首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ns and Ni, the regulatory proteins affecting adenylyl cyclase, and transducin, the guanine nucleotide-binding protein from rod outer segments of the eye, are structurally and functionally related proteins. Of these, the alpha subunits are between 39 and 42 kDa in mass, beta subunits are all of 35 kDa in mass, and gamma subunits are much smaller, of approximately 5-8 kDa in mass. We compared, by two-dimensional peptide mapping of iodinated peptides, the beta and gamma subunits of human erythrocyte Ns, human erythrocyte Ni, the beta gamma complex derived from purification of bovine brain N proteins, and frog and bovine eye transducins. We found that gamma subunits in human erythrocyte Ns and Ni and in bovine brain beta gamma complex are indistinguishable by this approach. In contrast, gamma subunits associated with frog and bovine transducin differed markedly between each other and from N protein-associated gamma. beta subunits, on the other hand, yielded essentially indistinguishable peptide maps regardless of whether derived from N proteins or from transducin and regardless also of species of origin: human versus bovine versus frog. These results suggest that the gamma subunit may impart functional heterogeneity of this family of proteins which is evident in the N proteins on the one hand and the transducin proteins on the other.  相似文献   

2.
3.
Stable isotope-labeled proteotypic peptides are used as surrogate standards for absolute quantification of proteins in proteomics. However, a stable isotope-labeled peptide has to be synthesized, at relatively high cost, for each protein to be quantified. To multiplex protein quantification, we developed a method in which gene design de novo is used to create and express artificial proteins (QconCATs) comprising a concatenation of proteotypic peptides. This permits absolute quantification of multiple proteins in a single experiment. This complete study was constructed to define the nature, sources of error, and statistical behavior of a QconCAT analysis. The QconCAT protein was designed to contain one tryptic peptide from 20 proteins present in the soluble fraction of chicken skeletal muscle. Optimized DNA sequences encoding these peptides were concatenated and inserted into a vector for high level expression in Escherichia coli. The protein was expressed in a minimal medium containing amino acids selectively labeled with stable isotopes, creating an equimolar series of uniformly labeled proteotypic peptides. The labeled QconCAT protein, purified by affinity chromatography and quantified, was added to a homogenized muscle preparation in a known amount prior to proteolytic digestion with trypsin. As anticipated, the QconCAT was completely digested at a rate far higher than the analyte proteins, confirming the applicability of such artificial proteins for multiplexed quantification. The nature of the technical variance was assessed and compared with the biological variance in a complete study. Alternative ionization and mass spectrometric approaches were investigated, particularly LC-ESI-TOF MS and MALDI-TOF MS, for analysis of proteins and tryptic peptides. QconCATs offer a new and efficient approach to precise and simultaneous absolute quantification of multiple proteins, subproteomes, or even entire proteomes.  相似文献   

4.
An important area of proteomics involves the need for quantification, whether relative or absolute. Many methods now exist for relative quantification, but to support biomarker proteomics and systems biology, absolute quantification rather than relative quantification is required. Absolute quantification usually involves the concomitant mass spectrometric determination of signature proteotypic peptides and stable isotope-labeled analogs. However, the availability of standard labeled signature peptides in accurately known amounts is a limitation to the widespread adoption of this approach. We describe the design and synthesis of artificial QconCAT proteins that are concatamers of tryptic peptides for several proteins. This protocol details the methods for the design, expression, labeling, purification, characterization and use of the QconCATs in the absolute quantification of complex protein mixtures. The total time required to complete this protocol (from the receipt of the QconCAT expression plasmid to the absolute quantification of the set of proteins encoded by the QconCAT protein in an analyte sample) is approximately 29 d.  相似文献   

5.
A method for the determination of the stoichiometry of protein complexes has been developed, which is based on proteolytic digestion of the complex, labeling with a fluorescent reagent, specific for amino or sulfhydryl groups, and separation by liquid chromatography with fluorescence and mass spectrometric detection. The intensity of the fluorescence signal of the labeled peptides resulting from different proteins is directly proportional to the stoichiometry of these proteins in the complex. The performance of the method was evaluated with standard peptides and proteins to ensure that accurate molar ratios can be obtained from the fluorescence chromatogram. Standard deviations of the measured molar ratio from the expected molar ratio were below 10% for both peptides and proteins. The method was finally employed for the determination of the stoichiometry of the 1:1 complex of sFc gamma RIII and hFc1. Using the described methodology, a stoichiometry of 1:1.1 was measured, which agrees well with a 1:1 complex.  相似文献   

6.
Mass spectrometry-based quantitative proteomics has become an important component of biological and clinical research. Although such analyses typically assume that a protein's peptide fragments are observed with equal likelihood, only a few so-called 'proteotypic' peptides are repeatedly and consistently identified for any given protein present in a mixture. Using >600,000 peptide identifications generated by four proteomic platforms, we empirically identified >16,000 proteotypic peptides for 4,030 distinct yeast proteins. Characteristic physicochemical properties of these peptides were used to develop a computational tool that can predict proteotypic peptides for any protein from any organism, for a given platform, with >85% cumulative accuracy. Possible applications of proteotypic peptides include validation of protein identifications, absolute quantification of proteins, annotation of coding sequences in genomes, and characterization of the physical principles governing key elements of mass spectrometric workflows (e.g., digestion, chromatography, ionization and fragmentation).  相似文献   

7.
The bifunctional reagents para-phenyldimaleimide and maleimidobenzoyl-N-hydroxysuccinimide ester were used to chemically cross-link the subunits of the transducin and cGMP phosphodiesterase (PDE) complexes of bovine rod photoreceptor cells. The cross-linked products were identified by Western immunoblotting using antisera against purified subunits of transducin (T alpha and T beta gamma) and PDE. Oligomeric cross-linked products of transducin subunits as large as (T alpha beta gamma)3 were observed in the latent form of transducin with bound GDP. In addition to the expected T alpha beta and T beta gamma cross-linked products, a (T alpha gamma)2 structure was detected. The close proximity of T alpha and T gamma suggests that T gamma may play a role in conferring the specificity of the interaction between T alpha and rhodopsin. Most of the oligomeric cross-linked structures between T alpha and T beta gamma were diminished in the activated form of transducin, with guanosine 5'-(beta, gamma-imidotriphosphate) (Gpp(NH)p) bound. However, cross-linking between T beta and T gamma was not altered. These results suggest that transducin exists as an oligomer in solution which dissociates upon the binding of Gpp(NH)p. To identify the possible interacting domains between the T alpha, T beta, and T gamma subunits, the cross-linked products were subjected to limited tryptic proteolysis. Several cross-linked tryptic peptides of transducin subunits were found and include the cross-linked products of the N terminus 15-kDa fragment of T beta and the C terminus 5-kDa fragment of T alpha, T gamma and the 12-kDa fragment of T alpha, T gamma and the 15-kDa as well as the 23-kDa fragments of T beta, and an intra-T alpha cross-linked product of the 2- and 21-kDa fragments. These results have allowed the construction of a topographical model for the transducin subunits. The organization of the subunits of PDE (P alpha, P beta, and P gamma) was also studied. The formation of the high molecular size cross-linked products of PDE resulted in the concurrent loss of the P beta and P gamma subunits, suggesting that they are in close proximity. Finally, the interaction between transducin and PDE was examined by chemical cross-linking of transducin-Gpp(NH)p and PDE. Two additional cross-linked products of 180 and 210 kDa were obtained which could be due to the cross-linking of T alpha or T beta with P alpha beta subunits.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Absolute quantification of proteins using isotope dilution mass spectrometry requires the selection of proteotypic peptides. When choosing these peptides, a certain number of rules must be respected. Several of these were established to safeguard against quantification errors resulting from the isotopically labeled standard peptides not behaving in the same way as the peptides to be quantified. Of all absolute quantification methods using isotope dilution, Protein Standard for Absolute Quantification (PSAQ(TM) ) offers the maximal protein sequence coverage. In the present study, we show that the PSAQ method presents a previously unreported advantage for protein quantification as it makes use of Met/Cys-containing peptides and peptides-containing miscleavages in addition to proteotypic peptides. By increasing the total number of peptides that can be considered, robustness of quantification is improved, paving the way for a facilitated quantification of low abundant and/or low-molecular-weight proteins.  相似文献   

9.
Phosducin is a photoreceptor-specific protein known to interact with the beta gamma subunits of G proteins. In pursuit of the function of phosducin, we tested the hypothesis that it regulates the light-driven translocation of G protein transducin from the outer segments of rod photoreceptors to other compartments of the rod cell. Transducin translocation has been previously shown to contribute to rod adaptation to bright illumination, yet the molecular mechanisms underlying the translocation phenomenon remain unknown. In this study we provide two major lines of evidence in support of the role of phosducin in transducin translocation. First, we have demonstrated that transducin beta gamma subunits interact with phosducin along their entire intracellular translocation route, as evident from their co-precipitation in serial tangential sections from light-adapted but not dark-adapted retinas. Second, we generated a phosducin knockout mouse and found that the degree of light-driven transducin translocation in the rods of these mice was significantly reduced as compared with that observed in the rods of wild type animals. In knockout animals the translocation of transducin beta gamma subunits was affected to a larger degree than the translocation of the alpha subunit. We also found that the amount of phosducin in rods is sufficient to interact with practically all of the transducin present in these cells and that the subcellular distribution of phosducin is consistent with that of a soluble protein evenly distributed throughout the entire rod cytoplasm. Together, these data indicate that phosducin binding to transducin beta gamma subunits facilitates transducin translocation. We suggest that the mechanism of phosducin action is based on the reduction of transducin affinity to the membranes of rod outer segments, achieved by keeping the transducin beta gamma subunits apart from the alpha subunit. This increased solubility of transducin would make it more susceptible to translocation from the outer segments.  相似文献   

10.
Affinity purification of proteins using antibodies coupled to beads and subsequent mass spectrometric analysis has become a standard technique for the identification of protein complexes. With the recent transfer of the isotope dilution mass spectrometry principle (IDMS) to the field of proteomics, quantitative analyses-such as the stoichiometry determination of protein complexes-have become achievable. Traditionally proteins were eluted from antibody-conjugated beads using glycine at low pH or using diluted acids such as HCl, TFA, or FA, but elution was often found to be incomplete. Using the cohesin complex and the anaphase promoting complex/cyclosome (APC/C) as examples, we show that a short 15-60 min predigestion with a protease such as LysC (modified on-bead digest termed protease elution) increases the elution efficiency 2- to 3-fold compared to standard acid elution protocols. While longer incubation periods-as performed in standard on-bead digestion-led to partial proteolysis of the cross-linked antibodies, no or only insignificant cleavage was observed after 15-60 min protease mediated elution. Using the protease elution method, we successfully determined the stoichiometry of the cohesin complex by absolute quantification of the four core subunits using LC-SRM analysis and 19 reference peptides generated with the EtEP strategy. Protease elution was 3-fold more efficient compared to HCl elution, but measurements using both elution techniques are in agreement with a 1:1:1:1 stoichiometry. Furthermore, using isoform specific reference peptides, we determined the exact STAG1:STAG2 stoichiometry within the population of cohesin complexes. In summary, we show that the protease elution protocol increases the recovery from affinity beads and is compatible with quantitative measurements such as the stoichiometry determination of protein complexes.  相似文献   

11.
Antisera were raised against the retinal guanine-nucleotide-binding protein (N-protein), transducin, purified from bovine rod outer segments. Sera obtained after repeated injections of antigen recognized all transducin subunits (alpha, beta and gamma). One antiserum, tested for cross-reactivity with non-retinal N-proteins, was found to cross-react with the beta subunits of the ubiquitously occurring N-proteins, Ns and Ni, but not with their respective alpha and gamma subunits. The antiserum also cross-reacted with the beta subunit of the recently identified N-protein, No, which has been found in high abundance in the central nervous system. These data support the similarity of the beta subunits of the N-proteins identified so far. Purification of N-proteins from porcine cerebral cortex without the use of activating ligands yielded fractions containing the isolated alpha subunit of No, free beta gamma complex, Ni, No and fractions containing both N-proteins in various proportions. The purity of the preparations was at least 80% as judged by Coomassie-blue-stained SDS gels. No pure Ns was obtained. Use of the transducin antibody during the course of the purification revealed that the beta subunits coeluted from a gel filtration column largely with the alpha subunits of Ni and No but were hardly detectable in fractions that were able to reconstitute Ns activity into membranes of an Ns-deficient cell line (S49 cyc- lymphoma cells). This indicates that in the central nervous system the concentrations of Ni and No are of magnitudes higher than that of Ns. Two-dimensional gel electrophoresis of N-proteins, purified from porcine cerebral cortex, resulted in the resolution of two major peptides in the 35-kDa region, which differed in their pI values and were identified as beta subunits by the use of the antiserum. Identical results were achieved using crude cholate extracts from membranes of the same tissue instead of purified proteins. The occurrence of different beta subunits may be explained by posttranslational N-protein modification.  相似文献   

12.
Transducin, the retinal G-protein, is a heterotrimeric protein composed of alpha, beta and gamma subunits. Intermolecular disulfide linkages between the alpha-subunits of transducin molecules are spontaneously formed when the purified G-protein is placed in a non-reducing buffer system. The beta and gamma subunits do not participate in the intermolecular disulfide bridge formation. The alpha-alpha subunit disulfide bonds result in the inhibition of transducin activation by bleached rhodopsin which is restored by reducing the disulfides with dithiothreitol. The trapping of oligomers by disulfide bond formation provides physical evidence for specific intermolecular interactions between alpha-subunits of transducin.  相似文献   

13.
Quantitative analysis of a therapeutic protein through use of surrogate proteotypic peptides was evaluated for the measurement of Amevive (Alefacept) in human plasma using liquid chromatography tandem mass spectrometry. Signature peptides were obtained through in silico and iterative tuning processes to represent Alefacept for quantification. Horse heart myoglobin was chosen as a protein analogue internal standard to compensate for errors associated with matrix effects and to track recovery throughout the entire sample pretreatment process. Samples were prepared for analysis by selective precipitation of the target proteins with pH controlled at 5.1 and heat denaturation at 45°C followed by enzymatic digestion, dilution, and filtration. On-line extraction of the signature peptides was carried out using a Phenomenex Gemini C18 security guard column (4.0 mm × 2.0 mm) as a loading column and a Gemini C18 (100 mm × 2.1 I.D., particle size 5 μm) as the analytical (eluting) column. Tandem mass spectrometric detection was performed on a hybrid triple quadrupole linear ion trap equipped with electrospray ionization to positively ionize signature peptides for Alefacept and myoglobin. The method was linear for Alefacept (protein) concentrations between 250 and 10,000 ng/mL. Precision and accuracy for inter- and intra-assay for the lower limit of quantification was less than 20% (16.2 and 10.3, respectively). The method was validated according to current FDA guidelines for bioanalytical method validation.  相似文献   

14.
A bacterial expression vector for the inhibitory gamma subunit of retinal rod phosphodiesterase has been constructed by inserting a mouse gamma cDNA into pUC19. Escherichia coli 222 transformed with this plasmid produces a 12-kDa recombinant protein consisting of 18 additional amino acids attached to the amino terminus of gamma. The fusion protein, designated beta-gal-gamma, has been refolded into an active form in formic acid and partially purified by gel filtration chromatography. Despite a large extended sequence at the amino terminus, beta-gal-gamma is able to inhibit the activity of trypsin-activated phosphodiesterase, bind tightly to the catalytic alpha beta subunits, and interact with the alpha subunit of transducin in a nucleotide-dependent manner. The availability of large quantities of active bacterial gamma, together with the ability to change its primary structure by site-directed mutagenesis, promises to provide considerable new information on the interaction between transducin and phosphodiesterase, as well as insights into the molecular mechanism of G protein-effector coupling.  相似文献   

15.
cGMP-specific phosphodiesterase (PDE) of vertebrate retinal rod outer segments (ROS) is composed of two catalytic subunits (PDE alpha and PDE beta) and two identical inhibitory subunits (PDE gamma). Native PDE alpha beta gamma 2 is peripherally bound to the membranes of ROS discs. We studied quantitatively its partition between soluble and membrane-bound fractions in ROS homogenates. In the presence of its activator, the alpha-subunit of transducin loaded with a triphosphate guanine nucleotide (T alpha*), PDE displayed a greatly enhanced membrane binding. Neither the purified PDE gamma.T alpha* complex, nor the PDE alpha beta and PDE alpha beta gamma forms of active PDE, showed a membrane binding comparable to that of PDE alpha beta gamma 2 in the presence of T alpha*. The T alpha*-activated PDE is therefore an undissociated complex tightly bound to the ROS membranes. Using limited proteolysis, we showed that the membrane anchoring of the whole complex implies not only PDE (mainly by the C terminus of PDE beta) but also both termini of T alpha*. The membrane binding of the purified PDE alpha beta species was also enhanced in the presence of T alpha*; a direct link would therefore exist between the activator and the catalytic subunits. From this work emerges a plausible structural model of the T alpha*-activated PDE, with its internal interactions and its sites of anchoring into the ROS membrane.  相似文献   

16.
Subunit stoichiometry of retinal rod cGMP phosphodiesterase   总被引:6,自引:0,他引:6  
The cyclic GMP phosphodiesterase of the retinal rod is composed of three distinct types of polypeptides: alpha (90 kDa), beta (86 kDa), and gamma (10 kDa). The gamma subunit has been shown to inhibit phosphodiesterase activity associated with alpha and beta. To investigate the subunit stoichiometry of the retinal phosphodiesterase, we have developed a panel of monoclonal and peptide antibodies that recognize individual phosphodiesterase subunits. By quantitative and immunochemical analysis of the purified subunits, we have shown that each phosphodiesterase molecule contains one copy each of alpha and beta subunit and two copies of gamma subunit. Moreover, gamma can be chemically cross-linked to both alpha and beta, but not to itself, suggesting that alpha and beta may each bind one gamma. The phosphodiesterase is fully activated when both copies of gamma were removed by proteolysis with trypsin. Upon recombination of the purified gamma subunit with the trypsin-activated phosphodiesterase containing alpha beta, the alpha beta gamma 2 stoichiometry is once again restored, with concomitant total inhibition of activity. Our results suggest that at least two activated transducin molecules are required to fully activate one molecule of phosphodiesterase in retinal rods.  相似文献   

17.
The caseinolytic protease (Clp) protease system has been expanded in plant plastids compared with its prokaryotic progenitors. The plastid Clp core protease consists of five different proteolytic ClpP proteins and four different noncatalytic ClpR proteins, with each present in one or more copies and organized in two heptameric rings. We determined the exact subunit composition and stoichiometry for the intact core and each ring. The chloroplast ClpP/R protease was affinity purified from clpr4 and clpp3 Arabidopsis thaliana null mutants complemented with C-terminal StrepII-tagged versions of CLPR4 and CLPP3, respectively. The subunit stoichiometry was determined by mass spectrometry-based absolute quantification using stable isotope-labeled proteotypic peptides generated from a synthetic gene. One heptameric ring contained ClpP3,4,5,6 in a 1:2:3:1 ratio. The other ring contained ClpP1 and ClpR1,2,3,4 in a 3:1:1:1:1 ratio, resulting in only three catalytic sites. These ClpP1/R1-4 proteins are most closely related to the two subunits of the cyanobacterial P3/R complex and the identical P:R ratio suggests conserved adaptation. Furthermore, the plant-specific C-terminal extensions of the ClpP/R subunits were not proteolytically removed upon assembly, suggesting a regulatory role in Clp chaperone interaction. These results will now allow testing ClpP/R structure-function relationships using rationale design. The quantification workflow we have designed is applicable to other protein complexes.  相似文献   

18.
Photoexcitation of retinal rod photoreceptor cells involves the activation of cGMP enzyme cascade in which sequential activation of rhodopsin, transducin, and the cGMP phosphodiesterase in the rod outer segment constitutes the signal amplification mechanism. Phosducin, a 33-kDa phosphoprotein, has been shown to form a tight complex with the T beta gamma subunit of transducin. In this study, we examined the interaction of phosducin-T beta gamma and the possible regulatory role of phosducin on the cGMP cascade. Addition of phosducin to photolyzed rod outer segment (ROS) membrane reduced the GTP hydrolysis activity of transducin as well as the subsequent activation of the cGMP phosphodiesterase. Phosducin also inhibited the pertussis toxin-catalyzed ADP-ribosylation of transducin, indicating that the interaction between the T alpha and T beta gamma subunits of transducin was interrupted upon binding of phosducin. The inhibitory effects of phosducin were reversed by the addition of exogenous T beta gamma. These results suggest that phosducin is capable of regulating the amount of T beta gamma available to interact with T alpha to form the active transducin complex and thereby functions as a negative regulator of the cGMP cascade. The phosducin-induced alteration of the subunit organization of transducin was examined by chemical cross-linking method using para-phenyl dimaleimide as cross-linker. It was found that the cross-linking among T alpha and T beta gamma was blocked in the presence of phosducin. This result implies that T beta gamma may undergo a conformational change upon phosducin binding which leads to the release of T alpha. Since phosducin is a soluble protein, the interaction with transducin only occurs when transducin is dissociated from ROS disc membrane. Indeed, phosducin failed to dissociate membrane-bound transducin and did not inhibit the initial cycle of transducin activation as measured by the presteady state GTP hydrolysis. However, phosducin interacts effectively with transducin released into solution after the initial activation and blocks the re-binding of T alpha. T beta gamma to ROS membrane by forming a tight complex with T beta gamma. This interaction may play an important role in regulating the turnover of the cGMP cascade in photoreceptor cells.  相似文献   

19.
RGS proteins regulate the duration of G protein signaling by increasing the rate of GTP hydrolysis on G protein alpha subunits. The complex of RGS9 with type 5 G protein beta subunit (G beta 5) is abundant in photoreceptors, where it stimulates the GTPase activity of transducin. An important functional feature of RGS9-G beta 5 is its ability to activate transducin GTPase much more efficiently after transducin binds to its effector, cGMP phosphodiesterase. Here we show that different domains of RGS9-G beta 5 make opposite contributions toward this selectivity. G beta 5 bound to the G protein gamma subunit-like domain of RGS9 acts to reduce RGS9 affinity for transducin, whereas other structures restore this affinity specifically for the transducin-phosphodiesterase complex. We suggest that this mechanism may serve as a general principle conferring specificity of RGS protein action.  相似文献   

20.
Vertebrate retinal cones play a major role in both photopic vision and color perception. Although the molecular mechanism of visual excitation in the cone is not as well understood as in the rod, it is generally thought to involve a cone-specific G protein (cone transducin) that couples the cone visual pigment to a cGMP phosphodiesterase. Like all other G proteins, cone transducin is most likely a heterotrimer consisting of G alpha, G beta, and G gamma subunits. A G alpha subunit of cone transducin has been localized to the outer segment of bovine cones, but its associated G beta and G gamma subunits are unknown. To identify the G beta subunit involved in the phototransduction process of cones, we have developed a panel of antipeptide antisera against the most diverse region of the amino acid sequences encoded by G beta 1, G beta 2, and G beta 3 cDNAs and used them to determine the distribution of the G beta isoforms in different retinal preparations. We found that the G beta 3 subunit is present in bovine retinal transducin and phosducin-T beta gamma complex preparations which were previously thought to contain only G beta 1. Analysis of its subcellular distribution indicated that G beta 3 is predominantly cytoplasmic. Immunocytochemical staining of bovine retinal sections with the anti-G beta 3 antiserum further revealed a specific localization of G beta 3 in cones but not in rods. In contrast, anti-G beta 1 antiserum stained only the rods. These results suggest that G beta 3 is the G beta subunit of cone transducin and confirms the proposition that rods and cones utilize distinct signaling proteins for phototransduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号