首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Q Xu  J A Guikema    P R Chitnis 《Plant physiology》1994,106(2):617-624
Photosystem I (PSI) is a multisubunit enzyme that catalyzes the light-driven oxidation of plastocyanin or cytochrome c6 and the concomitant photoreduction of ferredoxin or flavodoxin. To identify the surface-exposed domains in PSI of the cyanobacterium Synechocystis sp. PCC 6803, we mapped the regions in PsaE, PsaD, and PsaF that are accessible to proteases and N-hydroxysuccinimidobiotin (NHS-biotin). Upon exposure of PSI complexes to a low concentration of endoproteinase glutamic acid (Glu)-C, PsaE was cleaved to 7.1- and 6.6-kD N-terminal fragments without significant cleavage of other subunits. Glu63 and Glu67, located near the C terminus of PsaE, were the most likely cleavage sites. At higher protease concentrations, the PsaE fragments were further cleaved and an N-terminal 9.8-kD PsaD fragment accumulated, demonstrating the accessibility of Glu residue(s) in the C-terminal domain of PsaD to the protease. Besides these major, primary cleavage products, several secondary cleavage sites on PsaD, PsaE, and PsaF were also identified. PsaF resisted proteolysis when PsaD and PsaE were intact. Glu88 and Glu124 of PsaF became susceptible to endoproteinase Glu-C upon extensive cleavage of PsaD and PsaE. Modification of PSI proteins with NHS-biotin and subsequent cleavage by endoproteinase Glu-C or thermolysin showed that the intact PsaE and PsaD, but not their major degradation products lacking C-terminal domains, were heavily biotinylated. Therefore, lysine-74 at the C terminus of PsaE was accessible for biotinylation. Similarly, lysine-107, or lysine-118, or both in PsaD could be modified by NHS-biotin.  相似文献   

2.
Prokaryotic 3 alpha/20 beta-hydroxysteroid dehydrogenase exhibits one segment sensitive to proteolysis with Glu-C protease and trypsin (cleaving after Glu192 and Arg196, respectively). Cleavage is associated with dehydrogenase inactivation; the presence of NADH offers almost complete protection and substrate (cortisone) gives some protection. Distantly related insect alcohol dehydrogenase is more resistant to proteolysis, but cleavage in a corresponding segment is detectable with Asp-N protease (cleaving before Asp198), while a second site (at Glu243) is sensitive to cleavage with both Glu-C and Asp-N proteases. Combined, the results suggest the presence of limited regions especially sensitive to proteolysis and the possibility of some association between the enzyme active site and the sensitive site(s). Modification of the hydroxysteroid dehydrogenase with tetranitromethane is paralleled by enzyme inactivation. With a 10-fold excess of reagent, labeling corresponds to 1.2 nmol Tyr/nmol protein chain and is recovered largely in Tyr152, with lesser amounts in Tyr251. Tetranitromethane also rapidly inhibits the other two dehydrogenases, but they contain Cys residues, preventing direct correlation with Tyr modification. Together, the proteolysis and chemical modifications highlight three segments of short-chain dehydrogenase subunits, one mid-chain, containing Tyr152 of the steroid dehydrogenase (similar numbers in the other enzymes), strictly conserved and apparently close to the enzyme active site, the other around position 195, sensitive to proteolysis and affected by coenzyme binding, while the third is close to the C-terminus.  相似文献   

3.
Lipoprotein lipases from human, bovine or guinea-pig milk were purified, judged for domain relationships by characterization of sites sensitive to proteases, and structurally compared. The subunit of human lipoprotein lipase migrated slightly slower than those of bovine or guinea-pig lipoprotein lipases on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Bovine lipoprotein lipase is known to be a dimer of two non-covalently linked subunits of equal size, and the lipases from all three sources now yielded homogeneous N-terminal amino acid sequences (followed for 15-27 residues). The results indicate that the two subunits are identical. Bovine lipoprotein lipase had two additional N-terminal residues, Asp-Arg, compared to the human and guinea-pig enzymes, and the next two positions revealed residue differences, but further on homologies were extensive between all three enzymes as far as presently traced. Exposure of bovine lipoprotein lipase to trypsin led to production of three fragments (T1, T2a, and T2b), suggesting cleavage at exposed segments delineating domain borders. Time studies gave no evidence for precursor-product relationships between the fragments, and prolonged digestion did not lead to further cleavage. Fragments T2a and T2b had the same N-terminal sequence as intact lipase. Fragment T1 revealed a new sequence, and represents the C-terminal half of the molecule. Plasmin caused a similar cleavage as trypsin, whereas thrombin, factor Xa, and tissue plasminogen activator did not cleave the enzyme. Chymotrypsin cleaved off a relatively small fragment from the C-terminal of the molecule, after which exposure to trypsin still resulted in cleavage at the same sites as in intact lipase. Tryptic cleavage of guinea-pig lipoprotein lipase yielded two fragments. One had a similar size as bovine fragment T2b; the other had a similar size as bovine fragment T1 and an N-terminal sequence homologous with that of T1. Thus, trypsin recognizes the same unique site in guinea-pig lipoprotein lipase as in the bovine enzyme. This confirms the conclusion that this segment is the border between two domains in the subunit. The binding site for heparin was retained after both tryptic and chymotryptic cleavages and was identified as localized in the C-terminal part of the molecule.  相似文献   

4.
Human placental NAD(+)-linked 15-hydroxyprostaglandin dehydrogenase was purified to homogeneity according to a five-step method, with chromatography on DEAE-Sepharose, Blue Sepharose, and Mono-Q FPLC as principal steps. Final yield was 23% and purification about 13,000-fold, with a specific activity of 24,000 milliunits/mg. The subunit molecular weight is about 29,000 as determined by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, and the native protein molecular weight is about 54,000 as estimated by Sephadex G-100 chromatography, establishing the enzyme to be a dimer of similar-sized protein chains. The subunit N-terminal residue is methionine, and the alpha-amino group is free. The complete primary structure was determined by peptide analysis, based essentially on four different proteolytic treatments (Lys-specific protease, Glu-specific protease, Asp-specific protease, and CNBr). The protein chain is composed of 266 residues, with C-terminal glutamine. A microheterogeneity was detected at position 217, with both Cys and Tyr, in about equal amounts, from a preparation starting with a single placenta. No other subunit heterogeneities were detected. The protein is clearly but distantly related to insect alcohol dehydrogenases, characterized bacterial dehydrogenases of sugar metabolism, and bacterial and eukaryotic steroid dehydrogenases. Together, these results establish that placental 15-hydroxyprostaglandin dehydrogenase is a member of the short-chain nonmetalloenzyme alcohol dehydrogenase protein family. The protein has four cysteine residues (five with the positional microheterogeneity), but there is no evidence for functional importance of any of these residues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The C-terminal 222 residues of human liver aldehyde dehydrogenase can be aligned with the C-terminal 226 residues of a thiol protease from Dictyostelium discoideum to yield 47 residue identities, including matching active site cysteine residues. A multiple alignment with three more aldehyde dehydrogenases and three more thiol proteases yields three regions with clustered residue similarities. In the tertiary structure of papain, these three regions are in close proximity although widely separated in primary structure, and many conserved residues are located in the active site groove. The three-dimensional relationships, the common thiol ester mechanisms of the enzymes, the locations of exon boundaries in the dehydrogenase and protease genes, and the conservation of internal salt-bridging and disulfide-paired residues in papain, all appear compatible with the hypothesis of an ancestral relationship between thiol proteases and aldehyde dehydrogenases.  相似文献   

6.
We have cleaved protein S1, which is the largest and the most elongated protein of the Escherichia coli ribosome, using cyanogen bromide and isolated two fragments that retain the functional domains of the intact molecule. The fragments (denoted S1-F2a and S1-F2b) showed molecular weights of 24,000 and 22,500 by dodecyl sulphate/polyacrylamide gel electrophoresis. Fragment F2a is shown to be the N-terminal segment containing about 32% of the peptide chain length of S1. Fragment F2b is derived from another (probably C-terminal) region of S1.Fragment F2a binds to 30 S ribosomal subunits with a strength and specificity comparable to the binding of intact S1. It also binds to matrix-bound poly(U) but the binding is salt-sensitive, unlike the binding of intact S1. Fragment F2b binds only very weakly to poly(U) and does not bind to 30 S subunits. These results are discussed with respect to the ribosome binding domain(s) of protein S1 and the possible interdependence of the multiple functional domains in this large protein.  相似文献   

7.
The topology of several of the cytoplasmically made subunits of beef heart cytochrome c oxidase has been determined by protease digestion of oriented membrane preparations, using subunit-specific antibodies to identify cleavage products. Reconstituted vesicles of cytochrome c oxidase and asolectin were used as a vesicle preparation with the C domain of the enzyme available for protease digestion. Submitochondrial particles were used as vesicles with the M domain outermost. Trypsin and/or proteinase K cleaved polypeptides CIV, ASA, AED, STA, and IHQ. Cleavage of CIV, STA, and IHQ was from the M domains only and involved the removal of a fragment from the N-terminus in each case. Polypeptide AED was cleaved from the C side in the N-terminal part, while ASA was cleaved from both the C and M domains. Polypeptide fragments were electroblotted from polyacrylamide gels onto derivatized glass paper and sites of proteolytic cleavage determined by N-terminal sequence analysis.  相似文献   

8.
The purified plasma membrane Ca(2+) pump (PMCA) was digested with trypsin, and the proteolytic products were identified by immunoblotting with monoclonal antibodies JA9 or 5F10 directed against the extreme N-terminal segment and the central portion of the molecule, respectively. After a short treatment with low concentrations of the protease, JA9 reacted predominantly with a peptide of 35 kDa whereas 5F10 detected a peptide of 90 kDa. The trypsin cut leading to the production of these fragments had no effect on the maximal activity of the enzyme. At higher concentrations of trypsin, JA9 detected a main fragment of 33 kDa and smaller fragments of 19 and 15 kDa. The persistence of fragments reacting with JA9 indicates that the N-terminal region containing its epitope (residues 51-75) was not easily accessible to the protease in the native PMCA. However, the reactivity with JA9 was rapidly lost during proteolysis of the denatured protein. The passage of the mixture of PMCA fragments through a calmodulin-Sepharose column resulted in the retention of the N-terminal 35 kDa fragment together with that of 90 kDa, despite the fact that only the latter binds calmodulin. The ethylenediaminetetraacetic acid (EDTA) eluate, which contained about equal amounts of both fragments, had a Ca(2+) ATPase activity similar to that of the intact enzyme. The tight association between the two peptides was evidenced by the fact that concentrations of polyoxyethylene 10 lauryl ether (C(12)E(10)), sodium dodecyl sulfate (SDS) high enough for inactivating the enzyme and dissociate the pump from calmodulin were unable of breaking the interaction between the 35 and 90 kDa fragments. Altogether, these results show that after digestion with trypsin, the N-terminal portion of the PMCA, including the extreme N-terminal segment, remains part of a fully functional catalytic complex.  相似文献   

9.
M Peretz  Y Burstein 《Biochemistry》1989,28(16):6549-6555
The complete amino acid sequence of alcohol dehydrogenase of Thermoanaerobium brockii (TBAD) is presented. The S-carboxymethylated protein was cleaved at methionine residues (with cyanogen bromide) to provide a set of 10 nonoverlapping fragments accounting for 90% of the sequence. These fragments were then overlapped and aligned, and the sequence was completed by using peptides generated by proteolytic cleavage at lysine residues (with Achromobacter protease I). The protein subunit contained 352 amino acid residues corresponding to a molecular weight of 37,652. The sequence showed about 35% identity with that of the prokaryotic Alcaligenes eutrophus alcohol dehydrogenase and about 25% identity with any one of the eukaryotic alcohol/polyol dehydrogenases known today. Of these, only 18 residues (5%) are strictly conserved: 11 Gly, 2 Asp, and 1 each of Cys, His, Glu, Pro, and Val.  相似文献   

10.
K Kiuchi  K Kiuchi  K Titani  K Fujita  K Suzuki  T Nagatsu 《Biochemistry》1991,30(43):10416-10419
Limited proteolysis of tyrosine hydroxylase (TH) by calpain, Ca(2+)-activated neutral protease, was studied. Cleavage of TH with calpain in vitro produced molecules having Mrs of approximately 57,000 and 56,000 in SDS-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence, Ser-Pro-Arg-Phe-Val, of the 56-kDa species indicated that calpain cleaved off the N-terminal region (residues 1-30) encoded by the first exon including Ser-8 and Ser-19, the phosphorylation sites by proline-directed protein kinase (PDPK) and by Ca2+/calmodulin-dependent protein kinase II (kinase II), respectively, from the native TH. The removal of the N-terminal region from the native molecule induced a slight but significant activation of TH at pH 7.0. The native TH behaved as the tetramer with an Mr of 240,000. In contrast, calpain-cleaved TH showed the monomeric Mr by gel permeation chromatography and increased Ki for catecholamine which inhibits the native TH in competition to the coenzyme, DL-6-methyl-5,6,7,8-tetrahydropterin (6MPH4). These results imply that calpain cleavage would effectively release TH from the feedback inhibition by removal of the N-terminal region resulting in disruption of the quaternary structure.  相似文献   

11.
The luteinizing hormone isolated from sperm-whale pituitary was separated into two subunits, alpha- and beta-, by ion-exchange chromatography on sulfoethyl-Sephadex. The hormone subunits were reconstituted, carboxymethylated and cleaved by BrCN and proteolytic enzymes. In order to block tryptic hydrolysis at lysine residues the alpha-subunit was subjected to maleylation. Large-sized fragments of BrCN were cleaved by chymotrypsin and trypsin, while large-sized fragments of trypsin were split by chymotrypsin. The resulting peptides were separated by gel filtration on Sephadex, ion-exchange chromatography on Aminex A-5 and thin-layer partition chromatography on cellulose. The amino acid sequence of the peptides was determined by the Edman method, using identification of the N-terminal amino acids in a reaction with dansyl chloride or dimethylaminoazobenzene-4-isothiocyanate. It was shown that the alpha-subunit of the luteinizing hormone is a peptide chain consisting of 96 amino acid residues with covalently linked carbon chains at asparagine residues at positions 56 and 82. The N-terminal amino acid of the alpha-subunit is phenylalanine, the C-terminal amino acid is serine. The alpha-subunit is heterogeneous at the N-end, i. e. beside phenylalanine it contains threonine and trace amounts of proline, aspartate, glutamate and glycine.  相似文献   

12.
Botulinum neurotoxin type E, a 150 kDa single chain protein, cleaved with endoproteinase Lys-C yielded 113, 73, and 50 kDa fragments. The N-terminal sequence of the 113 kDa fragment, Gly-Ile-Arg-Lys-Ser-Ile-Cys-Ile, overlaps the N-terminal sequence, Lys-Ser-Ile-Cys-Ile, of the 103 kDa heavy chain produced by nicking the neurotoxin with trypsin. The -Arg-Lys- bond is therefore the site on the single chain type E NT where trypsin nicks generating the 50 kDa light and 103 kDa heavy chains of the dichain NT. The sequence of the first 50 N-terminal residues of the 73 kDa fragment were determined. This fragment is a segment of the heavy chain; 50% of the 50 residues are present in identical positions in a similar segment of the heavy chain of tetanus neurotoxin.  相似文献   

13.
Amino acid sequence of locust neuroparsins   总被引:2,自引:0,他引:2  
Neuroparsins A and B were isolated from the nervous part of the corpus cardiaca of Locusta migratoria via a two-step purification procedure. Both consist of two polypeptide chains linked by disulfide bridges. The N-terminal sequence of both native neuroparsins was determined: the N-terminal end of neuroparsin B was unique while that of neuroparsin A showed three different sequences. These sequences were that of neuroparsin B and two others having five and two extra N-terminal residues. Neuroparsin B was found as a homodimer and the complete sequence of the monomer, determined from peptide fragments generated by treatment with cyanogen bromide and endoprotease Glu-C, comprises 78 residues.  相似文献   

14.
A subunit (Mr 15,600) from the high molecular weight protein from rapeseed was separated and isolated; its purity and homogeneity were ascertained. The subunit was cleaved with cyanogen bromide, trypsin, chymotrypsin, and Staphylococcus aureus V8 protease. The fragments were separated and isolated by polyacrylamide gel electrophoresis, gel filtration, column chromatography on Dowex 1 x 2, and paper electrophoresis. The amino acid compositions of the intact subunit and different fragments obtained from enzymatic and chemical cleavages were determined. The subunit and its fragments were sequenced by manual Edman method. The phenylthiohydantoin amino acids obtained after each step were identified by thin-layer chromatography and ultraviolet spectroscopy. The complete amino acid sequence of the subunit consisting of 125 amino acid residues has been established by the overlapping method.  相似文献   

15.
A subunit of molecular weight 18300 has been separated and isolated from seeds of Brassica campestris L. This subunit was cleaved by using cyanogen bromide, trypsin, Staphylococcus aureus V8 protease and chymotrypsin; the fragments obtained from enzymatlc and chemical cleavages were separated and isolated by polyacrylamide gel electrophoresis and gel filtration. The amino acid analyses were carried out. The complete amino acid sequence of the subunit containing 172 amino acid residues has been established by manual Edman method.  相似文献   

16.
Amino acid sequence of bovine osteoinductive factor   总被引:1,自引:0,他引:1  
The complete amino acid sequence of bovine osteoinductive factor (OIF) was determined by automated Edman degradation of S-pyridylethylated bovine OIF and selected fragments. Cleavage with endoproteinase Lys-C, endoproteinase Glu-C, or endoproteinase Asp-N established all fragments in an unambiguous sequence. Bovine OIF contains 105 residues with a calculated molecular weight of 12,055. It is a single chain polypeptide containing two intramolecularly linked cysteines at residues 62 and 95. Two asparagine-linked glycosylation sites at positions 52 and 65 were found by comparing sequence data and peptide profiles of native and deglycosylated OIF fragments. The amino acid sequence of OIF has no homology to other reported proteins.  相似文献   

17.
Purification and characterization of ribulose-5-phosphate kinase from spinach   总被引:12,自引:0,他引:12  
An efficient purification procedure utilizing affinity chromatography is described for spinach ribulose-5-phosphate kinase, a light-regulated chloroplastic enzyme. Gel filtration and polyacrylamide gel electrophoresis of the purified enzyme reveal a dimeric structure of 44,000 Mr subunits. Chemical crosslinking with dimethyl suberimidate confirms the presence of two subunits per molecule of native kinase, which are shown to be identical by partial NH2-terminal sequencing. Based on sulfhydryl titrations and on amino acid analyses, each subunit contains four to five cysteinyl residues. The observed slow loss of activity during spontaneous oxidation in air-saturated buffer correlates with the intramolecular oxidation of two sulfhydryl groups, presumably those involved in thioredoxin-mediated regulation.  相似文献   

18.
Studies of limited proteolysis on purified ferredoxin-NADP+ reductase with various proteases were performed in the presence and absence of the flavoprotein ligands. Both the diaphorase and the ferredoxin-dependent activities of the enzyme were followed as well as the proteolytic pattern in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with further characterization of the polypeptides produced. These experiments revealed that only two regions of the flavoprotein are susceptible to the attack of the proteases used: (a) the N-terminal chain which can be cleaved only up to Lys35 and (b) the sequence segment 235-250. It can be inferred that these regions are on the surface of the protein molecule and presumably have a very flexible conformation adaptable to the protease active site. The deletion of the N-terminal region up to Thr36 of the native reductase (Mr 35,000) produced a truncated form (Mr about 31,000) which had full diaphorase activity but lost the capacity to catalyze the ferredoxin-dependent reaction. Proteolytic cleavage at the 235-250 segment of the sequence yielded a nicked protein (Mr about 30,000 by gel filtration; 23,000 plus 7,000 in denaturing electrophoresis) devoid of both activities. Protection by the flavoprotein ligands implies that the 23-35 region of the sequence is part of the binding site for ferredoxin and the 235-250 polypeptide segment is in the NADP(+)-binding site.  相似文献   

19.
Long-chain dehydrogenases were scrutinized for common patterns. Overall molecular similarities are not discerned, in contrast to the situation for several short-chain and medium-chain dehydrogenases, but coenzyme-binding segments are discernible. Species variants of glucose-6-phosphate dehydrogenase reveal about 20% strictly conserved residues, grouped into three segments and supporting assignments of sites for coenzyme-binding and catalysis. Glycine is overrepresented among the residues conserved, typical of distantly related proteins. Two of the enzymes within the pentose phosphate pathway reveal a distant similarity of interest for further evaluation, between a C-terminal 178-residue segment of glucose-6-phosphate dehydrogenase and the N-terminal part of 6-phosphogluconate dehydrogenase.  相似文献   

20.
The matrix-mediated enamel biomineralization involves secretion of the enamel specific amelogenin proteins that through self-assembly into nanosphere structures provide the framework within which the initial enamel crystallites are formed. During enamel mineralization, amelogenin proteins are processed by tooth-specific proteinases. The aim of this study was to explore the factors that affect the activity of enamel proteases to process amelogenins. Two factors including amelogenin self-assembly and enzyme specificity are considered. We applied a limited proteolysis approach, combined with mass spectrometry, in order to determine the surface accessibility of conserved domains of amelogenin assemblies. A series of commercially available proteinases as well as a recombinant enamelysin were used, and their proteolytic actions on recombinant amelogenin were examined under controlled and limited conditions. The N-terminal region of the recombinant mouse amelogenin rM179 was found to be more accessible to tryptic digest than the C-terminal region. The endoproteinase Glu-C cleaved amelogenin at both the N-terminal (E18/V) and C-terminal (E178/V) sites. Chymotrypsin cleaved amelogenin at both the carboxy- (F151/S) and amino-terminal (W25/Y) regions. Interestingly, the peptide bond F/S152 was also recognized by the action of enamelysin on recombinant mouse amelogenin whereas thermolysin cleaved the S152/M153 peptide bond in addition to T63/L64 and I159/L160 and M29/I30 bonds. It was then concluded that regions at both the carboxy- and amino-terminal were exposed on the surface of amelogenin nanospheres when the N-terminal 17 amino acid residues were proposed to be protected from proteolysis, presumably as the result of their involvement in direct protein-protein interaction. Cleavage around the FSM locus occurred by recombinant enamelysin under limited conditions, in both mouse (F151/S152) and pig amelogenins (S148/M). Our in vitro observations on the limited proteolysis of amelogenin by enamelysin suggest that enamelysin cleaved amelogenin at the C-terminal region showing a preference of the enzyme to cleave the S/M and F/S bonds. The present limited proteolysis studies provided insight into the mechanisms of amelogenin degradation during amelogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号