首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The presence of binding sites for the beta chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) has recently been identified on human brain microvessels. We extend these findings in this report to reveal that such sites exemplify characteristics of the recognized major receptors for MCP-1 and MIP-1alpha: CCR2, and CCR1 and CCR5, respectively. Specifically, labeled MCP-1 binding to isolated brain microvessels was inhibited by unlabeled MCP-1 and MCP-3, the latter another CCR2 ligand, but not by MIP-1alpha. Inhibition of labeled MIP-1alpha binding was achieved with unlabeled MIP-1alpha and RANTES, the latter a beta chemokine that binds to both CCR1 and CCR5, but not by MCP-1. Labeled MIP-1alpha binding was also antagonized by unlabeled MCP-3, which is also recognized by CCR1, and MIP-1beta, which is a ligand for CCR5. Labeled MCP-1 and MIP-1alpha were further observed to be internalized within the endothelial cells of brain microvessels, following their binding to the microvascular surface at 37 degrees C. Additionally, exposure of microvessels to unlabeled MCP-1 or MIP-1alpha was accompanied by the initial loss and subsequent recovery of surface binding sites for these chemokines, which occurred on a time scale consistent with ligand-induced endocytosis and recycling. These collective features bear striking similarity to those that characterize interactions of MCP-1 and MIP-1alpha with their receptors on leukocytes and underscore the concept of cognate chemokine receptors on brain microvascular endothelium.  相似文献   

2.
3.
Chemokines selectively recruit and activate a variety of cells during inflammation. Interactions between cell surface glycosaminoglycans (GAGs) and chemokines drive the formation of haptotactic or immobilized gradients of chemokines at the site of inflammation, directing this recruitment. Chemokines bind to glycosaminoglycans on human umbilical vein endothelial cells (HUVECs) with affinities in the micromolar range: RANTES > MCP-1 > IL-8 > MIP-1alpha. This binding can be competed with by soluble glycosaminoglycans: heparin, heparin sulfate, chondroitin sulfate, and dermatan sulfate. RANTES binding showed the widest discrimination between glycosaminoglycans (700-fold), whereas MIP-1alpha was the least selective. Almost identical results were obtained in an assay using heparin sulfate beads as the source of immobilized glycosaminoglycan. The binding of chemokines to glycosaminoglycan fragments has a strong length dependence, and optimally requires both N- and O-sulfation. Isothermal titration calorimetry data confirm these results; IL-8 binds heparin fragments with a K(d) of 0.39-2.63 microM, and requires five saccharide units to bind each monomer of chemokine. In membranes from cells expressing the G-protein-coupled chemokine receptors CXCR1, CXCR2, and CCR1, soluble GAGs inhibit the binding of chemokine ligands to their receptors. Consistent with this, heparin and heparin sulfate could inhibit IL-8-induced neutrophil calcium flux. Chemokines can therefore form complexes with both cell surface and soluble GAGs; these interactions have different functions. Soluble GAG chemokines complexes are unable to bind the receptor, resulting in a block of the biological activity. Previously, we have shown that cell surface GAGs present chemokines to the G-protein-coupled receptors, by increasing the local concentration of protein. A model is presented which brings together all of these data. The selectivity in the chemokine-GAG interaction suggests selective disruption of the haptotactic gradient may be an achievable therapeutic approach in inflammatory disease.  相似文献   

4.
It is well established that chemokines have a major role in the stimulation of cell movement on extracellular matrix (ECM) substrates. However, it is also clear that ECM substrates may influence the ability of cells to undergo migration. Using the migration chamber method, we assessed the migratory response of human embryonic kidney-293 (HEK) transfectant cells expressing the CC chemokine receptor 5 (CCR5) (HEK-CCR5) to stimulation by chemokines (macrophage inflamatory protein (MIP)-1alpha, MIP-1beta, and regulated on activation normal-T cell expressed and secreted (RANTES)) on ECM substrates (collagen type I and fibronectin). Using filters coated with collagen (20 microg/mL), results showed that the chemokines differed in their ability to elicit cell movement according to the order MIP-1beta > RANTES MIP-1alpha. In contrast, using filters coated with fibronectin (20 microg/mL), all three chemokines were similar in their ability to stimulate migration of HEK-CCR5 cells. In addition, the migratory response with respect to the concentrations of ECM substrates appeared biphasic: thus, chemokine-stimulated cell movement was inhibited at high ECM concentrations (100 microg/mL). To determine the involvement of beta1 integrins, results showed that the migratory response to chemokine stimulation on collagen was largely inhibited by monoclonal antibody (mAb) to alpha2beta1; however, complete inhibition required a combination of mAbs to alpha1beta1 and alpha2beta1. In comparison, migration on fibronectin was inhibited by mAb to alpha3beta1 and alpha5beta1. Our results suggest that the migratory response to CCR5 stimulation may vary quantitatively with both the CCR5 ligand (MIP-1alpha, MIP-1beta, and RANTES), as well as the nature and concentration of the ECM substrate involved.  相似文献   

5.
Chemokines play diverse roles in inflammatory and non-inflammatory situations via activation of heptahelical G-protein-coupled receptors. Also, many chemokine receptors can act as cofactors for cellular entry of human immunodeficiency virus (HIV) in vitro. CCR5, a receptor for chemokines MIP-1alpha (LD78alpha), MIP-1beta, RANTES, and MCP2, is of particular importance in vivo as polymorphisms in this gene affect HIV infection and rate of progression to AIDS. Moreover, the CCR5 ligands can prevent HIV entry through this receptor and likely contribute to the control of HIV infection. Here we show that a non-allelic isoform of human MIP-1alpha (LD78alpha), termed LD78beta or MIP-1alphaP, has enhanced receptor binding affinities to CCR5 (approximately 6-fold) and the promiscuous beta-chemokine receptor, D6 (approximately 15-20-fold). We demonstrate that a proline residue at position 2 of MIP-1alphaP is responsible for this enhanced activity. Moreover, MIP-1alphaP is by far the most potent natural CCR5 agonist described to date, and importantly, displays markedly higher HIV1 suppressive activity than all other human MIP-1alpha isoforms examined. In addition, while RANTES has been described as the most potent inhibitor of CCR5-mediated HIV entry, MIP-1alphaP was as potent as, if not more potent than, RANTES in HIV-1 suppressive assays. This property suggests that MIP-1alphaP may be of importance in controlling viral spread in HIV-infected individuals.  相似文献   

6.
The CC-chemokines RANTES, macrophage inflammatory protein 1alpha (MIP-1alpha), and MIP-1beta are natural ligands for the CC-chemokine receptor CCR5. MIP-1alpha, also known as LD78alpha, has an isoform, LD78beta, which was identified as the product of a nonallelic gene. The two isoforms differ in only 3 amino acids. LD78beta was recently reported to be a much more potent CCR5 agonist than LD78alpha and RANTES in inducing intracellular Ca2+ signaling and chemotaxis. CCR5 is expressed by human monocytes/macrophages (M/M) and represents an important coreceptor for macrophage-tropic, CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) strains to infect the cells. We compared the antiviral activities of LD78beta and the other CC-chemokines in M/M. LD78beta at 100 ng/ml almost completely blocked HIV-1 replication, while at the same concentration LD78alpha had only weak antiviral activity. Moreover, when HIV-1 infection in M/M was monitored by a flow cytometric analysis using p24 antigen intracellular staining, LD78beta proved to be the most antivirally active of the chemokines. RANTES, once described as the most potent chemokine in inhibiting R5 HIV-1 infection, was found to be considerably less active than LD78beta. LD78beta strongly downregulated CCR5 expression in M/M, thereby explaining its potent antiviral activity.  相似文献   

7.
To determine whether C-C chemokines play an important role in the phenotype switch of human immunodeficiency virus (HIV) from CCR5 to CXCR4 usage during the course of an infection in vivo, macrophage inflammatory protein (MIP)-1alpha-resistant variants were isolated from CCR5-tropic (R5) HIV-1 in vitro. The selected variants displayed reduced sensitivities to MIP-1alpha (fourfold) through CCR5-expressing CD4-HeLa/long terminal repeat-beta-galactosidase (MAGI/CCR5) cells. The variants were also resistant to other natural ligands for CCR5, namely, MIP-1beta (>4-fold) and RANTES (regulated upon activation, normal T-cell expressed and secreted) (6-fold). The env sequence analyses revealed that the variants had amino acid substitutions in V2 (valine 166 to methionine) and V3 (serine 303 to glycine), although the same V3 substitution appeared in virus passaged without MIP-1alpha. A single-round replication assay using a luciferase reporter HIV-1 strain pseudotyped with mutant envelopes confirmed that mutations in both V2 and V3 were necessary to confer the reduced sensitivity to MIP-1alpha, MIP-1beta, and RANTES. However, the double mutant did not switch its chemokine receptor usage from CCR5 to CXCR4, indicating the altered recognition of CCR5 by this mutant. These results indicated that V2 combined with the V3 region of the CCR5-tropic HIV-1 envelope modulates the sensitivity of HIV-1 to C-C chemokines without altering the ability to use chemokine receptors.  相似文献   

8.
Activated lymphocytes synthesize and secrete substantial amounts of the beta-chemokines macrophage inflammatory protein (MIP)-1 alpha/CCL3 and MIP-1 beta/CCL4, both of which inhibit infection of cells with human immunodeficiency virus type 1 (HIV-1). The native form of MIP-1 beta secreted by activated human peripheral blood lymphocytes (MIP-1 beta(3-69)) lacks the two NH(2)-terminal amino acids of the full-length protein. This truncated form of MIP-1 beta has now been affinity-purified from the culture supernatant of such cells, and its structure has been confirmed by mass spectrometry. Functional studies of the purified protein revealed that MIP-1 beta(3-69) retains the abilities to induce down-modulation of surface expression of the chemokine receptor CCR5 and to inhibit the CCR5-mediated entry of HIV-1 in T cells. Characterization of the chemokine receptor specificity of MIP-1 beta(3-69) showed that the truncated protein not only shares the ability of intact MIP-1 beta to induce Ca(2+) signaling through CCR5, but unlike the full-length protein, it also triggers a Ca(2+) response via CCR1 and CCR2b. These results demonstrate that NH(2)-terminally truncated MIP-1 beta functions as a chemokine agonist with expanded receptor reactivity, which may represent an important mechanism for regulation of immune cell recruitment during inflammatory and antiviral responses.  相似文献   

9.
Endocytosis and recycling of the HIV coreceptor CCR5   总被引:13,自引:0,他引:13  
The chemokine receptor CCR5 is a cofactor for the entry of R5 tropic strains of human immunodeficiency viruses (HIV)-1 and -2 and simian immunodeficiency virus. Cells susceptible to infection by these viruses can be protected by treatment with the CCR5 ligands regulated on activation, normal T cell expressed and secreted (RANTES), MIP-1alpha, and MIP-1beta. A major component of the mechanism through which chemokines protect cells from HIV infection is by inducing endocytosis of the chemokine receptor. Aminooxypentane (AOP)-RANTES, an NH(2)-terminal modified form of RANTES, is a potent inhibitor of infection by R5 HIV strains. AOP-RANTES efficiently downmodulates the cell surface expression of CCR5 and, in contrast with RANTES, appears to prevent recycling of CCR5 to the cell surface. Here, we investigate the cellular basis of this effect.Using CHO cells expressing human CCR5, we show that both RANTES and AOP-RANTES induce rapid internalization of CCR5. In the absence of ligand, CCR5 shows constitutive turnover with a half-time of 6-9 h. Addition of RANTES or AOP-RANTES has little effect on the rate of CCR5 turnover. Immunofluorescence and immunoelectron microscopy show that most of the CCR5 internalized after RANTES or AOP-RANTES treatment accumulates in small membrane-bound vesicles and tubules clustered in the perinuclear region of the cell. Colocalization with transferrin receptors in the same clusters of vesicles indicates that CCR5 accumulates in recycling endosomes. After the removal of RANTES, internalized CCR5 recycles to the cell surface and is sensitive to further rounds of RANTES-induced endocytosis. In contrast, after the removal of AOP-RANTES, most CCR5 remains intracellular. We show that these CCR5 molecules do recycle to the cell surface, with kinetics equivalent to those of receptors in RANTES-treated cells. However, these recycled CCR5 molecules are rapidly reinternalized. Our results indicate that AOP-RANTES-induced changes in CCR5 alter the steady-state distribution of the receptor and provide the first evidence for G protein-coupled receptor trafficking through the recycling endosome compartment.  相似文献   

10.
CCR5 is a functional receptor for various inflammatory CC-chemokines, including macrophage inflammatory protein (MIP)-1alpha and RANTES (regulated on activation normal T cell expressed and secreted), and is the main coreceptor of human immunodeficiency viruses. The second extracellular loop and amino-terminal domain of CCR5 are critical for chemokine binding, whereas the transmembrane helix bundle is involved in receptor activation. Chemokine domains and residues important for CCR5 binding and/or activation have also been identified. However, the precise way by which chemokines interact with and activate CCR5 is presently unknown. In this study, we have compared the binding and functional properties of chemokine variants onto wild-type CCR5 and CCR5 point mutants. Several mutations in CCR5 extracellular domains (E172A, R168A, K191A, and D276A) strongly affected MIP-1alpha binding but had little effect on RANTES binding. However, a MIP/RANTES chimera, containing the MIP-1alpha N terminus and the RANTES core, bound to these mutants with an affinity similar to that of RANTES. Several CCR5 mutants affecting transmembrane helices 2 and 3 (L104F, L104F/F109H/F112Y, F85L/L104F) reduced the potency of MIP-1alpha by 10-100 fold with little effect on activation by RANTES. However, the MIP/RANTES chimera activated these mutants with a potency similar to that of MIP-1alpha. In contrast, LD78beta, a natural MIP-1alpha variant, which, like RANTES, contains a proline at position 2, activated these mutants as well as RANTES. Altogether, these results suggest that the core domains of MIP-1alpha and RANTES bind distinct residues in CCR5 extracellular domains, whereas the N terminus of chemokines mediates receptor activation by interacting with the transmembrane helix bundle.  相似文献   

11.
Chemokines direct immune cells toward sites of infection by establishing a gradient across the extracellular matrix of the tissue. This gradient is thought to be stabilized by ligation of chemokines to sulfated polysaccharides known as glycosaminoglycans (GAGs) that are found on the surface of endothelial and other cells as well as in the tissue matrix. GAGs interact with chemokines and in some cases cause them to aggregate. The interaction between cell surface GAGs and chemokines has also been postulated to play a role in the anti-HIV activity of some chemokines, including MIP-1beta. Since many proteins interact with GAGs by utilizing basic residues, we mutated R18, K45, R46, and K48 in MIP-1beta to investigate the role of these residues in GAG binding and CCR5 function. We find that no single amino acid substitution alone has a dramatic effect on heparin binding, although change at R46 has a moderate effect. However, binding to heparin is completely abrogated in a mutant (K45A/R46A/K48A) in which the entire "40's loop" has been neutralized. A functional study of these mutants reveals that the charged residues in this 40's loop, particularly K48 and R46, are critical mediators of MIP-1beta binding to its receptor CCR5. However, despite the partially overlapping function of the residues in the 40's loop in binding to both CCR5 and heparin, the presence of cell surface sugars does not appear to be necessary for the ability of MIP-1beta to function on its receptor CCR5, as enzymatic removal of GAGs from cells results in little effect on MIP-1beta activity. Because the means by which the chemokine gradient transmits information to the recruited cells is not well defined, we also mutated the basic residues in MIP(9), a truncated form of MIP-1beta that is impaired in its ability to dimerize, to probe whether the quaternary structure of this chemokine influences its ability to bind heparin. None of the truncated variants bound as well as the full-length proteins containing the same mutation, suggesting that the MIP-1beta dimer participates in heparin binding.  相似文献   

12.
McCornack MA  Boren DM  LiWang PJ 《Biochemistry》2004,43(31):10090-10101
Chemokines are immune system proteins that recruit and activate leukocytes to sites of infection. This recruitment is believed to involve the establishment of a chemokine concentration gradient by the binding of chemokines to glycosaminoglycans (GAGs). In previous studies, we elucidated the GAG binding site of the chemokine MIP-1beta and implicated the involvement of the chemokine dimer in GAG binding through residues across the dimer interface. In the present studies, nuclear magnetic resonance spectroscopy was used to investigate the effect of GAG binding on MIP-1beta dimerization. Using several dimerization-impaired variants of MIP-1beta (F13Y, F13L, L34W, and L34K), these studies indicate that the addition of disaccharide to the mutants increases their dimerization affinities. For MIP-1beta F13Y, the presence of the disaccharide increases the chemokine dimerization affinity about 9-fold as evidenced by a decrease in the dimer dissociation constant from 610 to 66 microM. Even more dramatically, the dimerization affinity of MIP-1beta L34W also increases upon addition of disaccharide, with the dimer dissociation constant decreasing from 97 to 6.5 microM. After this effect for the mutants of MIP-1beta was shown, similar experiments were conducted with the CC chemokine RANTES, and it was demonstrated that the presence of disaccharide increases its dimerization affinity by almost 7-fold. These findings provide further evidence of the importance of the dimer in chemokine function and provide the first quantitative investigation of the role of GAGs in the manipulation of the MIP-1beta quaternary structure.  相似文献   

13.
BACKGROUND: Chemokines and chemokine receptors have been shown to play a critical role in HIV infection. Chemokine receptors have been identified as coreceptors for viral entry into susceptible target cells, and several members of the beta chemokine subfamily of cytokines, MIP-1alpha, MIP-1beta, and RANTES, have been identified as the major human immunodeficiency virus (HIV)-suppressive factors produced by activated CD8+ T lymphocytes. In macrophages, HIV-1 infection itself was shown to upregulate the production of MIP-1alpha and MIP-1beta. In the present study, we address the mechanisms by which HIV-1 infection regulates beta chemokine responses in macrophages and lymphocytes. MATERIAL AND METHODS: To address whether nitric oxide (NO), generated as a consequence of HIV-1 infection, regulates beta chemokine responses in monocyte/macrophages and/or macrophage-depleted peripheral blood mononuclear cells (PBMCs) these two cell populations were isolated from HIV seronegative donors, placed in culture, and infected with HIV-1 in either the presence or absence of exogenous activators (e.g. lipopolysaccharide, phytohemagglutinin), inhibitors of nitric oxide synthase (NOS), or chemical donors of NO. Cultures were analyzed for beta chemokine responses by ELISA and RNase protection. RESULTS: LPS-induced MIP-1alpha release is enhanced in HIV-1-infected, as compared to uninfected, monocyte/macrophage cultures, and this enhancing effect is partially blocked by the addition of inhibitors of NOS, and can be reproduced by chemical generators of NO even in the absence of HIV-1 infection. A similar strategy was used to demonstrate a role for NO in HIV-1-mediated induction of MIP-1alpha in unstimulated macrophage cultures. NOS inhibitors also decreased MIP-1alpha and MIP-1beta production by phytohemagglutinin-stimulated monocyte-depleted PBMC cultures. CONCLUSIONS: These results indicate that NO amplifies MIP-1alpha responses in activated macrophages and lymphocytes, and suggests that this pleiotropic molecule might function as an enhancing signal that regulates secretion of beta chemokines during HIV-1 infection. These findings reveal a novel mechanism by which NO might regulate the anti-HIV activity of immune cells.  相似文献   

14.
The perivascular transmigration and accumulation of macrophages and T lymphocytes in the CNS of mice with experimental autoimmune encephalomyelitis (EAE) may be partly regulated by low m.w. chemotactic cytokines. Using the RNase protection assay and ELISA, we quantified expression of chemokines and chemokine receptors in the spinal cord (SC), brain, and lymph nodes of BV8S2 transgenic mice that developed or were protected from EAE by vaccination with BV8S2 protein. In paralyzed control mice, the SC had increased cellular infiltration and strong expression of the chemokines RANTES, IFN-inducible 10-kDa protein, and monocyte chemoattractant protein-1 and the cognate chemokine receptors CCR1, CCR2, and CCR5, with lower expression of macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta, and MIP-2; whereas brain had less infiltration and a lower expression of a different pattern of chemokines and receptors. In TCR-protected mice, there was a decrease in the number of inflammatory cells in both SC and brain. In SC, the reduced cellular infiltrate afforded by TCR vaccination was commensurate with profoundly reduced expression of chemokines and their cognate chemokine receptors. In brain, however, TCR vaccination did not produce significant changes in chemokine expression but resulted in an increased expression of CCR3 and CCR4 usually associated with Th2 cells. In contrast to CNS, lymph nodes of protected mice had a significant increase in expression of MIP-2 and MIP-1beta but no change in expression of chemokine receptors. These results demonstrate that TCR vaccination results in selective reduction of inflammatory chemokines and chemokine receptors in SC, the target organ most affected during EAE.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) requires, in addition to CD4, coreceptors of the CC or CXC chemokine families for productive infection of T cells and cells of the monocyte-macrophage lineage. Based on the hypothesis that coreceptor expression on alveolar macrophages (AM) may influence HIV-1 infection of AM in the lung, this study analyzes the expression and utilization of HIV-1 coreceptors on AM of healthy individuals. AM were productively infected with five different primary isolates of HIV-1. Levels of surface expression of CCR5, CXCR4, and CD4 were low compared to those of blood monocytes, but CCR3 was not detectable. mRNA for CCR5, CXCR4, CCR2, and CCR3 were all detectable, but to varying degrees and with variability among donors. Expression of CCR5, CXCR4, and CCR2 mRNA was downregulated following stimulation with lipopolysaccharide (LPS). In contrast, secretion of the chemokines RANTES, MIP-1alpha, and MIP-1beta was upregulated with LPS stimulation. Interestingly, HIV-1 replication was diminished following LPS stimulation. Infection of AM with HIV-1 in the presence of the CC chemokines demonstrated blocking of infection. Together, these studies demonstrate that AM can be infected by a variety of primary HIV-1 isolates, AM express a variety of chemokine receptors, the dominant coreceptor used for HIV entry into AM is CCR5, the expression of these receptors is dependent on the state of activation of AM, and the ability of HIV-1 to infect AM may be modulated by expression of the chemokine receptors and by chemokines per se.  相似文献   

16.
Chemokine dimerization has been the subject of much interest in recent years as evidence has accumulated that different quaternary states of chemokines play different biological roles; the monomer is believed to be the receptor-binding unit, whereas the dimer has been implicated in binding cell surface glycosaminoglycans. However, although several studies have provided evidence for this paradigm by making monomeric chemokine variants or dimer-impaired chemokines, few have provided direct evidence of the receptor function of a chemokine dimer. We have produced a covalent dimer of the CC chemokine macrophage inflammatory protein-1beta (MIP-1beta) by placing a disulfide bond at the center of its dimer interface through a single amino acid substitution (MIP-1beta-A10C). This variant was shown to be a nondissociating dimer by SDS-PAGE and analytical ultracentrifugation. NMR reveals a structure largely the same as the wild type protein. In studies of glycosaminoglycan binding, MIP-1beta-A10C binds to a heparin-Sepharose column as tightly as the wild type protein and more tightly than monomeric variants. However, MIP-1beta-A10C neither binds nor activates the MIP-1beta receptor CCR5. It was found that the ability to activate CCR5 was recovered upon reduction of the intermolecular disulfide cross-link by incubation with 1 mm dithiothreitol. This work provides the first definitive evidence that the CC chemokine MIP-1beta dimer is not able to bind or activate its receptor and implicates the CC chemokine monomer as the sole receptor-interacting unit.  相似文献   

17.
Human CC chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and RANTES (regulated on activation normal T cell expressed) self-associate to form high-molecular mass aggregates. To explore the biological significance of chemokine aggregation, nonaggregating variants were sought. The phenotypes of 105 hMIP-1alpha variants generated by systematic mutagenesis and expression in yeast were determined. hMIP-1alpha residues Asp26 and Glu66 were critical to the self-association process. Substitution at either residue resulted in the formation of essentially homogenous tetramers at 0.5 mg/ml. Substitution of identical or analogous residues in homologous positions in both hMIP-1beta and RANTES demonstrated that they were also critical to aggregation. Our analysis suggests that a single charged residue at either position 26 or 66 is insufficient to support extensive aggregation and that two charged residues must be present. Solution of the three-dimensional NMR structure of hMIP-1alpha has enabled comparison of these residues in hMIP-1beta and RANTES. Aggregated and disaggregated forms of hMIP-1alpha, hMIP-1beta, and RANTES generally have equivalent G-protein-coupled receptor-mediated biological potencies. We have therefore generated novel reagents to evaluate the role of hMIP-1alpha, hMIP-1beta, and RANTES aggregation in vitro and in vivo. The disaggregated chemokines retained their human immunodeficiency virus (HIV) inhibitory activities. Surprisingly, high concentrations of RANTES, but not disaggregated RANTES variants, enhanced infection of cells by both M- and T-tropic HIV isolates/strains. This observation has important implications for potential therapeutic uses of chemokines implying that disaggregated forms may be necessary for safe clinical investigation.  相似文献   

18.
CCR5 is a functional receptor for MIP-1alpha, MIP-1beta, RANTES (regulated on activation normal T cell expressed), MCP-2, and MCP-4 and constitutes the main coreceptor for macrophage tropic human and simian immunodeficiency viruses. By using CCR5-CCR2b chimeras, we have shown previously that the second extracellular loop of CCR5 is the major determinant for chemokine binding specificity, whereas the amino-terminal domain plays a major role for human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus coreceptor function. In the present work, by using a panel of truncation and alanine-scanning mutants, we investigated the role of specific residues in the CCR5 amino-terminal domain for chemokine binding, functional response to chemokines, HIV-1 gp120 binding, and coreceptor function. Truncation of the amino-terminal domain resulted in a progressive decrease of the binding affinity for chemokines, which correlated with a similar drop in functional responsiveness. Mutants lacking residues 2-13 exhibited fairly weak responses to high concentrations (500 nM) of RANTES or MIP-1beta. Truncated mutants also exhibited a reduction in the binding affinity for R5 Env proteins and coreceptor activity. Deletion of 4 or 12 residues resulted in a 50 or 80% decrease in coreceptor function, respectively. Alanine-scanning mutagenesis identified several charged and aromatic residues (Asp-2, Tyr-3, Tyr-10, Asp-11, and Glu-18) that played an important role in both chemokine and Env high affinity binding. The overlapping binding site of chemokines and gp120 on the CCR5 amino terminus, as well as the involvement of these residues in the epitopes of monoclonal antibodies, suggests that these regions are particularly exposed at the receptor surface.  相似文献   

19.
Macrophage inflammatory protein-1   总被引:1,自引:0,他引:1  
Macrophage inflammatory protein (MIP)-1alpha was identified 15 years ago as the first of now four members of the MIP-1 CC chemokine subfamily. These proteins termed CCL3 (MIP-1alpha), CCL4 (MIP-1beta), CCL9/10 (MIP-1delta), and CCL15 (MIP-1gamma) according to the revised nomenclature for chemokines are produced by many cells, particularly macrophages, dendritic cells, and lymphocytes. MIP-1 proteins, which act via G-protein-coupled cell surface receptors (CCR1, 3, 5), e.g. expressed by lymphocytes and monocytes/macrophages (MPhi), are best known for their chemotactic and proinflammatory effects but can also promote homoeostasis. The encouraging results of preclinical studies in murine models of inflammation, i.e. asthma, arthritis, or multiple sclerosis, have led to the development of potent CCR3 and 5 antagonists, some of which are currently being tested in first clinical trials.  相似文献   

20.
In the present study we analyse chemokine expression in the remodelling of subchondral bone in arthritis patients. Trabecular bone biopsies were tested by immunohistochemistry to identify interleukin (IL)-8, GRO-alpha, MCP-1, RANTES, MIP-1alpha and MIP-1beta expression. Subsequently, we evaluated by immunoassay the effect of interferon (IFN)-gamma and IL-6 on chemokine production by osteoarthritis (OA), rheumatoid arthritis (RA) and post-traumatic (PT) patients' isolated osteoblasts (OB). OB constitutively produced in situ IL-8, GRO-alpha, MCP-1, RANTES and MIP-1alpha. MIP-1beta was positive only in mononuclear cells. In RA many of these chemokines were also produced by mononuclear cells. IFN-gamma significantly down-regulated IL-8 and up-regulated MCP-1 produced by OB from all patients tested, whereas it did not affect the other chemokines analysed. Moreover, IFN-gamma reduced IL-1beta-stimulated IL-8 production but significantly increased both MCP-1 and RANTES. Interestingly, IL-6 significantly downregulated IFN-gamma-induced MCP-1 production, that was significantly lower in OA compared to RA patients. OB expressed chemokines both in vivo and in vitro suggesting that these cells are primary effectors in the bone capable of regulating autocrine/paracrine circuits that affect bone remodelling in these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号