首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of ATP P(2x) receptors in the subpostremal nucleus tractus solitarii (NTS) via microinjection of alpha,beta-methylene ATP (alpha,beta-MeATP) elicits fast initial depressor and sympathoinhibitory responses that are followed by slow, long-lasting inhibitory effects. Activation of NTS adenosine A(2a) receptors via microinjection of CGS-21680 elicits slow, long-lasting decreases in arterial pressure and renal sympathetic nerve activity (RSNA) and an increase in preganglionic adrenal sympathetic nerve activity (pre-ASNA). Both P(2x) and A(2a) receptors may operate via modulation of glutamate release from central neurons. We investigated whether intact glutamatergic transmission is necessary to mediate the responses to NTS P(2x) and A(2a) receptor stimulation. The hemodynamic and neural (RSNA and pre-ASNA) responses to microinjections of alpha,beta-MeATP (25 pmol/50 nl) and CGS-21680 (20 pmol/50 nl) were compared before and after pretreatment with kynurenate sodium (KYN; 4.4 nmol/100 nl) in chloralose-urethan-anesthetized male Sprague-Dawley rats. KYN virtually abolished the fast responses to alpha,beta-MeATP and tended to enhance the slow component of the neural responses. The depressor responses to CGS-21680 were mostly preserved after pretreatment with KYN, although the increase in pre-ASNA was reduced by one-half following the glutamatergic blockade. We conclude that the fast responses to stimulation of NTS P(2x) receptors are mediated via glutamatergic ionotropic mechanisms, whereas the slow responses to stimulation of NTS P(2x) and A(2a) receptors are mediated mostly via other neuromodulatory mechanisms.  相似文献   

2.
Previously we have shown that adenosine operating via the A(1) receptor subtype may inhibit glutamatergic transmission in the baroreflex arc within the nucleus of the solitary tract (NTS) and differentially increase renal (RSNA), preganglionic adrenal (pre-ASNA), and lumbar (LSNA) sympathetic nerve activity (ASNA>RSNA≥LSNA). Since the cardiopulmonary chemoreflex and the arterial baroreflex are mediated via similar medullary pathways, and glutamate is a primary transmitter in both pathways, it is likely that adenosine operating via A(1) receptors in the NTS may differentially inhibit regional sympathetic responses evoked by activation of cardiopulmonary chemoreceptors. Therefore, in urethane-chloralose-anesthetized rats (n = 37) we compared regional sympathoinhibition evoked by the cardiopulmonary chemoreflex (activated with right atrial injections of serotonin 5HT(3) receptor agonist phenylbiguanide, PBG, 1-8 μg/kg) before and after selective stimulation of NTS A(1) adenosine receptors [microinjections of N(6)-cyclopentyl adenosine (CPA), 0.033-330 pmol/50 nl]. Activation of cardiopulmonary chemoreceptors evoked differential, dose-dependent sympathoinhibition (RSNA>ASNA>LSNA), and decreases in arterial pressure and heart rate. These differential sympathetic responses were uniformly attenuated in dose-dependent manner by microinjections of CPA into the NTS. Volume control (n = 11) and blockade of adenosine receptor subtypes in the NTS via 8-(p-sulfophenyl)theophylline (8-SPT, 1 nmol in 100 nl) (n = 9) did not affect the reflex responses. We conclude that activation of NTS A(1) adenosine receptors uniformly inhibits neural and cardiovascular cardiopulmonary chemoreflex responses. A(1) adenosine receptors have no tonic modulatory effect on this reflex under normal conditions. However, when adenosine is released into the NTS (i.e., during stress or severe hypotension/ischemia), it may serve as negative feedback regulator for depressor and sympathoinhibitory reflexes integrated in the NTS.  相似文献   

3.
Interruption of the baroreceptor reflex by transection of afferent nerves (sinoaortic denervation; SAD) or lesions of nucleus tractus solitarius (NTS) elevates sympathetic nerve activity (SNA) and arterial pressure (AP). However, within 1 wk, mean AP returns to normal despite the absence of baroreflexes. In this study, we examine central mechanisms that control AP in chronic baroreceptor-denervated rats. In urethane-anesthetized rats (1.5 g/kg i.v.) after autonomic ganglionic blockade (5 mg/kg i.v. chlorisondamine), alpha1-adrenergic-mediated pressor responses (1-100 microg/kg i.v. phenylephrine) were not altered by chronic lesions of NTS, indicating vascular reactivity to sympathetic stimulation is normal. Transection of the spinal cord at T1 profoundly decreased AP and was not further reduced by chlorisondamine in control or denervated rats. Inhibition of the rostral ventrolateral medulla (RVLM) by microinjections of muscimol (100 pmol/side) decreased AP to levels not further reduced by chlorisondamine in control rats, rats with SAD, and rats with NTS lesions. Blockade of GABA(A) receptors in the RVLM (50 pmol/side bicuculline) increased AP similarly in control rats and denervated rats. In agreement, inhibition of the caudal ventrolateral medulla (CVLM) by microinjections of muscimol or blockade of glutamatergic inputs (2.7 nmol/side kynurenate) produced comparable increases in AP in control and denervated rats. These data suggest the RVLM continues to drive the SNA that regulates AP in the chronic absence of baroreceptor inputs. In addition, despite the absence of a tonic excitatory input from NTS, in chronic baroreceptor-denervated rats glutamatergic inputs drive the CVLM to tonically inhibit the RVLM. Baroreceptor-independent regulation of the ventrolateral medulla may underlie central mechanisms contributing to the long-term control of AP.  相似文献   

4.
Chronic exposure to intermittent hypoxia (CIH) has been used in animals to mimic the arterial hypoxemia that accompanies sleep apnea. Humans with sleep apnea and animals exposed to CIH have elevated blood pressures and augmented sympathetic nervous system responses to acute exposures to hypoxia. To test the hypothesis that exposure to CIH alters neurons within the nucleus of the solitary tract (NTS) that integrate arterial chemoreceptor afferent inputs, we measured whole cell currents induced by activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in enzymatically dispersed NTS neurons from normoxic (NORM) and CIH-exposed rats (alternating cycles of 3 min at 10% O2 followed by 3 min at 21% O2 between 8 AM and 4 PM for 7 days). To identify NTS neurons receiving carotid body afferent inputs the anterograde tracer 4- (4-(dihexadecylamino)styryl-N-methylpyridinum iodide (DiA) was placed onto the carotid body 1 wk before exposure to CIH. AMPA dose-response curves had similar EC50 but maximal responses increased in neurons isolated from DiA-labeled CIH (20.1 +/- 0.8 microM, n = 9) compared with NORM (6.0 +/- 0.3 microM, n = 8) rats. NMDA dose-response curves also had similar EC50 but maximal responses decreased in CIH (8.4 +/- 0.4 microM, n = 8) compared with NORM (19.4 +/- 0.6 microM, n = 9) rats. These results suggest reciprocal changes in the number and/or conductance characteristics of AMPA and NMDA receptors. Enhanced responses to AMPA receptor activation could contribute to enhanced chemoreflex responses observed in animals exposed to CIH and humans with sleep apnea.  相似文献   

5.
Autospectral and coherence analyses were used to determine the effect of paraventricular nucleus (PVN) GABA(A) receptor antagonism [microinfusion or microinjections of bicuculline methiodide (BMI) 100 pmoles] on sympathetic nerve discharge (SND) frequency components (bursting pattern and relationships between discharges in regionally selective nerves) in alpha-chloralose-anesthetized rats. SND was recorded from the renal, splenic, and lumbar nerves. The following observations were made. First, PVN BMI microinjections, but not PVN saline or cortical BMI microinjections, transformed the cardiac-related SND bursting pattern in baroreceptor-innervated rats to one characterized by the presence of low-frequency bursts not synchronized to the cardiac cycle or phrenic nerve discharge bursts. Second, SND pattern changes were similar in the renal, splenic, and lumbar nerves, and peak coherence values relating low-frequency bursts in sympathetic nerve pairs (renal-splenic, renal-lumbar, and splenic-lumbar) were significantly increased from preinjection control after PVN BMI microinjection. Third, PVN BMI microinjections significantly increased the coupling between low-frequency SND bursts in baroreceptor-denervated rats. Finally, PVN BMI-induced changes in the SND bursting pattern were not observed after PVN pretreatment with muscimol (GABA agonist, 1 nmole). We conclude that PVN GABA(A) receptor antagonism profoundly alters the frequency components in sympathetic nerves.  相似文献   

6.
The caudal region of the nucleus of the solitary tract (cNTS) is the primary central termination site for arterial chemoreceptor afferents originating from the carotid body. The purpose of the present study was to investigate the role of endogenous activation of alpha-2 adrenoreceptors in the cNTS on arterial chemoreflex function. Arterial chemoreflex responses to intravenous injections of potassium cyanide (KCN; 75 microg/kg) were recorded before and following blockade of alpha-2 adrenoreceptors in the cNTS of urethane-anesthetized rats. KCN alone elicited a reflex increase in arterial pressure, renal sympathetic nerve activity, and respiration. After bilateral cNTS microinjection of alpha-2 receptor antagonists (2 nmol idazoxan or 0.2 nmol yohimbine), arterial chemoreflex responses were markedly attenuated. Attenuation of chemoreflex function was not accompanied by any significant change in resting blood pressure or respiratory rate. The results suggest that the endogenous activation of alpha-2 adrenoreceptors facilitates central processing of chemoreceptor afferent inputs in the cNTS of the rat.  相似文献   

7.
Water deprivation is associated with increased excitatory amino acid (EAA) drive of the rostral ventrolateral medulla (RVLM), but the mechanism is unknown. This study tested the hypotheses that the increased EAA activity is mediated by decreased blood volume and/or increased osmolality. This was first tested in urethane-anesthetized rats by determining whether bilateral microinjection of kynurenate (KYN, 2.7 nmol) into the RVLM decreases arterial pressure less in water-deprived rats after normalization of blood volume by intravenous infusion of isotonic saline or after normalization of plasma osmolality by intravenous infusion of 5% dextrose in water (5DW). Water-deprived rats exhibited decreased plasma volume and elevated plasma osmolality, hematocrit, and plasma sodium, chloride, and protein levels (all P < 0.05). KYN microinjection decreased arterial pressure by 24 +/- 2 mmHg (P < 0.05; n = 17). The depressor response was not altered following isotonic saline infusion but, while still present (P < 0.05), was reduced (P < 0.05) to -13 +/- 2 mmHg soon after 5DW infusion. These data suggest that the high osmolality, but not low blood volume, contributes to the KYN depressor response. To further investigate the action of increased osmolality on EAA input to RVLM, water-replete rats were also studied after hypertonic saline infusion. Whereas KYN microinjection did not decrease pressure immediately following the infusion, a depressor response gradually developed over the next 3 h. Lumbar sympathetic nerve activity also gradually increased to up to 167 +/- 19% of control (P < 0.05) 3 h after hypertonic saline infusion. In conclusion, acute and chronic increases in osmolality appear to increase EAA drive of the RVLM.  相似文献   

8.
We recorded changes in right inferior cardiac and either left inferior cardiac or left vertebral sympathetic nerve discharge (SND) produced by unilateral microinjections of GABA-A and excitatory amino acid (EAA) receptor antagonists into the ventrolateral medulla (VLM) of urethane-anesthetized, baroreceptor-denervated cats. Unilateral microinjections of GABA-A receptor antagonists, SR-95531 or bicuculline, into single tracks in VLM anywhere between 1 and 5 mm rostral to the obex eliminated or markedly reduced 10-Hz power in SND on both sides of the body. Low-frequency components (<6 Hz) of SND were unaffected. Complete blockade of the 10-Hz rhythm occurred with a dose of SR-95531 as low as 6.25 pmol in a 50-nl volume. Unilateral microinjections of the nonselective EAA receptor antagonist, kynurenate (KYN; 7.5 nmol), into the caudal or rostral VLM significantly reduced, but did not eliminate, 10-Hz SND ipsilateral to the injection sites, while 10-Hz SND contralateral to the injection sites was not significantly changed. These observations suggest that 1) GABAergic transmission in VLM is critical for generation of the 10-Hz rhythm, 2) the caudal and rostral portions of VLM act together to generate the 10-Hz rhythm, and 3) 10-Hz rhythm generation depends, at least in part, on tonic or phasic excitatory drive to GABAergic interneurons in caudal VLM and presympathetic neurons in rostral VLM. The data also suggest that pathways interconnecting the two halves of the brain stem play an important role in promoting 10-Hz rhythm generation.  相似文献   

9.
We examined the effect of alpha(2)-adrenoreceptor blockade in the nucleus of the solitary tract (NTS) on baroreflex responses elicited by electrical stimulation of the left aortic depressor nerve (ADN) in urethane-anesthetized spontaneously hypertensive rats (SHR, n = 11) and normotensive Wistar-Kyoto rats (WKY, n = 11). ADN stimulation produced a frequency-dependent decrease in mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and heart rate (HR). In SHR, unilateral microinjection of idazoxan into the NTS markedly reduced baroreflex control of MAP, RSNA, and HR and had a disproportionately greater influence on baroreflex control of MAP than of RSNA. In WKY, idazoxan microinjections did not significantly alter baroreflex function relative to control vehicle injections. These results suggest that baroreflex regulation of arterial pressure in SHR is highly dependent on NTS adrenergic mechanisms. The reflex regulation of sympathetic outflow to the kidney is less influenced by the altered alpha(2)-adrenoreceptor mechanisms in SHR.  相似文献   

10.
Exercise training (ExTr) has been associated with blunted activation of the sympathetic nervous system in several animal models and in some human studies. Although these data are consistent with the hypothesis that ExTr reduces the incidence of cardiovascular diseases via reduced sympathoexcitation, the mechanisms are unknown. The rostral ventrolateral medulla (RVLM) is important in control of sympathetic nervous system activity in both physiological and pathophysiological states. The purpose of the present study was to test the hypothesis that ExTr results in reduced sympathoexcitation mediated at the level of the RVLM. Male Sprague-Dawley rats were treadmill trained or remained sedentary for 8-10 wk. RVLM microinjections were performed under Inactin anesthesia while mean arterial pressure, heart rate, and lumbar sympathetic nerve activity (LSNA) were recorded. Bilateral microinjections of the GABA(A) antagonist bicuculline (5 mM, 90 nl) into the RVLM increased LSNA in sedentary animals (169 +/- 33%), which was blunted in ExTr animals (100 +/- 22%, P < 0.05). Activation of the RVLM with unilateral microinjections of glutamate (10 mM, 30 nl) increased LSNA in sedentary animals (76 +/- 13%), which was also attenuated by training (26 +/- 2%, P < 0.05). Bilateral microinjections of the ionotropic glutamate receptor antagonist kynurenate (40 mM, 90 nl) produced small increases in mean arterial pressure and LSNA that were similar between groups. Results suggest that ExTr may reduce increases in LSNA due to reduced activation of the RVLM. Conversely, we speculate that the relatively enhanced activation of LSNA in sedentary animals may be related to the increased incidence of cardiovascular disease associated with a sedentary lifestyle.  相似文献   

11.
We have shown recently that cholecystokinin octapeptide (CCK-8s) increases glutamate release from nerve terminals onto neurons of the nucleus tractus solitarius pars centralis (cNTS). The effects of CCK on gastrointestinal-related functions have, however, been attributed almost exclusively to its paracrine action on vagal afferent fibers. Because it has been reported that systemic or perivagal capsaicin pretreatment abolishes the effects of CCK, the aim of the present work was to investigate the response of cNTS neurons to CCK-8s in vagally deafferented rats. In surgically deafferented rats, intraperitoneal administration of 1 or 3 mug/kg CCK-8s increased c-Fos expression in cNTS neurons (139 and 251% of control, respectively), suggesting that CCK-8s' effects are partially independent of vagal afferent fibers. Using whole cell patch-clamp techniques in thin brain stem slices, we observed that CCK-8s increased the frequency of spontaneous and miniature excitatory postsynaptic currents in 43% of the cNTS neurons via a presynaptic mechanism. In slices from deafferented rats, the percentage of cNTS neurons receiving glutamatergic inputs responding to CCK-8s decreased by approximately 50%, further suggesting that central terminals of vagal afferent fibers are not the sole site for the action of CCK-8s in the brain stem. Taken together, our data suggest that the sites of action of CCK-8s include the brain stem, and in cNTS, the actions of CCK-8s are not restricted to vagal central terminals but that nonvagal synapses are also involved.  相似文献   

12.
Rats exposed chronically to a cold environment (5 degrees C/4 degrees F) develop hypertension. This cold-induced hypertension (CIH) is a non-genetic, non-pharmacological, non-surgical model of environmentally induced hypertension in rats. The renin-angiotensin system (RAS) appears to play a role in both initiating and/or maintaining the high blood pressure in CIH. The goal of the present study was to evaluate the role of central and peripheral circulating RAS components, angiotensinogen (AGT), angiotensin-converting enzyme (ACE) and angiotensin (Ang) II, in CIH. Seventy-two Sprague-Dawley adult male rats were used. Thirty-six rats were kept in cold room at 5 degrees C while the other 36 were at 24 degrees C as controls for 5 weeks. Systolic blood pressure (SBP) was recorded by tail cuff. The SBP was increased in rats exposed to cold within 1 week, and this increase was significant for the next 2-5 weeks of the cold exposure (p<0.01). Three subgroups of the cold-treated and control rats (n=12) were sacrificed at 1, 3 and 5 weeks. The brain and liver were removed and plasma was saved. The AGT mRNA significantly increased in the hypothalamus and liver in cold-treated rats from the first week of exposure to cold, and was maintained throughout the time of exposure to cold (n=4, p<0.01). The AGT protein levels in the brain, liver and plasma did not differ significantly between cold-treated and control rats (p>0.05, n=4). The hypothalamic Ang II levels were significantly increased, whereas plasma Ang II levels significantly decreased, in the rats of 5 weeks of cold exposure (n=8, p<0.05). Plasma ACE significantly increased in the rats of 1 week of cold exposure (p<0.05, n=12). The results show differential regulation of RAS components, AGT, ACE and Ang II, between brain and periphery in cold-exposed rats. We conclude that the exposure to low temperature initially increases plasma RAS but with continuous exposure to cold, the brain RAS maintains the hypertension, probably by sustained sympathetic activation, which would provide increased metabolism but also vasoconstriction leading to hypertension.  相似文献   

13.
In obstructive sleep apnea patients, elevated activity of the lingual muscles during wakefulness protects the upper airway against occlusions. A possibly related form of respiratory neuroplasticity is present in rats exposed to acute and chronic intermittent hypoxia (CIH). Since rats exposed to CIH have increased density of noradrenergic terminals and increased α(1)-adrenoceptor immunoreactivity in the hypoglossal (XII) nucleus, we investigated whether these anatomic indexes of increased noradrenergic innervation translate to increased sensitivity of XII motoneurons to noradrenergic activation. Adult male Sprague-Dawley rats were subjected to CIH for 35 days, with O(2) level varying between 24% and 7% with 180-s period for 10 h/day. They were then anesthetized, vagotomized, paralyzed, and artificially ventilated. The dorsal medulla was exposed, and phenylephrine (2 mM, 10 nl) and then the α(1)-adrenoceptor antagonist prazosin (0.2 mM, 3 × 40 nl) were microinjected into the XII nucleus while XII nerve activity (XIIa) was recorded. The area under integrated XIIa was measured before and at different times after microinjections. The excitatory effect of phenylephrine on XII motoneurons was similar in sham- and CIH-treated rats. In contrast, spontaneous XIIa was more profoundly reduced following prazosin injections in CIH- than sham-treated rats [to 21 ± 7% (SE) vs. 40 ± 8% of baseline, P < 0.05] without significant changes in central respiratory rate, arterial blood pressure, or heart rate. Thus, consistent with increased neuroanatomic measures of noradrenergic innervation of XII motoneurons following exposure to CIH, prazosin injections revealed a stronger endogenous noradrenergic excitatory drive to XII motoneurons in CIH- than sham-treated anesthetized rats.  相似文献   

14.
Exercise training (ExTr) has been associated with alterations in neural control of the circulation, including effects on arterial baroreflex function. The nucleus tractus solitarius (NTS) is the primary termination site of cardiovascular afferents and critical in the regulation of baroreflex-mediated changes in heart rate (HR) and sympathetic nervous system outflow. The purpose of the present study was to determine whether ExTr is associated with alterations in neurotransmitter regulation of neurons involved in control of cardiovascular function at the level of the NTS. We hypothesized that ExTr would increase glutamatergic and reduce GABAergic transmission in the NTS and that, collectively, these changes would result in a greater overall sympathoinhibitory drive from the NTS in ExTr animals. To test these hypotheses, male Sprague-Dawley rats were treadmill trained or maintained under sedentary conditions for 8-10 wk. NTS microinjections were performed in Inactin-anesthetized animals instrumented to record mean arterial pressure (MAP), HR, and lumbar sympathetic nerve activity (LSNA). Generalized activation of the NTS with unilateral microinjections of glutamate (1-10 mM, 30 nl) produced dose-dependent decreases in MAP, HR, and LSNA that were unaffected by ExTr. Bilateral inhibition of NTS with the GABAA agonist muscimol (1 mM, 90 nl) produced increases in MAP and LSNA that were blunted by ExTr. In contrast, pressor and sympathoexcitatory responses to bilateral microinjections of the ionotropic glutamate receptor antagonist, kynurenate (40 mM, 90 nl), were similar between groups. Bradycardic responses to bilateral microinjections of the GABAA antagonist bicuculline (0.1 mM, 90 nl) were attenuated by ExTr. These data indicate that alterations in neurotransmission at the level of the NTS contribute importantly to regulation of HR and LSNA in ExTr animals. In addition to alterations at NTS, these experiments suggest indirectly that changes in other cardiovascular nuclei contribute to the observed alterations in neural control of the circulation following ExTr.  相似文献   

15.
Acute isocapnic intermittent hypoxia elicits time-dependent, serotonin-dependent enhancement of phrenic motor output in anesthetized rats (phrenic long-term facilitation, pLTF). In adult rats, pLTF is enhanced by chronic intermittent hypoxia (CIH). To test the hypothesis that early postnatal CIH induces persistent modifications of ventilation and pLTF, we exposed male Sprague-Dawley rat pups on their first day of life to a CIH profile consisting of alternating room air and 10% oxygen every 90 s for 30 days during daylight hours (RAIH) or to comparable exposures consisting of room air throughout (RARA). One month after cessation of CIH, respiratory responses were recorded using whole body plethysmography, and integrated phrenic nerve activity was recorded in urethane-anesthetized, vagotomized, paralyzed, and ventilated rats at baseline and after exposures to three 5-min hypoxic episodes [inspired O2 fraction (FiO2)=0.11] separated by 5 min of hyperoxia (FiO2=0.5). RAIH rats displayed greater normoxic ventilation and also increased burst frequency compared with RARA rats (P<0.01). Ventilatory responses to hypoxia and short-term phrenic responses during acute hypoxic challenges were reduced in RAIH rats (P<0.01). Although pLTF was present in both RAIH and RARA rats, it was diminished in RAIH rats (minute activity: 74+/-2% in RARA vs. 55+/-5% in RAIH at 60 min; P<0.01). Thus we conclude that early postnatal CIH modifies normoxic and hypoxic ventilatory and phrenic responses that persist at 1 mo after cessation of CIH (i.e., metaplasticity) and markedly differ from previously reported increased neural plasticity changes induced by CIH in adult rats.  相似文献   

16.
The present study was designed to examine whether trigeminal nociceptive inputs are involved in the modulation of parasympathetic reflex vasodilation in the jaw muscles. This was accomplished by investigating the effects of noxious stimulation to the orofacial area with capsaicin, and by microinjecting GABA(A) and GABA(B) receptor agonists or antagonists into the nucleus of the solitary tract (NTS), on masseter hemodynamics in urethane-anesthetized rats. Electrical stimulation of the central cut end of the cervical vagus nerve (cVN) in sympathectomized animals bilaterally increased blood flow in the masseter muscle (MBF). Increases in MBF evoked by cVN stimulation were markedly reduced following injection of capsaicin into the anterior tongue in the distribution of the lingual nerve or lower lip, but not when injected into the skin of the dorsum of the foot. Intravenous administration of either phentolamine or propranolol had no effect on the inhibitory effects of capsaicin injection on the increases of MBF evoked by cVN stimulation, which were largely abolished by microinjecting the GABA(B) receptor agonist baclofen into the NTS. Microinjection of the GABA(B) receptor antagonist CGP-35348 into the NTS markedly attenuated the capsaicin-induced inhibition of MBF increase evoked by cVN stimulation, while microinjection of the GABA(A) receptor antagonist bicuculline did not. Our results indicate that trigeminal nociceptive inputs inhibit vagal-parasympathetic reflex vasodilation in the masseter muscle and suggest that the activation of GABA(B) rather than GABA(A) receptors underlies the observed inhibition in the NTS.  相似文献   

17.
We previously demonstrated that diuretic-induced hypovolemia resulted in an enhanced baroreflex-mediated increase in integrated muscle sympathetic nerve activity (MSNA) and vasomotor tone during lower body negative pressure (LBNP) (Am J Physiol Heart Circ Physiol 282: H645-H655, 2002). The purpose of this study was to perform a retrospective analysis of these data and examine the ability of relative MSNA burst amplitude distributions to highlight differences in baseline sympathetic nerve discharge patterns. An additional purpose was to determine whether differential responses in MSNA burst frequency and burst amplitude affect conclusions regarding sympathetic reflex control. MSNA, stroke volume (SV, Doppler), and estimated central venous pressure (CVP, dependent arm technique) were measured during LBNP within the placebo (Normo) and diuretic (Hypo; 100 mg/day spironolactone for 3 days) conditions (n = 8). Compared with Normo, MSNA burst frequency at rest was elevated, and there was a rightward shift in the median of the relative burst amplitude distribution (P < 0.05) in Hypo. During LBNP, the larger rise in total MSNA during Hypo versus Normo was due to greater increases in relative burst amplitude with no difference in the burst frequency response. The MSNA burst frequency response to LBNP was shifted to a higher position on the same MSNA-CVP curve during Hypo compared with Normo. In contrast, the Hypo burst amplitude response was shifted to a new curve with a slope that was similar to the Normo relationship. These data support the use of probability distribution analysis to examine intraindividual differences in baseline and reflex-mediated increases in MSNA burst amplitude. Furthermore, the differential effect of hypovolemia on the responses of burst frequency and amplitude during graded LBNP suggests that burst frequency data alone may not adequately represent reflex control of sympathetic outflow.  相似文献   

18.
Current evidence suggests that the persistent sympathetic nerve activity (SNA), commonly observed after exposure to hypoxia (HX), is mediated by chemoreceptor sensitization and or baroreflex resetting. Evidence in humans and animals suggests that these reflexes may independently regulate the frequency (gating) and amplitude (neuronal recruitment) of SNA bursts. In humans (n = 7), we examined the regulation of SNA following acute isocapnic HX (5 min; end-tidal Po(2) = 45 Torr) and euoxic hypercapnia (HC; 5 min; end-tidal Pco(2) = +10 from baseline). HX increased SNA burst frequency (21 ± 7 to 28 ± 8 bursts/min, P < 0.05) and amplitude (99 ± 10 to 125 ± 19 au, P < 0.05) as did HC (14 ± 6 to 22 ± 10 bursts/min, P < 0.05 and 100 ± 12 to 133 ± 29 au, P < 0.05, respectively). Burst frequency (26 ± 7 bursts/min, P < 0.05), but not amplitude (97 ± 12 au), remained elevated 10 min post-HX. The change in burst amplitude (but not frequency) was significantly related to the measured change in ventilation (r(2) = 0.527, P < 0.001). Both frequency and amplitude decreased during recovery following HC. These data indicate the differential regulation of pattern and magnitude of sympathetic outflow in humans with sympathetic persistence following HX being specific to burst frequency and not amplitude.  相似文献   

19.
In the present study, the changes of amino acids release in the spinal cord after the application of angiotensin II (ANG II) in the rostral ventrolateral medulla (RVLM) and the distribution of ANG receptors on neurons of the RVLM were investigated. A microdialysis experiment showed that microinjection of angiotensin II into the RVLM significantly (P < 0.01) increased the release of aspartate and glutamate in the intermediolateral column of the spinal cord. Immunofluorescence technique combined with confocal microscopy demonstrated that most of the glutamatergic and GABAergic neurons in the RVLM of both Wistar and spontaneously hypertensive rats (SHR) were double labeled with ANG type 1 (AT1) receptor. Immunocytochemical studies demonstrated that the mean optic density of AT1 receptor of the cell surface as well as the whole cell was higher (P < 0.05) in SHR than that in Wistar rats, indicating that the higher expression of AT1 receptors in the RVLM may contribute to the higher responsiveness of SHR to ANG II stimulation. Immunogold staining and electronmicroscopic study demonstrated that AT1 receptor in the RVLM was distributed on the rough endoplasmic reticulum, cell membrane, and nerve processes. The results suggest that effects evoked by ANG II in the RVLM are closely related to glutamatergic and GABAergic pathways. These results indirectly support the hypothesis that ANG II in the RVLM may activate vasomotor sympathetic glutamatergic neurons, leading to an increase in sympathetic nerve activity and arterial blood pressure.  相似文献   

20.
Previously we showed that pressor and differential regional sympathoexcitatory responses (adrenal > renal >/= lumbar) evoked by stimulation of A(1) adenosine receptors located in the nucleus of the solitary tract (NTS) were attenuated/abolished by baroreceptor denervation or blockade of glutamatergic transmission in the NTS, suggesting A(1) receptor-elicited inhibition of glutamatergic transmission in baroreflex pathways. Therefore we tested the hypothesis that stimulation of NTS A(1) adenosine receptors differentially inhibits/resets baroreflex responses of preganglionic adrenal (pre-ASNA), renal (RSNA), and lumbar (LSNA) sympathetic nerve activity. In urethane-chloralose-anesthetized male Sprague-Dawley rats (n = 65) we compared baroreflex-response curves (iv nitroprusside and phenylephrine) evoked before and after bilateral microinjections into the NTS of A(1) adenosine receptor agonist (N(6)-cyclopentyladenosine, CPA; 0.033-330 pmol/50 nl). CPA evoked typical dose-dependent pressor and differential sympathoexcitatory responses and similarly shifted baroreflex curves for pre-ASNA, RSNA, and LSNA toward higher mean arterial pressure (MAP) in a dose-dependent manner; the maximal shifts were 52.6 +/- 2.8, 48.0 +/- 3.6, and 56.8 +/- 6.7 mmHg for pre-ASNA, RSNA, and LSNA, respectively. These shifts were not a result of simple baroreceptor resetting because they were two to three times greater than respective increases in baseline MAP evoked by CPA. Baroreflex curves for pre-ASNA were additionally shifted upward: the maximal increases of upper and lower plateaus were 41.8 +/- 16.4% and 45.3 +/- 8.7%, respectively. Maximal gain (%/mmHg) measured before vs. after CPA increased for pre-ASNA (3.0 +/- 0.6 vs. 4.9 +/- 1.3), decreased for RSNA (4.1 +/- 0.6 vs. 2.3 +/- 0.3), and remained unaltered for LSNA (2.1 +/- 0.2 vs. 2.0 +/- 0.1). Vehicle control did not alter the baroreflex curves. We conclude that the activation of NTS A(1) adenosine receptors differentially inhibits/resets baroreflex control of regional sympathetic outputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号