+ required for digestion of the inhibitor. For calpain II, regulation by either calpastatins may occur only in the presence of high [Ca2+].  相似文献   

6.
7.
Two forms of Ca2+-dependent cysteine proteinase (calpain, EC 3.4.22.17) and their specific endogenous inhibitor (calpastatin) were partially purified from porcine retina: calpain I (low-Ca2+-requiring form) was half-maximally activated at 8 microM-Ca2+, and calpain II (high-Ca2+-requiring form) at 250 microM-Ca2+. Both calpain I and calpain II were inhibited by calpastatin. Calpain I from porcine retina was shown to be composed of 83 000- and 29 000-Mr subunits, and calpain II of 80 000- and 29 000-Mr subunits, by the use of monospecific antibodies. Calpains I and II were both found to hydrolyse microtubule-associated proteins 1 and 2 rapidly.  相似文献   

8.
Calpains I and II isolated from diverse tissues possess both Ca2+-independent, and Ca2+-dependent accessible hydrophobic regions. Possible subcellular organelle association of calpains involving these hydrophobic regions was studied. By homogenizing rat tissues directly in Ca2+ (50 microM), about 30-60% of the cytosolic calpain I and II activity reversibly associated with isolated subcellular fractions (microsomal greater than plasma membrane greater than nuclear). After binding to the particulate fraction, calpain II converted to a calpain I-like form exhibiting stronger Ca2+-independent binding to phenyl-Sepharose and a lower Ca2+ requirement for optimal activity. However, it retained its DEAE-cellulose chromatographic pattern, and precipitated with monospecific anti-calpain II antibodies. Although purified calpastatin (endogenous inhibitor) is known to form a Ca2+-dependent complex with calpains, it was not able to reverse the binding of calpains to the particulate fraction upon short incubation. It was, however, effective in blocking calpain binding when the isolated cytosolic fraction or a mixture of purified calpain and calpastatin was preincubated in the presence of Ca2+, and then added to the particulate fraction. Extraction of tissues under controlled conditions revealed that in fact calpains are already loosely associated with subcellular organelles even in the absence of Ca2+. This is the reason why in the crude homogenates with the addition of Ca2+, calpains strongly bind to the particulate fraction without interference by cytosolic calpastatin. Although calpastatin by complexing initially to calpain can prevent the association of this protease with subcellular organelles, it cannot dissociate calpains already bound to these subcellular fractions. By prior Ca2+-independent association with the hydrophobic proteins present in the subcellular fractions, calpains overcome the 3- to 30-fold inhibitory excess of calpastatin in tissues.  相似文献   

9.
Calpain, a calcium-activated cysteine protease, is involved in modulating a variety of cell activities such as shape change, mobility, and apoptosis. The two ubiquitous isoforms of this protease, calpain I and II, are considered to be cytosolic proteins that can translocate to various sites in the cell. The activity of calpain is modulated by two regulatory proteins, calpastatin, the specific endogenous inhibitor of calpain, and the 28-kDa regulatory subunit. Using velocity gradient centrifugation, the results of this study confirm and greatly expand upon our previous finding that the calpain/calpastatin network is associated with the endoplasmic reticulum and Golgi apparatus in cells. Moreover, confocal microscopy demonstrates that calpain II colocalizes with specific proteins found in these organelles. Additional experiments reveal that hydrophobic rather than electrostatic interactions are responsible for the association of the calpain/calpastatin network with these organelles. Treatment of the organelles with Na2CO3 or deoxycholate reveal that calpain I, 78-kDa calpain II, and the regulatory subunit are "embedded" within the organelle membranes similar to integral membrane proteins. Proteinase K treatment of the organelles shows that calpain I and II, calpastatin, and the regulatory subunit localize to the cytosolic surface of the organelle membranes, and a subset of calpain II and the regulatory subunit are also found within the lumen of these organelles. These results provide a new and novel explanation for how the calpain/calpastatin network is organized in the cell.  相似文献   

10.
Two molecular species of Ca2+-dependent neutral protease (calpains I and II) and its endogenous inhibitor (calpastatin) in cytosol fraction of bovine adrenal medulla were separated by hydrophobic interaction chromatography. Both calpains I and II, having low and high Ca2+ requirements for casein hydrolysis, respectively, were found to activate tyrosine hydroxylase(TH) that had been purified from cytosol fraction of bovine adrenal medulla. This activation of TH by calpain was inhibited by leupeptin and the endogenous inhibitor, calpastatin. The activated TH with calpain II, characterized by high-performance gel permeation chromatography, had a reduced Mr of 120,000 from the Mr of 230,000 of native enzyme.  相似文献   

11.
12.
Here we demonstrate that the presence of the L-domain in calpastatins induces biphasic interaction with calpain. Competition experiments revealed that the L-domain is involved in positioning the first inhibitory unit in close and correct proximity to the calpain active site cleft, both in the closed and in the open conformation. At high concentrations of calpastatin, the multiple EF-hand structures in domains IV and VI of calpain can bind calpastatin, maintaining the active site accessible to substrate. Based on these observations, we hypothesize that two distinct calpain–calpastatin complexes may occur in which calpain can be either fully inhibited (I) or fully active (II). In complex II the accessible calpain active site can be occupied by an additional calpastatin molecule, now a cleavable substrate. The consequent proteolysis promotes the accumulation of calpastatin free inhibitory units which are able of improving the capacity of the cell to inhibit calpain. This process operates under conditions of prolonged [Ca2 +] alteration, as seen for instance in Familial Amyotrophic Lateral Sclerosis (FALS) in which calpastatin levels are increased. Our findings show that the L-domain of calpastatin plays a crucial role in determining the formation of complexes with calpain in which calpain can be either inhibited or still active. Moreover, the presence of multiple inhibitory domains in native full-length calpastatin molecules provides a reservoir of potential inhibitory units to be used to counteract aberrant calpain activity.  相似文献   

13.
14.
DEAE-Sephacel and phenyl-Sepharose chromatography were compared as methods for separating and quantitatively isolating calpain I, calpain II, and calpastatin from lamb muscle extracts. DEAE-Sephacel chromatography gave greater than 90% recovery of all three proteins, while phenyl-Sepharose gave only 70, 66, and 48% of the DEAE recovery of calpain I, calpain II, and calpastatin, respectively. Additionally, DEAE-Sephacel chromatography was shown to effectively separate calpastatin and calpain I. Consequently DEAE-Sephacel appears to be superior to phenyl-Sepharose for quantitative isolation of the components of the calcium-dependent proteinase system from muscle extracts. Dietary administration of beta-agonist (L-644, 969; Merck Sharpe & Dohme Research Laboratories) decreases extractable calpain I activity in lamb longissimus dorsi (LD) muscle by 10-14% (P less than 0.05), increases calpain II activity by 34-42% (P less than 0.001), and increases calpastatin activity by 59-75% (P less than 0.001). Additionally, net cathepsin B activity is reduced by 30% (P less than 0.05) in the LD of beta-agonist-treated lambs. Reduced activity of the calcium-dependent or catheptic proteinase systems may contribute to the increased protein accretion in muscles of beta-agonist-treated lambs.  相似文献   

15.
Polyamine synthesis is induced by various extracellular signals, and it is widely held that this biochemical response participates in cell growth and differentiation. Certain of the triggers for synthesis in brain tissues also increase the breakdown of high-molecular-weight structural proteins, apparently by activating calcium-dependent proteases (calpains). The present experiments tested the possibility that calpain activity is modulated by polyamines. Spermine, spermidine, and putrescine all increased calcium-dependent proteolysis of [14C]casein by soluble fractions of rat brain. The order of potency was spermine greater than spermidine greater than putrescine, with apparent affinities of 30, 300, and 6,000 microM, respectively. Each of the three polyamines at physiological concentrations also potentiated the calcium-dependent breakdown of two endogenous high-molecular-weight structural proteins known to be substrates of calpain, in both supernatant and membrane fractions. The thiol protease inhibitor leupeptin, a known calpain inhibitor, also inhibited calcium-dependent proteolysis in the presence and absence of polyamines. The polyamines did not increase the activity of purified calpain I or calpain II determined with either [14C]casein or purified spectrin as the substrate, nor did they interfere with the inhibitory effects of calpastatin, an endogenous inhibitor of calpain. However, polyamines potentiated the stimulation of endogenous but not purified calpain activity produced by an endogenous calpain activator. These results suggest a role for polyamines in protein degradation as well as protein synthesis.  相似文献   

16.
The calcium-activated cysteine protease calpain is intimately involved in modulating cell adhesion and migration. The two ubiquitous isoforms of this protease, calpain I and II, are considered to be cytosolic proteins that can translocate to both focal complexes/adhesions or the plasma membrane. Using confocal microscopy and isopycnic density centrifugation, the results demonstrate that calpain I and II, the 30kDa regulatory subunit, and calpastatin associate with the endoplasmic reticulum and Golgi apparatus. Confocal microscopy reveals that calpain II colocalizes with the subcellular proteins calnexin and Rab6 in cells bound to laminin. To further verify this association, cell lysates prepared from laminin stimulated and unstimulated cells were subjected to isopycnic density centrifugation. The results reveal an increased association of calpain I, II, calpastatin, and the 30kDa regulatory subunit with the endoplasmic reticulum and Golgi apparatus as evidenced by their position in the gradient relative to calnexin, Rab6, caveolin, and beta1 integrin after laminin stimulation. This correlates with the accumulation of inducible calpain activity at the endoplasmic reticulum-Golgi apparatus interface. Further experiments established that calpain II colocalizes with phosphatidylinositol 4,5-bisphosphate. Finally, calpain II associates with membrane lipid rafts. These results provide new insights into how the calpain/calpastatin network is spatially and temporally regulated in cells binding to the extracellular matrix.  相似文献   

17.
Cyclin-dependent kinase 5 (CDK5) is a unique CDK, the activity of which can be detected in postmitotic neurons. To date, CDK5 purified from mammalian brains has always been associated with a truncated form of the 35-kDa major brain specific activator (p35, also known as nck5a) of CDK5, known as p25. In this study, we report that p35 can be cleaved to p25 both in vitro and in vivo by calpain. In a rat brain extract, p35 was cleaved to p25 by incubation with Ca(2+). This cleavage was inhibited by a calpain inhibitor peptide derived from calpastatin and was ablated by separating the p35.CDK5 from calpain by centrifugation. The p35 recovered in the pellet after centrifugation could then be cleaved to p25 by purified calpain. Cleavage of p35 was also induced in primary cultured neurons by treatment with a Ca(2+) ionophore and Ca(2+) and inhibited by calpain inhibitor I. The cleavage changed the solubility of the CDK5 active complex from the particulate fraction to the soluble fraction but did not affect the histone H1 kinase activity. Increased cleavage was detected in cultured neurons undergoing cell death, suggesting a role of the cleavage in neuronal cell death.  相似文献   

18.
Micromolar and millimolar Ca2+-requiring neutral protease (calpain I and calpain II) along with their endogenous inhibitor calpastatin were isolated and partially purified from the same preparation of rat intestinal epithelial cells. Calpain I and II were partially purified by 1300 and 900-fold with 57 and 53 per cent yield, respectively. The optimum assay conditions revealed pH 7.5, 20 min incubation at 25° C and 0.24% casein substrate for both calpains. The optimum calcium concentration obtained for calpain I and II were 25 M and 4 mM, respectively. Distribution of rat intestinal epithelial cells calpain I and II along with calpastatin during cell differentiation stages in weanling to senescence age were studied. Calpain I in weanling rats was in an increasing order from villus to crypt regions. Adult rats indicated well expressed consistent calpain I throughout the differentiation stages. Whereas, significant lowering towards crypt region cells were evident in old rats. Calpain II in weanling and adult rats was found to be consistent throughout the differentiation stages. Old animals revealed an increasing trend from villus to crypt region with insignificant activity present in upper villus cells. Concomitantly, different concentrations of calpastatin were observed throughout the differentiation stages in all the age groups. Moreover, the levels of calpains exceeded that of calpastatin in most of the epithelial cell populations during developmental stages. In addition to casein, intestinal epithelial cell membranes were found to be equally good substrates for calpains. Proteolytic susceptibility of weanling, adult and old rat membrane proteins varied significantly all along the ageing process in rats. Simultaneous age-dependent calpastatin response were also evident. Taken together the results obtained provided strong evidence that calpain plays significant role in rat intestinal cell differentiation and ageing process with calpastatin as its specific regulatory protein.Abbreviations DEAE-cellulose O-(Diethylaminoethyl)-cellulose - EDTA Ethylene Diamine Tetra Acetic Acid - Tris Tris (hydroxymethyl) amino methane - KH2PO4 potassium dihydrogen orthophosphate - Na2HPO4 disodium hydrogen phosphate - CaCl2 Calcium Chloride - TCA Trichloroacetic Acid - PMSF Phenylmethylsulfonyl Fluoride  相似文献   

19.
In order to examine the existence of calpain I, a low (micromolar)-Ca2+-requiring form of calpain, in fish tissues, carp erythrocytes were chosen as the experimental material, since only calpain I is known to exist in mammalian erythrocytes. By DEAE-cellulose chromatography, calpain and calpastatin (specific inhibitor for calpain) were separated from carp erythrocyte hemolysate. Carp erythrocyte calpain is classified as calpain II, a high (millimolar)-Ca2+-requiring form of calpain, from the result of Ca2+-requirement for the activity.  相似文献   

20.
A major part of the Ca-activated proteolytic activity in the soluble fraction from rabbit brain could be due to the activity of the neutral thiol-proteases calpain I and II. The activity of calpains exceeded that of the endogenous inhibitor, calpastatin, at all developmental stages studied. The level of calpains increased rapidly from the prenatal stage to reach a peak 10–20 days postnatally. From this period the level of calpains decreased slowly to reach the adult levels. The level of calpastatin increased steadily from the prenatal stage to old age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号