共查询到20条相似文献,搜索用时 15 毫秒
1.
Wyatt L. Heimbichner Goebel Sean P. Colin John H. Costello Brad J. Gemmell Kelly R. Sutherland 《Invertebrate Biology》2020,139(3)
Ctenophores coordinate large macrociliary structures called ctenes to propel themselves through the water. The morphology and kinematics of the ctenes mediate swimming performance. We investigated morphological and kinematic factors affecting swimming performance in free‐swimming ctenophores (Pleurobrachia bachei) using high speed videography. Our morphological results showed that the relationship between body size and ctene morphology and arrangement in P. bachei were well described using linear (i.e., isometric) relationships, which suggests functional limitations of ctenes that vary among individuals of different sizes. Our kinematic results showed that isometric constraints on swimming performance can potentially be overcome by alterations in kinematics: (a) swimming speed in P. bachei increased with ctene beat frequency over a range of body lengths, and (b) the separation of ctenes into clumps of cilia allowed the ctene to increase in width during the effective stroke and decrease in width during recovery. Separation increases the surface area of the ctene during the effective stroke, likely increasing the thrust produced. The finding that ctenes are not monoliths and instead are separated into clumps of cilia has not been previously described, and we subsequently observed this trait in three other ctenophore species: Euplokamis dunlapae, Bolinopsis infundibulum, and Beroe mitrata. Flexibility in function may be a necessary corollary to isometric development of the ctenes as propulsive structures. 相似文献
2.
Intercellular gap junctions occur between the ciliated cells that make up the comb plates of the ctenophore Pleurobrachia. Similar junctions are found within the ciliated grooves which run from the apical organ to the first plate of each comb row, as well as throughout the endoderm of the meridional canals. Gap junctions were not found in the ectodermal tissue between the comb rows. The distribution of junctions suggests that excitation conduction within the ciliated grooves, comb plates and meridional canal endoderm may be epithelial. 相似文献
3.
Ciliary organelles play important roles in many of the locomotory and sensory functions of ctenophores. This paper reviews published work on the physiology and behavior of ciliary-based feeding in Pleurobrachia pileus and presents recent preliminary work on the conduction pathway controlling this behavior. The feeding response can now be described in terms of specific physiological events at most levels of organization. 相似文献
4.
Pett W Ryan JF Pang K Mullikin JC Martindale MQ Baxevanis AD Lavrov DV 《Mitochondrial DNA》2011,22(4):130-142
Recent advances in sequencing technology have led to a rapid accumulation of mitochondrial DNA (mtDNA) sequences, which now represent the wide spectrum of animal diversity. However, one animal phylum--Ctenophora--has, to date, remained completely unsampled. Ctenophores, a small group of marine animals, are of interest due to their unusual biology, controversial phylogenetic position, and devastating impact as invasive species. Using data from the Mnemiopsis leidyi genome sequencing project, we Polymerase Chain Reaction (PCR) amplified and analyzed its complete mitochondrial (mt-) genome. At just over 10 kb, the mt-genome of M. leidyi is the smallest animal mtDNA ever reported and is among the most derived. It has lost at least 25 genes, including atp6 and all tRNA genes. We show that atp6 has been relocated to the nuclear genome and has acquired introns and a mitochondrial targeting presequence, while tRNA genes have been genuinely lost, along with nuclear-encoded mt-aminoacyl tRNA synthetases. The mt-genome of M. leidyi also displays extremely high rates of sequence evolution, which likely led to the degeneration of both protein and rRNA genes. In particular, encoded rRNA molecules possess little similarity with their homologs in other organisms and have highly reduced secondary structures. At the same time, nuclear encoded mt-ribosomal proteins have undergone expansions, likely to compensate for the reductions in mt-rRNA. The unusual features identified in M. leidyi mtDNA make this organism an interesting system for the study of various aspects of mitochondrial biology, particularly protein and tRNA import and mt-ribosome structures, and add to its value as an emerging model species. Furthermore, the fast-evolving M. leidyi mtDNA should be a convenient molecular marker for species- and population-level studies. 相似文献
5.
Sidney L. Tamm 《Invertebrate Biology》2023,142(2):e12397
Defecation in the lobate ctenophore Mnemiopsis leidyi was recently shown to occur periodically with an ultradian rhythm through a single transient anal pore which suddenly appeared, expelled waste, and disappeared afterward. To discover whether this novel method of defecation occurs in other kinds of ctenophores, I examined individuals of Pleurobrachia pileus and Beroe cucumis. Both ctenophores were found to have two identical and permanent anal pores as described in the scientific literature and textbooks. In P. pileus, both anal pores commonly participated in a defecation, but they did so asynchronously with independent and irregular opening and closing kinetics. Individuals of P. pileus defecated with an ultradian rhythm. Closed anal pores in P. pileus and B. cucumis consisted of a continuous ectodermal epithelium overlying a continuous endodermal epithelium with a cup-shaped group of thickened endodermal cells bearing a tuft of cilia which beats into the anal cavity. The rims of opening or closing pores were smooth and uniform without encircling muscles or fibers. This morphology and the continuity of the epithelial layers between defecations suggest that anal pores may not operate by a contractile sphincter, but by a reversible ring of tissue fusion between apposed ectodermal and endodermal epithelia to create an adjustable hole to expel waste. 相似文献
6.
The use of mitochondrial DNA (mtDNA) continues to dominate studies of human genetic variation and evolution. Recent work has re-affirmed the strict maternal inheritance of mtDNA, yielded new insights into the extent and nature of intra-individual variation, supported a recent African origin of human mtDNA, and amply demonstrated the utility of mtDNA in tracing population history and in analyses of ancient remains. 相似文献
7.
Maliarchuk BA 《Molekuliarnaia biologiia》2011,45(5):845-850
Adaptive evolution of 12 protein-coding mitochondrial genes in members of genus Homo (Denisova hominin (H. sp. Altai), Neandertals (H. neanderthalensis) and modern humans (H. sapiens)) has been evaluated by assessing the pattern of changes in the physicochemical properties of amino acid replacements during the primate evolution. It has been found that in the Homo molecular adaptation (positive destabilizing selection) become apparent in the form of 12 radical amino acid replacements accompanied by statistically significant (P < 0.001) changes of physicochemical properties that probably had the functional consequences. These replacements have occurred on the stage of a common ancestor of the Homo (in CO2 and CytB genes) as well as with the appearance of the common ancestor of Neandertals and modern humans (in CO1 and ND5 genes). Radical amino acid replacements were mainly revealed in the cytochrome c oxidase complex IV and cytochrome bc1 complex III, thus coinciding with general trend of increasing of non-synonymous changes in mtDNA genes coding subunits of complexes III and IV proteins in anthropoid primates. 相似文献
8.
Boussau B Brown JM Fujita MK 《Evolution; international journal of organic evolution》2011,65(9):2706-2711
Genomes vary greatly in size and complexity, and identifying the evolutionary forces that have generated this variation remains a major goal in biology. A controversial proposal is that most changes in genome size are initially deleterious and therefore are linked to episodes of decrease in effective population sizes. Support for this hypothesis comes from large-scale comparative analyses, but vanishes when phylogenetic nonindependence is taken into account. Another approach to test this hypothesis involves analyzing sequence evolution among clades where duplications have recently fixed. Here we show that episodes of fixation of duplications in mitochondrial genomes of the gecko Heteronotia binoei (two independent clades) and of mantellid frogs (five distinct branches) coincide with reductions in the ability of selection to purge slightly deleterious mutations. Our results support the idea that genome complexity can arise through nonadaptive processes in tetrapods. 相似文献
9.
Giorgio Bernardi 《Journal of molecular evolution》1976,9(1):25-35
Summary The mitochondrial genome of yeast (S. cerevisiae orS. carlsbergensis) appears to be formed by 60–70 genetic units, each one of which is formed by (1) a GC-rich sequence, possibly having a regulatory role; (2) a gene, and (3) an AT-rich spacer, which probably is not transcribed. Recombination in this genome appears to underlie a number of important phenomena. The organization of the mitochondrial genome of yeast and these recombinational events are discussed in relationship with the organization and evolution of the nuclear genome of eukaryotes. 相似文献
10.
The sequence,organization, and evolution of the Locusta migratoria mitochondrial genome 总被引:1,自引:0,他引:1
The sequencing of the cloned Locusta migratoria mitochondrial genome has been completed. The sequence is 15,722 by in length and contains 75.3% A+T, the lowest value in any of the five insect mitochondrial sequences so far determined. The protein coding genes have a similar A+T content (74.1%) but are distinguished by a high cytosine content at the third codon position. The gene content and organization are the same as in Drosophila yakuba except for a rearrangement of the two tRNA genes tRNAlys and tRNAasp. The A+T-rich region has a lower A+T nucleotide content than in other insects, and this is largely due to the presence of two G+C-rich 155-bp repetitive sequences at the 5 end of this section and the beginning of the adjacent small rRNA gene. The sizes of the large and small rRNA genes are 1,314 and 827 bp, respectively, and both sequences can be folded to form secondary structures similar to those previously predicted for Drosophila. The tRNA genes have also been modeled and these show a strong resemblance to the dipteran tRNAs, all anticodons apparently being conserved between the two species. A comparison of the protein coding nucleotide sequences of the locust DNA with the homologous sequences of five other arthropods (Drosophila yakuba, Anopheles quadrimaculatus, Anopheles gambiae, Apis mellifera, and Artemia franciscana) was performed. The amino acid composition of the encoded proteins in Locusta is similar to that of Drosophila, with a Dayhoff distance twice that of the distance between the fruit fly and the mosquitoes. A phylogenetic analysis revealed the locust genes to be more similar to those of the Dipterans than to those of the honeybee at both the nucleotide and amino acid levels. A comparative analysis of tRNA orders, using crustacean mtDNAs as outgroups, supported this. This high level of divergence in the Apis genome has been noted elsewhere and is possibly an effect of directional mutation pressure having resulted in an accelerated pattern of sequence evolution. If the general assumption that the Holometabola are monophyletic holds, then these results emphasize the difficulties of reconstructing phylogenies that include lineages with variable substitution rates and base composition biases. The need to exercise caution in using information about tRNA gene orders in phylogenetic analysis is also illustrated. However, if the honeybee sequence is excluded, the correspondence between the other five arthropod sequences supports the findings of previous studies which have endorsed the use of mtDNA sequences for studies of phylogeny at deep levels of taxonomy when mutation rates are equivalent.
Correspondence to: P.K. Flook 相似文献
11.
The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. The genome contains no introns involved in recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA; and (3) the noncoding regulatory region (A + T region). The selective importance of mutations within different mtDNA regions is therefore unequal. In Drosophila, the content of the A + T pairs in mtDNA is extremely low and a pattern of nucleotide substitution is characterized by a low transition/transversion ratio (and a low threshold of mutation saturation). The deletions and duplications are of common occurrence in the mitochondrial genome. However, this genome lacks such characteristic for the nuclear genome aberrations as the inversions and transpositions. The phenomena of introgression and heteroplasmy provide an opportunity to study the adaptive role of the mitochondrial genome and its role in speciation. Analysis of evidence concerning mtDNA variation in different species of the genus Drosophila made it possible to ascertain data on phylogenetic relationships among species obtained by studying nuclear genome variation. In some species, mtDNA variation may serve as a reliable marker for population differentiation within a species, although evidence on the population dynamics of the mtDNA variation is very scarce. 相似文献
12.
Pseudogenes are nonfunctional copies of protein-coding genes that are presumed to evolve without selective constraints on their coding function. They are of considerable utility in evolutionary genetics because, in the absence of selection, different types of mutations in pseudogenes should have equal probabilities of fixation. This theoretical inference justifies the estimation of patterns of spontaneous mutation from the analysis of patterns of substitutions in pseudogenes. Although it is possible to test whether pseudogene sequences evolve without constraints for their protein-coding function, it is much more difficult to ascertain whether pseudogenes may affect fitness in ways unrelated to their nucleotide sequence. Consider the possibility that a pseudogene affects fitness merely by increasing genome size. If a larger genome is deleterious--for example, because of increased energetic costs associated with genome replication and maintenance--then deletions, which decrease the length of a pseudogene, should be selectively advantageous relative to insertions or nucleotide substitutions. In this article we examine the implications of selection for genome size relative to small (1-400 bp) deletions, in light of empirical evidence pertaining to the size distribution of deletions observed in Drosophila and mammalian pseudogenes. There is a large difference in the deletion spectra between these organisms. We argue that this difference cannot easily be attributed to selection for overall genome size, since the magnitude of selection is unlikely to be strong enough to significantly affect the probability of fixation of small deletions in Drosophila. 相似文献
13.
线粒体基因组的遗传与进化研究进展 总被引:9,自引:0,他引:9
线粒体基因组是当前生命科学的热门话题之一。文章根据国内外有关线粒体DNA的结构、表达过程和遗传特征方面的最新研究成果,重点介绍线粒体基因组与核基因组关系、线粒体遗传密码及基因组的进货线索等问题,并简要说明了线粒体基因组遗传分析的要点。 相似文献
14.
Mitochondrial DNA data have been used extensively to study evolution and early human origins. These applications require estimates of the rate at which nucleotide substitutions occur in the DNA sequence. We consider the problem of estimating substitution rates in the presence of site-to-site rate variation. A coalescent model is presented that allows for different substitution rates for purines and pyrimidines, as well as more detailed models that allow fast and slow rates within each of the purine and pyrimidine classes. A method for estimating such rates is presented. Even for these simple models of site heterogeneity, there are, typically, insufficient data to obtain reliable estimates of site-specific substitution rates. However, estimates of the average rate across all sites appear to be relatively stable even in the presence of site heterogeneity. Simulations of models with site-to-site variation in mutation rate show that hypervariable sites can produce peaks in the pairwise difference curves that have previously been attributed to population dynamics. 相似文献
15.
Background
Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change.Methodology/Principal Findings
We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses.Conclusions/Significance
Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast genomes in grasses is consistent with lineage effects. 相似文献16.
Among the Chalcidoids, hymenopteran parasitic wasps that have diversified lifestyles, a partial mitochondrial genome has been reported only from Nasonia. This genome had many unusual features, especially a dramatic reorganization and a high rate of evolution. Comparisons based on more mitochondrial genomic data from the same superfamily were required to reveal weather these unusual features are peculiar to Nasonia or not. In the present study, we sequenced the nearly complete mitochondrial genomes from the species Philotrypesis. pilosa and Philotrypesis sp., both of which were associated with Ficus hispida. The acquired data included all of the protein-coding genes, rRNAs, and most of the tRNAs, and in P. pilosa the control region. High levels of nucleotide divergence separated the two species. A comparison of all available hymenopteran mitochondrial genomes (including a submitted partial genome from Ceratosolen solmsi) revealed that the Chalcidoids had dramatic mitochondrial gene rearrangments, involved not only the tRNAs, but also several protein-coding genes. The AT-rich control region was translocated and inverted in Philotrypesis. The mitochondrial genomes also exhibited rapid rates of evolution involving elevated nonsynonymous mutations. 相似文献
17.
Rapid concerted evolution in animal mitochondrial DNA 总被引:4,自引:0,他引:4
Tatarenkov A Avise JC 《Proceedings. Biological sciences / The Royal Society》2007,274(1619):1795-1798
Recombinational genetic processes are thought to be rare in the uniparentally inherited mitochondrial (mt) DNA molecules of vertebrates and other animals. Here, however, we document extremely rapid concerted microevolution, probably mediated by frequent gene conversion events, of duplicated sequences in the mtDNA control region of mangrove killifishes (Kryptolebias marmoratus). In local populations, genetic distances between paralogous loci within an individual were typically smaller (and often zero) than those between orthologous loci in different specimens. These findings call for the recognition of concerted evolution as a microevolutionary process and gene conversion as a likely recombinational force in animal mtDNA. The previously unsuspected power of these molecular phenomena could greatly impact mtDNA dynamics within germ cell lineages and in local animal populations. 相似文献
18.
19.
We examined mitochondrial DNA polymorphisms via the analysis of restriction fragment length polymorphisms in three closely related species of pines from western North America: knobcone (Pinus attenuata Lemm.), Monterey (P. radiata D. Don), and bishop (P. muricata D. Don). A total of 343 trees derived from 13 populations were analyzed using 13 homologous mitochondrial gene probes amplified from three species by polymerase chain reaction. Twenty-eight distinct mitochondrial DNA haplotypes were detected and no common haplotypes were found among the species. All three species showed limited variability within populations, but strong differentiation among populations. Based on haplotype frequencies, genetic diversity within populations (HS) averaged 0.22, and population differentiation (GST and theta) exceeded 0.78. Analysis of molecular variance also revealed that >90% of the variation resided among populations. For the purposes of genetic conservation and breeding programs, species and populations could be readily distinguished by unique haplotypes, often using the combination of only a few probes. Neighbor-joining phenograms, however, strongly disagreed with those based on allozymes, chloroplast DNA, and morphological traits. Thus, despite its diagnostic haplotypes, the genome appears to evolve via the rearrangement of multiple, convergent subgenomic domains. 相似文献
20.
The whole mitochondrial genome of Hucho taimen was firstly sequenced and characterized. The genome is 16,833 bp in length and contains 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a noncoding control region. Twelve protein-coding genes on the heavy strand showed that the content of A+T was higher than that of G+C, whereas the nd6 protein-coding gene on the light strand displayed an opposite pattern. We described the secondary structure of the origin of light strand (oriL) replication and found that the conserved 5'-GCCGG-3' sequence motif is variable in H. taimen and some other salmonids. We conclude that the control region is variable in length and represents the high A+T content, compared with other mitochondrial control regions available in Salmonidae and other non-salmonids. Additionally, another interesting feature of H. taimen mitogenome is that a T-type mononucleotide microsatellite and an 82 bp tandem repeat were identified in the control region. 相似文献