首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The ability of amylin to reduce acute food intake in rodents is well established. Longer-term administration in rats (up to 24 days) shows a concomitant reduction in body weight, suggesting energy intake plays a significant role in mediating amylin-induced weight loss. The current set of experiments further explores the long-term effects of amylin (4-11 wk) on food preference, energy expenditure, and body weight and composition. Furthermore, we describe the acute effect of amylin on locomotor activity and kaolin consumption to test for possible nonhomeostatic mechanisms that could affect food intake. Four-week subcutaneous amylin infusion of high-fat fed rats (3-300 microg.kg(-1).day(-1)) dose dependently reduced food intake and body weight gain (ED(50) for body weight gain = 16.5 microg.kg(-1).day(-1)). The effect of amylin on body weight gain was durable for up to 11 wks and was associated with a specific loss of fat mass and increased metabolic rate. The body weight of rats withdrawn from amylin (100 microg.kg(-1).day(-1)) after 4 wks of infusion returned to control levels 2 wks after treatment cessation, but did not rebound above control levels. When self-selecting calories from a low- or high-fat diet during 11 wks of infusion, amylin-treated rats (300 microg.kg(-1).day(-1)) consistently chose a larger percentage of calories from the low-fat diet vs. controls. Amylin acutely had no effect on locomotor activity or kaolin consumption at doses that decreased food intake. These results demonstrate pharmacological actions of amylin in long-term body weight regulation in part through appetitive-related mechanisms and possibly via changes in food preference and energy expenditure.  相似文献   

2.
3.
To endure prolonged fasting, animals undergo important acute physiological adjustments. However, whether severe fasting also leads to long-term metabolic adaptations is largely unknown. Forty-eight-hour fasting caused a pronounced weight loss in adult C57BL/6 male mice. Seven days of refeeding increased body adiposity to levels above baseline, whereas fasting-induced reductions in lean body mass and energy expenditure were not fully recovered. Respiratory exchange ratio and locomotor activity also remained altered. A fasting/refeeding cycle led to persistent suppression of Pomc mRNA levels and significant changes in the expression of histone deacetylases and DNA methyltransferases in the hypothalamus. Additionally, histone acetylation in the ventromedial nucleus of the hypothalamus was reduced by prolonged fasting and remained suppressed after refeeding. Mice subjected to 48-h fasting 30 days earlier exhibited higher body weight and fat mass compared to aged-matched animals that were never food-deprived. Furthermore, a previous fasting experience altered the changes in body weight, lean mass, energy expenditure and locomotor activity induced by a second cycle of fasting and refeeding. Notably, when acutely exposed to high-palatable/high-fat diet, mice that went through cumulative fasting episodes presented higher calorie intake and reduced energy expenditure and fat oxidation, compared to mice that had never been subjected to fasting. When chronically exposed to high-fat diet, mice that experienced cumulative fasting episodes showed higher gain of body and fat mass and reduced energy expenditure and calorie intake. In summary, cumulative episodes of prolonged fasting lead to hypothalamic epigenetic changes and long-lasting metabolic adaptations in mice.  相似文献   

4.

Objective:

Dietary supplement may potentially help to fight obesity and other metabolic disorders such as insulin‐resistance and low‐grade inflammation. The present study aimed to test whether supplementation with Agaricus blazei murill (ABM) extract could have an effect on diet‐induced obesity in rats.

Design and Methods:

Wistar rats were fed with control diet (CD) or high‐fat diet (HF) and either with or without supplemented ABM for 20 weeks.

Results:

HF diet‐induced body weight gain and increased fat mass compared to CD. In addition HF‐fed rats developed hyperleptinemia and insulinemia as well as insulin resistance and glucose intolerance. In HF‐fed rats, visceral adipose tissue also expressed biomarkers of inflammation. ABM supplementation in HF rats had a protective effect against body weight gain and all study related disorders. This was not due to decreased food intake which remained significantly higher in HF rats whether supplemented with ABM or not compared to control. There was also no change in gut microbiota composition in HF supplemented with ABM. Interestingly, ABM supplementation induced an increase in both energy expenditure and locomotor activity which could partially explain its protective effect against diet‐induced obesity. In addition a decrease in pancreatic lipase activity is also observed in jejunum of ABM‐treated rats suggesting a decrease in lipid absorption.

Conclusions:

Taken together these data highlight a role for ABM to prevent body weight gain and related disorders in peripheral targets independently of effect in food intake in central nervous system.  相似文献   

5.
In rats fed a normal (22% protein) diet, injection of clenbuterol (1 mg/kg/d for 21 d) did not affect energy intake, energy expenditure or weight gain, but reduced energetic efficiency, and fat and energy gains and increased body protein content. Presenting a low-protein (8%) diet reduced energy intake, gain and efficiency, body protein content and the mass of the gastrocnemius muscle when compared to rats fed the control diet. Injection of the protein-deficient rats with clenbuterol (1 mg/kg/d for 21 d) caused hypophagia and reduced body weight and energy gains, energy expenditure and total body fat. However, the total body content of protein was not significantly reduced and the percentage of body protein in this protein deficient, clenbuterol-treated group was greater than that of untreated rats on both the high- and low-protein diets. The ratio of body protein to fat following clenbuterol treatment was increased by over 50% in both normal and protein-deficient rats. The results show that in protein deficient animals, clenbuterol treatment may help conserve body protein at the expense of fat, resulting in a smaller, but leaner body mass.  相似文献   

6.
Brain-derived neurotrophic factor (BDNF) decreases food intake and body weight, but few central sites of action have been identified. The hypothalamic paraventricular nucleus (PVN) is important in energy metabolism regulation, and expresses both BDNF and its receptor. We tested three hypotheses: 1) PVN BDNF reduces feeding and increases energy expenditure (EE), 2) PVN BDNF-enhanced thermogenesis results from increased spontaneous physical activity (SPA) and resting metabolic rate (RMR), and 3) PVN BDNF thermogenic effects are mediated, in part, by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). BDNF (0.5 microg) was injected into the PVN of Sprague-Dawley rats; and oxygen consumption, carbon dioxide production, food intake, and SPA were measured for 24 h in an indirect calorimeter. SPA was also measured in open-field activity chambers for 48 h after BDNF injection. Animals were killed 6 or 24 h after BDNF injection, and BAT UCP1 gene expression was measured with quantitative real-time PCR. BDNF significantly decreased food intake and body weight gain 24 h after injection. Heat production and RMR were significantly elevated for 7 h immediately after BDNF injection. BDNF had no effect on SPA, but increased UCP1 gene expression in BAT at 6 h, but not 24 h after injection. In conclusion, PVN BDNF reduces body weight by decreasing food intake and increasing EE consequent to increased RMR, which may be due, in part, to BAT UCP1 activity. These data suggest that the PVN is an important site of BDNF action to influence energy balance.  相似文献   

7.
Excess carbohydrate intake causes obesity in humans. On the other hand, acute administration of fructose, glucose or sucrose in experimental animals has been shown to increase the plasma concentration of anti-obesity hormones such as glucagon-like peptide 1 (GLP-1) and Fibroblast growth factor 21 (FGF21), which contribute to reducing body weight. However, the secretion and action of GLP-1 and FGF21 in mice chronically fed a high-sucrose diet has not been investigated. To address the role of anti-obesity hormones in response to increased sucrose intake, we analyzed mice fed a high-sucrose diet, a high-starch diet or a normal diet for 15 weeks. Mice fed a high-sucrose diet showed resistance to body weight gain, in comparison with mice fed a high-starch diet or control diet, due to increased energy expenditure. Plasma FGF21 levels were highest among the three groups in mice fed a high-sucrose diet, whereas no significant difference in GLP-1 levels was observed. Expression levels of uncoupling protein 1 (UCP-1), FGF receptor 1c (FGFR1c) and β-klotho (KLB) mRNA in brown adipose tissue were significantly increased in high sucrose-fed mice, suggesting increases in FGF21 sensitivity and energy expenditure. Expression of carbohydrate responsive element binding protein (ChREBP) mRNA in liver and brown adipose tissue was also increased in high sucrose-fed mice. These results indicate that FGF21 production in liver and brown adipose tissue is increased in high-sucrose diet and participates in resistance to weight gain.  相似文献   

8.
Objective: To determine the effect of acute and chronic administration of a new food intake‐reducing compound (HMR1426) with novel mode of action (retardation of gastric emptying) on body weight development, food intake, and energy metabolism in rats. Research Methods and Procedures: Adult male Shoe‐Wistar rats were implanted with transponders allowing registration of body temperature (Tb) and locomotor activity. HMR1426 (10 or 50 mg/kg) was given orally, and acute (8 hours) and chronic (15 days) effects were measured on food intake, Tb, activity, total energy expenditure (indirect calorimetry), and epididymal adipose tissue mass. The effect of chronic treatment was compared with the effect of sibutramine (10 mg/kg). Results: HMR1426 (50 mg/kg) caused an acute and chronic decrease of food intake. There was no effect on the level and daily pattern of total energy expenditure, Tb, and locomotor activity. Respiratory quotient was acutely decreased by HMR1426 due to reduced food intake. Chronic treatment with HMR1426 decreased weight gain by 31% and epididymal white fat by 24%. Sibutramine caused a respective reduction of 48% and 35%. Energy efficiency was not affected by HMR1426 in contrast to sibutramine, which reduced energy efficiency and transiently increased activity. Discussion: HMR1426 showed an anorectic potential in rats and decreased body weight and fat mass. This was achieved solely by reducing food intake without influencing overall energy expenditure or behavior suggesting a peripheral mode of action. Thus, HMR1426 can be considered a potential new drug for obesity treatment.  相似文献   

9.
This is the first study to examine the effect of subchronic olanzapine (OLZ) on energy homeostasis in rats, covering all aspects of energy balance, including energy intake as metabolizable energy, storage, and expenditure. We further analyzed whether, and by which mechanism, the CB1‐antagonist AVE1625 might attenuate OLZ‐induced body weight gain. For this purpose, we selected juvenile female Hanover Wistar rats that robustly and reproducibly demonstrated weight gain on OLZ treatment, accepting limitations to model the aberrations on lipid and carbohydrate metabolism. Rats received 2 mg/kg OLZ orally twice daily for 12 days. Body weight and body composition were analyzed. Moreover daily food intake, energy expenditure, and substrate oxidation were determined in parallel to motility and body core temperature. OLZ treatment resulted in substantial body weight gain, in which lean and fat mass increased significantly. OLZ‐treated rats showed hyperphagia that manifested in increased carbohydrate oxidation and lowered fat oxidation (FO). Energy expenditure was increased, motility decreased, but there was no indication for hypothermia in OLZ‐treated rats. Coadministration of OLZ and AVE1625 (10 mg/kg orally once daily) attenuated body weight gain, diminishing the enhanced food intake while maintaining increased energy expenditure and decreased motility. Our data reveal that energy expenditure was enhanced in OLZ‐treated rats, an effect not critically influenced by motility. Energy uptake, however, exceeded energy expenditure and led to a positive energy balance, confirming hyperphagia as the major driving factor for OLZ‐induced weight gain. Combination of OLZ treatment with the CB1‐antagonist AVE1625 attenuated body weight gain in rats.  相似文献   

10.
The objective of this study was to assess how short-term feeding of high levels of dietary medium-chain triglyceride (MCT) affect energy expenditure and postprandial substrate oxidation rates in normal-weight, premenopausal women. Eight healthy women were fed both a MCT-rich and an isocaloric long-chain triglyceride (LCT)-rich diet for two 1-week periods separated by a minimum of 21 days. The energy intake in each diet was 45% carbohydrates, 40% fat, and 15% protein. The 2 diets had either 60.81% or 1.11% of total fat energy from MCT with the remaining fat energy intake from LCT. On days 1 and 7 of each diet, resting metabolic rate and postprandial energy expenditure (EE) were measured by indirect calorimetry with a ventilated hood. Results indicated on days 1 and 7, there were no significant differences between diets for resting metabolic rate or mean postprandial EE. On both days 1 and 7, fat oxidation for the MCT-rich diet was significantly greater (0.0001 相似文献   

11.
Thermogenesis in response to various intakes of palatable food   总被引:1,自引:0,他引:1  
Complete energy balance studies were made on groups of overfed (A) and underfed (B) Wistar rats. In experiment A one group was fed cafeteria diet ad libitum (the intake was 29% larger than the control), two other groups were fed the same diet but in restricted quantities (18 and 9% above control), and a fourth group, fed a stock diet, served as control. In experiment B, caloric intake was restricted by 12 and 31% in two groups fed cafeteria diet, and by 21 and 34% in two other groups fed stock diet. The experiments lasted 41 days and during that period the protein gain was comparable between the control and the cafeteria-29% group (643.4 +/- 33.3 vs. 578.1 +/- 25.0) but the fat gain was significantly different between the two groups (863.2 +/- 81.6 vs. 1663.2 +/- 99.8 kJ). When energy expenditure (EE) (metabolizable energy less storage added to the cost of storage) is expressed as a percentage of metabolizable energy (ME) intake no significant difference was found among the groups. The average value was congruent to 75%. This finding would not support the presence of dietary-induced thermogenesis in animals overfed on the cafeteria diet. However, since the obligatory cost associated with storing energy would not explain the higher EE of the overfed groups, it is suggested that the level of ME intake exerts continuous proportional regulatory action on EE and, as a result, energy is spared by underfeeding and it is wasted by overfeeding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Endogenous modulators of the central melanocortin system, such as the agouti-related protein (AgRP), should hold a pivotal position in the regulation of energy intake and expenditure. Despite this, AgRP-deficient mice were recently reported to exhibit normal food intake, body weight gain, and energy expenditure. Here we demonstrate that 2- to 3-month-old Agrp null mice do in fact exhibit subtle changes in response to feeding challenges (fasting and MCR agonists) but, of more significance and magnitude, exhibit reduced body weight and adiposity after 6 months of age. This age-dependent lean phenotype is correlated with increased metabolic rate, body temperature, and locomotor activity and increased circulating thyroid hormone (T4 and T3) and BAT UCP-1 expression. These results provide further proof of the importance of the AgRP neuronal system in the regulation of energy homeostasis.  相似文献   

13.
We have previously shown that a higher 24‐h respiratory quotient (24‐h RQ) predicts greater ad‐libitum food intake and that nighttime eaters (NE) ingested more calories during an in‐patient food intake study and gained more weight over time. We investigated whether 24‐h RQ was higher in individuals who exhibited nighttime eating behavior. Healthy nondiabetic Pima Indians (PI; n = 97, 54 male/43 female) and whites (W; n = 32, 22 male/10 female) were admitted to our Clinical Research Unit. After 3 days of a weight maintaining diet, 24‐h energy expenditure (24‐h EE), 24‐h RQ, rates of carbohydrate (CHOX) and lipid oxidation (LIPOX), and spontaneous physical activity (SPA) were measured in a metabolic chamber whereas volunteers were in energy balance and unable to consume excess calories. Individuals subsequently ate ad libitum from a computerized vending machine for 3 days with amount and timing of food intake recorded. Fifty‐five individuals (36%; 39 PI, 16 W) were NE, who ate between 11 pm and 5 am on at least one of the 3 days on the vending machines. There were no differences in BMI or percentage body fat between NE and non‐NE. After adjusting for age, sex, race, fat‐free mass, fat mass, and energy balance, NE had a higher 24‐h RQ (P = 0.01), higher CHOX (P = 0.009), and lower LIPOX (P = 0.03) and higher 24‐h SPA (P = 0.04) compared to non‐NE. There were no differences in adjusted 24‐h EE or sleep RQ between the groups. Individuals with nighttime eating behavior have higher 24‐h RQ, higher CHOX and lower LIPOX, a phenotype associated with increased food intake and weight gain.  相似文献   

14.
Guo J  Hall KD 《PloS one》2011,6(1):e15961
The mouse is an important model organism for investigating the molecular mechanisms of body weight regulation, but a quantitative understanding of mouse energy metabolism remains lacking. Therefore, we created a mathematical model of mouse energy metabolism to predict dynamic changes of body weight, body fat, energy expenditure, and metabolic fuel selection. Based on the principle of energy balance, we constructed ordinary differential equations representing the dynamics of body fat mass (FM) and fat-free mass (FFM) as a function of dietary intake and energy expenditure (EE). The EE model included the cost of tissue deposition, physical activity, diet-induced thermogenesis, and the influence of FM and FFM on metabolic rate. The model was calibrated using previously published data and validated by comparing its predictions to measurements in five groups of male C57/BL6 mice (N = 30) provided ad libitum access to either chow or high fat diets for varying time periods. The mathematical model accurately predicted the observed body weight and FM changes. Physical activity was predicted to decrease immediately upon switching from the chow to the high fat diet and the model coefficients relating EE to FM and FFM agreed with previous independent estimates. Metabolic fuel selection was predicted to depend on a complex interplay between diet composition, the degree of energy imbalance, and body composition. This is the first validated mathematical model of mouse energy metabolism and it provides a quantitative framework for investigating energy balance relationships in mouse models of obesity and diabetes.  相似文献   

15.
Objective: To develop a model based on empirical data and human energetics to predict the total energy cost of weight gain and obligatory increase in energy intake and/or decrease in physical activity level associated with weight gain in children and adolescents. Research Methods and Procedures: One‐year changes in weight and body composition and basal metabolic rate (BMR) were measured in 488 Hispanic children and adolescents. Fat‐free mass (FFM) and fat mass (FM) were measured by DXA and BMR by calorimetry. Model specifications include the following: body mass (BM) = FFM + FM, each with a specific energy content, cff (1.07 kcal/g FFM) and cf (9.25 kcal/g FM), basal energy expenditure (EE), kff and kf, and energetic conversion efficiency, eff (0.42) for FFM and ef (0.85) for FM. Total energy cost of weight gain is equal to the sum of energy storage, EE associated with increased BM, conversion energy (CE), and diet‐induced EE (DIEE). Results: Sex‐ and Tanner stage–specific values are indicated for the basal EE of FFM (kff) and the fat fraction in added tissue (fr). Total energy cost of weight gain is partitioned into energy storage (24% to 36%), increase in EE (40% to 57%), CE (8% to 13%), and DIEE (10%). Observed median (10th to 90th percentile) weight gain of 6.1 kg/yr (2.4 to 11.4 kg/yr) corresponds at physical activity level (PAL) = 1.5, 1.75, and 2.0 to a total energy cost of weight gain of 244 (93 to 448 kcal/d), 267 (101 to 485 kcal/d), and 290 kcal/d (110 to 527 kcal/d), respectively, and to a total energy intake of 2695 (1890 to 3730), 3127 (2191 to 4335), and 3551 (2487 to 4930) kcal/d, respectively. If weight gain is caused by a change in PAL alone and PAL0 = 1.5 at baseline t = 0, the model indicates a drop in PAL of 0.22 (0.08 to 0.34) units, which is equivalent to 60 (18 to 105) min/d of walking at 2.5 mph. Discussion: Halting the development or progression of childhood obesity, as observed in these Hispanic children and adolescents, by counteracting its total energy costs will require a sizable decrease in energy intake and/or reciprocal increase in physical activity.  相似文献   

16.
Obesity prevalence has increased, and increased energy intake or decreased physical activity are the two most obvious contributing factors. The percentage of Americans engaging in exercise has been stable over the past few decades, but decreases in occupation‐related energy expenditure are sufficient to partially explain increased obesity prevalence. Further, the contribution of energy intake and energy expenditure to the obesity epidemic is complicated because they are not independent—they are influenced by each other. For example, Mayer found that low activity levels were marked by higher body weight and higher “unregulated” energy intake levels. Conversely, higher activity levels were marked by lower body weight and energy intake that matched energy expenditure. Consistent with Mayer, we propose that because most Americans have low levels of occupation‐related activity, they do not benefit from the regulation of energy intake achieved at higher activity levels, resulting in weight gain due to energy intake exceeding energy expenditure.  相似文献   

17.
Energy intake and expenditure is a highly conserved and well-controlled system with a bias toward energy intake. In times of abundant food supply, individuals tend to overeat and in consequence to increase body weight, sometimes to the point of clinical obesity. Obesity is a disease that is not only characterized by enormous body weight but also by rising morbidity for diabetes type II and cardiovascular complications. To better understand the critical factors contributing to obesity we performed the present study in which the effects of energy expenditure and energy intake were examined with respect to body weight, localization of fat and insulin resistance in normal Wistar rats. It was found that a diet rich in fat and carbohydrates similar to "fast food" (cafeteria diet) has pronounced implication in the development of obesity, leading to significant body weight gain, fat deposition and also insulin resistance. Furthermore, an irregularly presented cafeteria diet (yoyo diet) has similar effects on body weight and fat deposition. However, these rats were not resistant to insulin, but showed an increased insulin secretion in response to glucose. When rats were fed with a specified high fat/carbohydrate diet (10% fat, 56.7% carbohydrate) ad lib or at the beginning of their activity phase they were able to detect the energy content of the food and compensate this by a lower intake. They, however, failed to compensate when food was given in the resting phase and gained more body weight as controls. Exercise, even of short duration, was able to keep rats on lower body weight and reduced fat deposition. Thus, inappropriate food intake with different levels of energy content is able to induce obesity in normal rats with additional metabolic changes that can be also observed in humans.  相似文献   

18.
During aging, decreases in energy expenditure and locomotor activity lead to body weight and fat gain. Aging is also associated with decreases in muscle strength and endurance leading to functional decline. Here, we show that lifelong deletion of ghrelin prevents development of obesity associated with aging by modulating food intake and energy expenditure. Ghrelin deletion also attenuated the decrease in phosphorylated adenosine monophosphate‐activated protein kinase (pAMPK) and downstream mediators in muscle, and increased the number of type IIa (fatigue resistant, oxidative) muscle fibers, preventing the decline in muscle strength and endurance seen with aging. Longevity was not affected by ghrelin deletion. Treatment of old mice with pharmacologic doses of ghrelin increased food intake, body weight, and muscle strength in both ghrelin wild‐type and knockout mice. These findings highlight the relevance of ghrelin during aging and identify a novel AMPK‐dependent mechanism for ghrelin action in muscle.  相似文献   

19.
This study investigated the effects of mild calorie restriction (CR) (5%) on body weight, body composition, energy expenditure, feeding behavior, and locomotor activity in female C57BL/6J mice. Mice were subjected to a 5% reduction of food intake relative to baseline intake of ad libitum (AL) mice for 3 or 4 weeks. In experiment 1, body weight was monitored weekly and body composition (fat and lean mass) was determined at weeks 0, 2, and 4 by dual energy X‐ray absorptiometry. In experiment 2, body weight was measured every 3 days and body composition was determined by quantitative magnetic resonance weekly, and energy expenditure, feeding behavior, and locomotor activity were determined over 3 weeks in a metabolic chamber. At the end of both experiments, CR mice had greater fat mass (P < 0.01) and less lean mass (P < 0.01) compared with AL mice. Total energy expenditure (P < 0.05) and resting energy expenditure (P < 0.05) were significantly decreased in CR mice compared with AL mice over 3 weeks. CR mice ate significantly more food than AL mice immediately following daily food provisioning at 1600 hours (P < 0.01). These findings showed that mild CR caused increased fat mass, decreased lean mass and energy expenditure, and altered feeding behavior in female C57BL/6J mice. Locomotor activity or brown adipose tissue (BAT) thermogenic capacity did not appear to contribute to the decrease in energy expenditure. The increase in fat mass and decrease in lean mass may be a stress response to the uncertainty of food availability.  相似文献   

20.
Existing mouse models of Roux-en-Y gastric bypass (RYGB) surgery are not comparable to human RYGB in gastric pouch volume for a large or absent gastric volume. The aim of this study was to develop and characterize a mouse RYGB model that closely replicates gastric pouch size of human RYGB surgery of about 5% of total gastric volume. We established this model in diet-induced obese (DIO) mice of C57BL/6J. This surgery resulted in a sustained 30% weight loss, entirely accounted for by decreased fat mass but not lean mass, compared to sham-operated mice on the high fat diet. Compared to sham-operated mice, energy expenditure corrected for total body weight was significantly increased by about 25%, and substrate utilization was shifted toward higher carbohydrate utilization at 8 weeks after RYGB when body weight had stabilized at the lower level. The energy expenditure persisted and carbohydrate utilization was even more pronounced when the mice were fed chow diet. Although significantly increased during daytime, overall locomotor activity was not significantly different. In response to cold exposure, RYGB mice exhibited an improved capacity to maintain the body temperature. In insulin tolerance test, exogenous insulin-induced suppression of plasma glucose levels was significantly greater in RYGB mice at 4 weeks after surgery. Paradoxically, food intake measured at 5 weeks after surgery was significantly increased, possibly in compensation for increased fecal energy loss and energy expenditure. In conclusion, this new model is a viable alternative to existing murine RYGB models and the model matches human RYGB surgery in anatomy. This model will be useful for studying molecular mechanisms involved in the beneficial effects of RYGB on body weight and glucose homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号