首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The interaction of cecropin P1 (CP1) with Escherichiacoli was investigated to gain insight into the time‐dependent antimicrobial action. Biophysical characterizations of CP1 with whole bacterial cells were performed using both fluorescent and colorimetric assays to investigate the role of membrane permeability and lipopolysaccharide (LPS) binding in lytic behavior. The kinetics of CP1 growth inhibition assays indicated a minimal inhibitory concentration (MIC) of 3 µM . Bactericidal kinetics at the MIC indicated rapid killing of E.coli (<30 min). Membrane permeability studies illustrated permeation as a time‐dependent event. Maximum permeability at the MIC occurred within 30 min, which correlates to the bactericidal action. Further investigation showed that the immediate permeabilizing action of CP1 is concentration‐dependent, which correlates to the concentration‐dependent nature of the inhibition assays. At the MIC and above, the immediate permeability was significant enough that the cells could not recover and exhibit growth. Below the MIC, immediate permeability was evident, but the level was insufficient to inhibit growth. Dansyl polymyxin B displacement studies showed LPS binding is essentially the same at all concentrations investigated. However, it does appear that only the immediate interaction is important, because binding continued to increase over time beyond cell viability. Our studies correlated CP1 bactericidal kinetics to membrane permeability suggesting CP1 concentration‐dependent killing is driven by the extent of the immediate permeabilizing action of the peptide. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
This study compares the effect of cyclic R-, W-rich peptides with variations in amino acid sequences and sizes from 5 to 12 residues upon Gram negative and Gram positive bacteria as well as outer membrane-deficient and LPS mutant Escherichia coli (E. coli) strains to analyze the structural determinants of peptide activity. Cyclo-RRRWFW (c-WFW) was the most active and E. coli-selective sequence and bactericidal at the minimal inhibitory concentration (MIC). Removal of the outer membrane distinctly reduced peptide activity and the complete smooth LPS was required for maximal activity. c-WFW efficiently permeabilised the outer membrane of E. coli and promoted outer membrane substrate transport. Isothermal titration calorimetric studies with lipid A-, rough-LPS (r-LPS)- and smooth-LPS (s-LPS)-doped POPC liposomes demonstrated the decisive role of O-antigen and outer core polysaccharides for peptide binding and partitioning. Peptide activity against the inner E. coli membrane (IM) was very low. Even at a peptide to lipid ratio of 8/1, c-WFW was not able to permeabilise a phosphatidylglycerol/phosphatidylethanolamine (POPG/POPE) bilayer. Low influx of propidium iodide (PI) into bacteria confirmed a low permeabilising ability of c-WFW against PE-rich membranes at the MIC. Whilst the peptide effect upon eukaryotic cells correlated with the amphipathicity and permeabilisation of neutral phosphatidylcholine bilayers, suggesting a membrane disturbing mode of action, membrane permeabilisation does not seem to be the dominating antimicrobial mechanism of c-WFW. Peptide interactions with the LPS sugar moieties certainly modulate the transport across the outer membrane and are the basis of the E. coli selectivity of this type of peptides.  相似文献   

3.
Cyclization of R- and W-rich hexapeptides has been found to enhance specifically the antimicrobial activity against Gram-negative Escherichia coli. To gain insight into the role of the bacterial outer membrane in mediating selectivity, we assayed the activity of cyclic hexapeptides derived from the parent sequence c-(RRWWRF) against several E. coli strains and Bacillus subtilis, L-form bacteria, and E. coli lipopolysaccharide (LPS) mutant strains, and we also investigated the peptide-induced permeabilization of the outer and inner membrane of E. coli. Wall-deficient L-form bacteria were distinctly less susceptible than the wild type strain. The patterns of peptide-induced permeabilization of the outer and inner E. coli membranes correlated well with the antimicrobial activity, confirming that membrane permeabilization is a detrimental effect of the peptides upon bacteria. Truncation of LPS had no influence on the activity of the cyclic parent peptide, but the highly active c-(RRWFWR), with three adjacent aromatic residues, required the complete LPS for maximal activity. Furthermore, differences in the activity of the parent peptide and its all-D sequence indicated stereospecific interactions with the LPS mutant strains. We suggest that, depending on the primary sequence of the peptides, either hydrophobic interactions with the fatty acid chains of lipid A, or electrostatic interactions disturbing the polar core region and interference with saccharide-saccharide interactions prevail in the barrier-disturbing effect upon the outer membrane and thereby provide peptide accessibility to the inner membrane. The results underline the importance of tryptophan and arginine residues and their relative location for a high antimicrobial effect, and the activity-modulating function of the outer membrane of E. coli. In addition to membrane permeabilization, the data provided evidence for the involvement of other mechanisms in growth inhibition and killing of bacteria.  相似文献   

4.
Peng  Jinxiu  Qiu  Shuai  Jia  Fengjing  Zhang  Lishi  He  Yuhang  Zhang  Fangfang  Sun  Mengmeng  Deng  Yabo  Guo  Yifei  Xu  Zhaoqing  Liang  Xiaolei  Yan  Wenjin  Wang  Kairong 《Amino acids》2021,53(1):23-32

Protonectin was a typical amphiphilic antimicrobial peptide with potent antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, when its eleventh amino acid in the sequence was substituted by phenylalanine, the analog named phe-Prt showed potent antimicrobial activity against Gram-positive bacteria, but no antimicrobial activity against Gram-negative bacteria, indicating a significant selectivity between Gram-positive bacteria and Gram-negative bacteria. However, when Gram-negative bacteria were incubated with EDTA, the bacteria were susceptible to phe-Prt. Next, the binding effect of phe-Prt with LPS was determined. Our result showed that LPS could hamper the bactericidal activity of phe-Prt against Gram-positive bacteria. The result of zeta potential assay further confirmed the binding effect of phe-Prt with LPS for it could neutralize the surface charge of E. coli and LPS. Then, the effect of phe-Prt on the integrity of outer membrane of Gram-negative bacteria was determined. Our results showed that phe-Prt had a much weaker disturbance to the outer membrane of Gram-negative bacteria than the parent peptide protonectin. In summary, the introduction of l-phenylalanine into the sequence of antimicrobial peptide protonectin made phe-Prt show significant selectivity against Gram-positive bacteria, which could partly be attributed to the delay effect of LPS for phe-Prt to access to cell membrane. Although further study is still needed to clarify the exact mechanism of selectivity, the present study provided a strategy to develop antimicrobial peptides with selectivity toward Gram-positive and Gram-negative bacteria.

  相似文献   

5.
The present study examined the antimicrobial activity of the peptide ghrelin. Both major forms of ghrelin, acylated ghrelin (AG) and desacylated ghrelin (DAG), demonstrated the same degree of bactericidal activity against Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), while bactericidal effects against Gram-positive Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) were minimal or absent, respectively. To elucidate the bactericidal mechanism of AG and DAG against bacteria, we monitored the effect of the cationic peptides on the zeta potential of E. coli. Our results show that AG and DAG similarly quenched the negative surface charge of E. coli, suggesting that ghrelin-mediated bactericidal effects are influenced by charge-dependent binding and not by acyl modification. Like most cationic antimicrobial peptides (CAMPs), we also found that the antibacterial activity of AG was attenuated in physiological NaCl concentration (150mM). Nonetheless, these findings indicate that both AG and DAG can act as CAMPs against Gram-negative bacteria.  相似文献   

6.
A simple and specific strategy based on the bioconjugation of a photosensitizer protophophyrin IX (PpIX) with a lipopolysaccharide (LPS) binding antimicrobial peptide YI13WF (YVLWKRKRKFCFI-Amide) has been developed for the effective fluorescent imaging and photodynamic inactivation of Gram-negative bacterial strains. The intracellular fluorescent imaging and photodynamic antimicrobial chemotherapy (PACT) studies supported our hypothesis that the PpIX-YI13WF conjugates could serve as efficient probes to image the bacterial strains and meanwhile indicated the potent activities against Gram-negative bacterial pathogens especially for those with antibiotics resistance when exposed to the white light irradiation. Compared to the monomeric PpIX-YI13WF conjugate, the dimeric conjugate indicated the stronger fluorescent imaging signals and higher photoinactivation toward the Gram-negative bacterial pathogens throughout the whole concentration range. In addition, the photodynamic bacterial inactivation also demonstrated more potent activity than the minimum inhibitory concentration (MIC) values of dimeric PpIX-YI13WF conjugate itself observed for E. coli DH5a (~4 times), S. enterica (~8 times), and other Gram-negative strains including antibiotic-resistant E. coli BL21 (~8 times) and K. pneumoniae (~16 times). Moreover, both fluorescent imaging and photoinactivation measurements also demonstrated that the dimeric PpIX-YI13WF conjugate could selectively recognize bacterial strains over mammalian cells and generate less photo damage to mammalian cells. We believed that the enhanced fluorescence and bacterial inactivation were probably attributed to the higher binding affinity between dimeric photosensitizer peptide conjugate and LPS components on the surface of bacterial strains, which were the results of efficient multivalent interactions.  相似文献   

7.
家蝇幼虫抗菌肽MDL-2对细菌细胞渗透性及代谢功能影响   总被引:2,自引:0,他引:2  
研究了家蝇幼虫抗菌肽MDL-2与细菌相互作用时,抗菌肤MDL-2对细菌细胞壁的溶解作用、细胞膜渗透性和代谢的影响.抗菌肽MDL-2在抗菌过程中首先与细菌的细胞壁相互作用,使其破裂,抗菌肽对革兰氏阴性细菌大肠杆菌细胞壁的作用有浓度依赖性,而对革兰氏阳性细菌金黄色葡萄球菌MDL-2在较低的浓度时即可发生细胞壁破坏作用;抗菌...  相似文献   

8.
通过体壁损伤和大肠杆菌同时诱导家蝇幼虫产生免疫血淋巴,经沸水浴热变性,透析浓缩处理,然后经Tricine-SDS-PAGE得到诱导前后家蝇幼虫血淋巴中蛋白差异表达条带,将该条带电泳回收、复性、抗菌活性检测等步骤,分离纯化得到抗菌肽MDL-1, 其分子中富含Gly和碱性氨基酸,分子量为6 200 D,对革兰氏阴性菌Escherichia coli有较强抗性。通过MDL-1对大肠杆菌通透性分析和透射电镜超微结构观察表明,MDL-1首先可能与细菌的外膜结合,然后与细胞内膜作用,扰乱膜脂分子的排列,改变细胞膜的通透性,从而影响细胞膜的结构和功能,使细胞膜形成的许多孔道,造成细胞内的原生质扩散,并从孔道向胞外渗漏,影响了细菌的代谢系统,最终引起细胞膜破碎,细胞完全解体,从而起到抑菌杀菌作用。  相似文献   

9.
The rise of multidrug-resistant (MDR) pathogens causes an increasing challenge to public health. Antimicrobial peptides are considered a possible solution to this problem. HBV core protein (HBc) contains an arginine-rich domain (ARD) at its C-terminus, which consists of 16 arginine residues separated into four clusters (ARD I to IV). In this study, we demonstrated that the peptide containing the full-length ARD I–IV (HBc147-183) has a broad-spectrum antimicrobial activity at micro-molar concentrations, including some MDR and colistin (polymyxin E)-resistant Acinetobacter baumannii. Furthermore, confocal fluorescence microscopy and SYTOX Green uptake assay indicated that this peptide killed Gram-negative and Gram-positive bacteria by membrane permeabilization or DNA binding. In addition, peptide ARD II–IV (HBc153-176) and ARD I–III (HBc147-167) were found to be necessary and sufficient for the activity against P. aeruginosa and K. peumoniae. The antimicrobial activity of HBc ARD peptides can be attenuated by the addition of LPS. HBc ARD peptide was shown to be capable of direct binding to the Lipid A of lipopolysaccharide (LPS) in several in vitro binding assays. Peptide ARD I–IV (HBc147-183) had no detectable cytotoxicity in various tissue culture systems and a mouse animal model. In the mouse model by intraperitoneal (i.p.) inoculation with Staphylococcus aureus, timely treatment by i.p. injection with ARD peptide resulted in 100-fold reduction of bacteria load in blood, liver and spleen, as well as 100% protection of inoculated animals from death. If peptide was injected when bacterial load in the blood reached its peak, the protection rate dropped to 40%. Similar results were observed in K. peumoniae using an IVIS imaging system. The finding of anti-microbial HBc ARD is discussed in the context of commensal gut microbiota, development of intrahepatic anti-viral immunity and establishment of chronic infection with HBV. Our current results suggested that HBc ARD could be a new promising antimicrobial peptide.  相似文献   

10.
Dennison SR  Phoenix DA 《Biochemistry》2011,50(50):10898-10909
Modelin-5 isoforms were used to gain an insight into the effects of amidation on antimicrobial selectivity. When tested against Escherichia coli, amidation increased toxicity 10-fold (MIC = 31.25 μM) while showing limited increased hemolytic activity (2% lysis). Our results show that both the amidated and non-amidated peptides had a disordered structure in aqueous solution (<18% helical) and folded to form helices at the membrane interface (for example, >43% in the presence of DMPC). The stabilization of the helical structure by amidation has previously been shown to play a key role in increasing antibacterial efficacy. The presence of cholesterol in the membrane increases the packing density (C(s)(-1) values 25-33 mN m(-1)) and so prevents the peptide from forming stable association with the membrane, which is evidenced by the higher binding coefficient (K(d)) in the presence of cholesterol: 57.70 μM for Modelin-5-COOH and 35.64 μM for Modelin-5-CONH(2) compared to the presence of E. coli lipid extract (10 μM), which would prevent local concentration of the peptide at the bilayer interface as seen by reduction in monolayer interaction. This in turn would be predicted to inhibit activity.  相似文献   

11.
The cell‐penetrating peptide Tat (48–60) (GRKKRRQRRRPPQ) derived from HIV‐1 Tat protein showed potent antibacterial activity (MIC: 2–8 µM ). To investigate the effect of dimerization of Tat (48–60) analog, [Tat(W): GRKKRRQRRRPWQ‐NH2], on antimicrobial activity and mechanism of bactericidal action, its dimeric peptides, di‐Tat(W)‐C and di‐Tat(W)‐K, were synthesized by a disulfide bond linkage and lysine linkage of monomeric Tat(W), respectively. From the viewpoint of a weight basis and the monomer concentration, these dimeric peptides displayed almost similar antimicrobial activity against six bacterial strains tested but acted more rapidly against Staphylococcus aureus on kinetics of bactericidal activity, compared with monomeric Tat(W). Unlike monomeric Tat(W), these dimeric peptides significantly depolarized the cytoplasmic membrane of intact S. aureus cells at MIC and induced dye leakage from bacterial‐membrane‐mimicking egg yolk L ‐α‐phosphatidylethanolamine/egg yolk L ‐α‐phosphatidyl‐DL ‐glycerol (7:3, w/w) vesicles. Furthermore, these dimeric peptides were less effective to translocate across lipid bilayers than monomeric Tat(W). These results indicated that the dimerization of Tat analog induces a partial change in the mode of its bactericidal action from intracellular target mechanism to membrane‐targeting mechanism. Collectively, our designed dimeric Tat peptides with high antimicrobial activity and rapid bactericidal activity appear to be excellent candidates for future development as novel antimicrobial agents. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
弱酸性家蝇蛆抗菌肽MD7095的分离纯化及性质研究   总被引:8,自引:0,他引:8  
家蝇抗菌肽多是碱性蛋白,目前尚无弱酸性家蝇抗菌肽的报道。通过稀醋酸低温浸提,海藻酸吸附,稀盐酸低温洗脱、盐析、Sephadex G25凝胶过滤和CMC23弱阳离子交换柱层析等方法,利用灵敏的杀菌活性检测手段,从家蝇蛆(Musca domesticalarvae)中分离纯化出一组弱酸性抗菌肽,对苏云金芽孢杆菌(Bacillus thuringiensis)等革兰氏阳性菌和几种革兰氏阴性菌有强烈的杀灭作用,有极强的耐热、耐冻融的特性。通过电洗脱方法进一步纯化出抗菌肽MD7095,质谱测定其分子量7095Da,IEF电泳测得其等电点5.59,经肽质量指纹谱(PMF)鉴定为一新肽。扫描电镜超微结构观察表明,弱酸性家蝇蛆抗菌肽对苏云金芽孢杆菌的杀菌机制主要是使细胞膜穿孔,内容物外泄,最终使细菌完全解体死亡。  相似文献   

13.
M Wu  E Maier  R Benz  R E Hancock 《Biochemistry》1999,38(22):7235-7242
Antimicrobial cationic peptides are prevalent throughout nature as part of the intrinsic defenses of most organisms, and have been proposed as a blueprint for the design of novel antimicrobial agents. They are known to interact with membranes, and it has been frequently proposed that this represents their antibacterial target. To see if this was a general mechanism of action, we studied the interaction, with model membranes and the cytoplasmic membrane of Escherichia coli, of 12 peptides representing all 4 structural classes of antimicrobial peptides. Planar lipid bilayer studies indicated that there was considerable variance in the interactions of the peptides with model phospholipid membranes, but generally both high concentrations of peptide and high transmembrane voltages (usually -180 mV) were required to observe conductance events (channels). The channels observed for most peptides varied widely in magnitude and duration. An assay was developed to measure the interaction with the Escherichia coli cytoplasmic membrane employing the membrane potential sensitive dye 3,5-dipropylthiacarbocyanine in the outer membrane barrier-defective E. coli strain DC2. It was demonstrated that individual peptides varied widely in their ability to depolarize the cytoplasmic membrane potential of E. coli, with certain peptides such as the loop peptide bactenecin and the alpha-helical peptide CP26 being unable to cause depolarization at the minimal inhibitory concentration (MIC), and others like gramicidin S causing maximal depolarization below the MIC. We discuss the mechanism of interaction with the cytoplasmic membrane in terms of the model of Matsuzaki et al. [(1998) Biochemistry 37, 15144-15153] and the possibility that the cytoplasmic membrane is not the target for some or even most cationic antimicrobial peptides.  相似文献   

14.
Paenibacterin is a broad-spectrum lipopeptide antimicrobial agent produced by Paenibacillus thiaminolyticus OSY-SE. The compound consists of a cyclic 13-residue peptide and an N-terminal C15 fatty acyl chain. The mechanism of action of paenibacterin against Escherichia coli and Staphylococcus aureus was investigated in this study. The cationic lipopeptide paenibacterin showed a strong affinity for the negatively charged lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria. Addition of LPS (100 μg/ml) completely eliminated the antimicrobial activity of paenibacterin against E. coli. The electrostatic interaction between paenibacterin and LPS may have displaced the divalent cations on the LPS network and thus facilitated the uptake of antibiotic into Gram-negative cells. Paenibacterin also damaged the bacterial cytoplasmic membrane, as evidenced by the depolarization of membrane potential and leakage of intracellular potassium ions from cells of E. coli and S. aureus. Therefore, the bactericidal activity of paenibacterin is attributed to disruption of the outer membrane of Gram-negative bacteria and damage of the cytoplasmic membrane of both Gram-negative and Gram-positive bacteria. Despite the evidence of membrane damage, this study does not rule out additional bactericidal mechanisms potentially exerted by paenibacterin.  相似文献   

15.
A new antimicrobial peptide, cryptonin, was isolated and characterized from the adult Korean blackish cicada, Cryptotympana dubia. It consists of 24 amino acid residues and has a molecular weight of 2,704 Da on mass spectroscopy. The predicted alpha-helical structure analysis and increased helix percent in 40% trifloroethanol of cryptonin suggests that it belongs to the typical linear alpha-helix forming peptide. Binding of the biotin-labeled cryptonin at the surface of E. coli cells and increased influx of propidium iodide in E. coli after cryptonin treatment indicates that it kills microbial cells by binding bacterial cell surfaces and disrupting the cell permeability. Cryptonin showed strong antibacterial (MIC 1.56-25 microg/ml) and antifungal (MIC 3.12-50 microg/ml) activities against tested bacteria and fungi including two antibiotic-resistant bacterial strains; methicilin-resistant S. aureus and vancomycin-resistant Enterococci (MIC 25 microg/ml, each).  相似文献   

16.
L Cao  C Dai  Z Li  Z Fan  Y Song  Y Wu  Z Cao  W Li 《PloS one》2012,7(7):e40135
BmKn2 is an antimicrobial peptide (AMP) characterized from the venom of scorpion Mesobuthus martensii Karsch by our group. In this study, Kn2-7 was derived from BmKn2 to improve the antibacterial activity and decrease hemolytic activity. Kn2-7 showed increased inhibitory activity against both gram-positive bacteria and gram-negative bacteria. Moreover, Kn2-7 exhibited higher antibacterial activity against clinical antibiotic-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA). In addition, the topical use of Kn2-7 effectively protected the skin of mice from infection in an S. aureus mouse skin infection model. Kn2-7 exerted its antibacterial activity via a bactericidal mechanism. Kn2-7 killed S. aureus and E. coli rapidly by binding to the lipoteichoic acid (LTA) in the S. aureus cell wall and the lipopolysaccharides (LPS) in the E. coli cell wall, respectively. Finally, the hemolytic activity of Kn2-7 was significantly decreased, compared to the wild-type peptide BmKn2. Taken together, the Kn2-7 peptide can be developed as a topical therapeutic agent for treating bacterial infections.  相似文献   

17.

Antilipopolysaccharide factors (ALFs) are important effectors of innate immunity in crustaceans with broad spectrum antimicrobial activity. Present study deals with the molecular and functional characterization of a 98-amino acid ALF isoform from, crucifix crab, Charybdis feriatus termed as Cf-ALF2. The ALF isoform Cf-ALF2 exhibits characteristic features of an AMP including a cationic net charge of + 9 and a total hydrophobic ratio of 34%. Recombinant peptide rCf-ALF2 showed remarkable antimicrobial activity against Gram-negative and Gram-positive bacteria especially against Staphylococcus aureus (minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 5 µM) and Escherichia coli (MIC 10 µM and MBC 20 µM). Using scanning electron microscopy, bacterial membrane blebbing, disruption, and cell content leakage were observed in peptide treated E. coli. The recombinant peptide was found to be non-hemolytic and non-cytotoxic in NCI-H460 cell line at the highest tested concentration (20 µM). Thus, this study identified a novel isoform of ALF from C. feriatus and revealed the potent antimicrobial property of the recombinant peptide Cf-ALF2 and the future prospects of using the peptide for therapeutic applications in the future.

  相似文献   

18.
《Phytomedicine》2015,22(2):245-255
The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics.The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml).Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75–1). In time-kill assays all three-drug combinations exhibited a powerful bactericidal synergistic effect against MRSA NCTC 10442, VRE ATCC 51299, and E. coli ATCC 25922 with a reduction of more than 3log10 in the colony count after 24 h. Our findings suggest that bee venom and melittin synergistically enhanced the bactericidal effect of several antimicrobial agents when applied in combination especially when the drugs affect several and differing molecular targets. These results could lead to the development of novel or complementary antibacterial drugs against MDR pathogens.  相似文献   

19.
Kim Y  Kwak GH  Lee C  Kim HY 《BMB reports》2011,44(10):669-673
Human methionine sulfoxide reductase B3A (hMsrB3A) is an endoplasmic reticulum (ER) reductase that catalyzes the stereospecific reduction of methionine-R-sulfoxide to methionine in proteins. In this work, we identified an antimicrobial peptide from hMsrB3A protein. The N-terminal ER-targeting signal peptide (amino acids 1-31) conferred an antimicrobial effect in Escherichia coli cells. Sequence and structural analyses showed that the overall positively charged ER signal peptide had an Argand Pro-rich region and a potential hydrophobic α-helical segment that contains 4 cysteine residues. The potential α-helical region was essential for the antimicrobial activity within E. coli cells. A synthetic peptide, comprised of 2-26 amino acids of the signal peptide, was effective at killing Gram-negative E. coli, Klebsiella pneumoniae, and Salmonella paratyphi, but had no bactericidal activity against Gram-positive Staphylococcus aureus.  相似文献   

20.
Dass JF  Sudandiradoss C 《Gene》2012,505(2):211-220
Superoxide dismutases (SODs) are metalloenzymes that represent one important line of defense against reactive oxygen species (ROS). In this paper, two novel SOD genes, MdSOD1 and MdSOD2, which putatively encode 261 and 214 amino acid residues respectively were identified and characterized from the housefly Musca domestica. The high similarity of MdSOD1 and MdSOD2 with SODs from other organisms indicated that they should be two new members of the SOD family. qPCR exhibited a universal expression of MdSOD1 and MdSOD2 detected in various tissues of housefly larva, including the fat body, gut, hemocyte and epidermis. Expression profiling reveals that MdSOD1 and MdSOD2 can be induced significantly via not only heat shock and cadmium (Cd) stress but also Escherichia coli and Staphylococcus aureus challenge. The two genes were cloned into the prokaryotic expression vector pET-28a to obtain the fusion proteins rMdSOD1 and rMdSOD2. Between them, the activity of rMdSOD2 was found by visual assay methods. ESI-LC-MS/MS analysis showed that three peptide fragments of the protein rMdSOD2 were identical to the corresponding sequence of M. domestica MdSOD2. MdSOD1 and MdSOD2 in housefly larvae were abrogated by feeding bacteria expressing dsRNA. High mortalities were observed in the larvae treated with dsRNA of SODs at heat shock, Cd stress and bacterial invasion. This phenomenon indicated that MdSOD1 and MdSOD2 are related to the survival of M. domestica under stress. This may provide new insights into the role of the two SOD genes in protecting M. domestica against both stress and bacterial invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号