首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reciprocal relationship exists between the cytochrome P-450 content and delta-aminolaevulinate synthetase activity in adult rats. In young rats the basal delta-aminolaevulinate synthetase activity is higher and the cytochrome P-450 content is lower compared with the adult rat liver. Administration of allylisopropylacetamide neither induces the enzyme nor causes degradation of cytochrome P-450 in the young rat liver, unlike adult rat liver. Allylisopropylacetamide fails to induce delta-aminolaevulinate synthetase in adrenalectomized-ovariectomized animals or intact animals pretreated with successive doses of the drug, in the absence of cortisol. The cortisol-mediated induction of the enzyme is sensitive to actinomycin D. Allylisopropylacetamide administration degrades microsomal haem but not nuclear haem. Haem does not counteract the decrease in cytochrome P-450 content caused by allylisopropylacetamide administration, but there is evidence for the formation of drug-resistant protein-bound haem in liver microsomal material under these conditions. Phenobarbital induces delta-aminolaevulinate synthetase under conditions when there is no breakdown of cytochrome P-450. On the basis of these results and those already published, a model is proposed for the regulation of delta-aminolaevulinate synthetase induction in rat liver.  相似文献   

2.
The activity of delta-aminolaevulinate synthetase is generally regarded as rate-limiting for hepatic haem biosynthesis. It has been suggested that cytochrome synthesis may also be regulated by changes in delta-aminolaevulinate synthetase activity. This hypothesis was studied by injecting product, delta-aminolaevulinate, into adult rats over a 4-240h period. The concentrations of hepatic mitochondrial cytochromes a, b, c and c(1) were unchanged by treatment with delta-aminolaevulinate, allylisopropylacetamide or phenobarbital. In control animals, total microsomal haem content equalled the sum of cytochromes b(5) plus P-450. After delta-aminolaevulinate administration the total amount of microsomal haem, measured as the pyridine haemochromogen, exceeded these components, indicating the formation of a ;free' haem pool. Haem synthesis does not appear rate-limiting for hepatic cytochrome synthesis in the adult rat.  相似文献   

3.
Acute fluroxene treatment of male Wistar rats decreases the amounts of hepatic microsomal cytochrome P-450 and haem, increases the activities of hepatic delta-aminolaevulinate synthase and haem oxygenase, and increases the amounts of haem precursors (delta-aminolaevulinate and porphobilinogen) in the urine. All of the above effects of fluroxene are enhanced by pretreatment of the experimental animals with 3-methylcholanthrene and phenobarbital. The amounts of porphyrins in the urine and faeces were generally unaffected by acute fluroxene treatment of uninduced or 3-methylcholanthrene- or phenobarbital-induced Wistar rats. 2,2,2-Trifluoroethyl ethyl ether, the saturated analogue of fluroxene, did not affect the amounts of hepatic cytochrome P-450 and haem, the amounts of any of the haem precursors in the urine or faeces, or the activity of hepatic haem oxygenase in phenobarbital-induced male Wistar rats. The amounts of hepatic cytochrome P-450 and haem and of the haem precursors in urine and faeces, and the activity of delta-aminolaevulinate synthase, were generally not altered by acute fluroxene treatment of uninduced male Long-Evans rats. Chronic treatment of Wistar rats with fluroxene resulted in small increases in the amounts of delta-aminolaevulinate and porphyrins in urine. The amounts of porphobilinogen in urine were elevated up to 2000%, whereas the amounts of the porphyrins in faeces were generally unaffected. After chronic fluroxene treatment, the activity of delta-aminolaevulinate synthase was increased, whereas the activity of uroporphyrinogen synthase was decreased. It is concluded that acute fluroxene treatment may affect haem biosynthesis and degradation by a mechanism similar to allylisopropylacetamide, namely by stimulating an atypical cytochrome P-450-dependent pathway for haem degradation. The effects of chronic fluroxene treatment on haem biosynthesis may be a consequence of this mechanism or a result of the inhibition by fluroxene of uroporphyrinogen synthase. Chronic fluroxene treatment of male rats affects the haem biosynthetic pathway in a manner similar to that seen in human genetic acute intermittent porphyria.  相似文献   

4.
The porphyrinogenic drug 2-allyl-2-isopropylacetamide causes the degradation of microsomal cytochrome P-450 and inhibits the synthesis of catalase in rat liver. The inhibition of catalase synthesis follows the induction of delta-aminolaevulinate synthetase and the consequent overproduction of haem. The allylisopropylacetamide-mediated breakdown of cytochrome P-450 is a rapid event and has a reciprocal relationship to the pattern of delta-aminolaevulinate synthetase induction. Breakdown of cytochrome P-450 appears to be one of the conditions leading to the ;derepression' of delta-aminolaevulinate synthetase.  相似文献   

5.
Degradation of intrinsic hepatic [(14)C]haem was analysed as (14)CO formation in living rats and in hepatic microsomal fractions prepared from these animals 16h after pulse-labelling with 5-amino[5-(14)C]laevulinic acid, a precursor that labels bridge carbons of haem in non-erythroid tissues. NADPH-catalysed peroxidation of microsomal lipids in vitro (measured as malondialdehyde) was accompanied by loss of cytochrome P-450 and microsome-associated [(14)C]haem (largely cytochrome P-450 haem), but little (14)CO formation. No additional (14)CO was formed when carbon tetrachloride and 2-allyl-2-isopropylacetamide were added to stimulate lipid peroxidation and increase loss of cytochrome P-450 [(14)C]haem. Because the latter effect persisted despite inhibition of lipid peroxidation with MnCl(2) or phenyl-t-butylnitrone(a spin-trapping agent for free radicals), it was concluded that carbon tetrachloride, as reported for 2-allyl-2-isopropylacetamide, may promote loss of cytochrome P-450 haem through a non-CO-forming mechanism independent of lipid peroxidation. By comparison with breakdown of intrinsic haem, catabolism of [(14)C]methaemalbumin by microsomal haem oxygenase in vitro produced equimolar quantities of (14)CO and bilirubin, although these catabolites reflected only 18% of the degraded [(14)C]haem. This value was increased to 100% by addition of MnCl(2), which suggests that lipid peroxidation may be involved in degradation of exogenous haem to products other than CO. Phenyl-t-butylnitrone completely blocked haem oxygenase activity, which suggests that hydroxy free radicals may represent a species of active oxygen used by this enzyme system. After administration of carbon tetrachloride or 2-allyl-2-isopropylacetamide to labelled rats, hepatic [(14)C]haem was decreased and haem oxygenase activity was unchanged; however, (14)CO excretion was either unchanged (carbon tetrachloride) or decreased (2-allyl-2-isopropylacetamide). These changes were unaffected by cycloheximide pretreatment. From the lack of parallel losses of cytochrome P-450 [(14)C]haem and (14)CO excretion, one may infer that an important fraction of hepatic [(14)C]haem in normal rats is degraded by endogenous pathways not involving CO. We conclude that carbon tetrachloride and 2-allyl-2-isopropylacetamide accelerate catabolism of cytochrome P-450 haem through mechanisms that do not yield CO as an end product, and that are insensitive to cycloheximide and independent of haem oxygenase activity.  相似文献   

6.
A variety of prophyrinogenic compounds were tested for their effect in ovo on chick-embryo liver microsomal cytochrome P-450 haem concentration and mitochondrial delta-aminolaevulinate synthase activity. With all drugs tested, there was a 30--50% decrease in cytochrome P-450 haem concentration within 1 h of treatment, and this was closely followed by an increase in delta-aminolaevulinate synthase activity. The relationship was independent of the extent of enzyme induction and is consistent with the proposal that drug-mediated destruction of cytochrome P-450 haem is the primary mechanism of induction of delta-aminolaevulinate synthase. After induction, synthesis of delta-aminolaevulinate synthase could be maintained by inhibiting further haem synthesis. These studies suggest that induction of porphyria is a combination of two distinct processes: (a) induction of delta-aminolaevulinate synthase synthesis by destruction of cytochrome P-450 haem and consequent depletion of cellular free haem; (b) maintenance of continued delta-aminolaevulinate synthase synthesis by preventing replenishment of cellular haem either by inhibiting haem synthesis and/or by promoting continuous removal of newly synthesized haem.  相似文献   

7.
Effect of hexachlorobenzene on haem synthesis   总被引:3,自引:3,他引:0       下载免费PDF全文
Several drugs are known to induce the liver microsomal mixed-function oxidase system when administered in vivo or even in vitro in cell culture. A sequence of events has been suggested in which the drug is visualized to induce delta-aminolaevulinate synthetase, the first and rate-limiting enzyme of the haem-biosynthetic pathway, which is followed by enhanced haem synthesis and cytochrome P-450 content, facilitating the increase in the drug-metabolizing activity of the liver microsomal fraction. The present studies show that the fungicide hexachlorobenzene, when administered to female rats, can lead to enhanced amounts and rate of synthesis of cytochrome P-450 under conditions when the rate of total haem synthesis has not appreciably altered. The subsequent increase in the rate of total haem synthesis as well as the initial increase in amounts of cytochrome P-450 are brought about under conditions when delta-aminolaevulinate synthetase activity remains constant. However, manifestation of porphyria due to prolonged drug administration is accompanied by a twofold increase in delta-aminolaevulinate synthetase activity. The increase in enzyme activity appears to be due to a decreased degradation rate of the enzyme.  相似文献   

8.
Degradation of cytochrome P-450 was studied in adult rat liver parenchymal cells in primary monolayer culture. In cells incubated in standard culture medium, the amount of cytochrome P-450 decreased at an accelerated rate relative to either the rate of degradation of total protein in the cells or the turnover of cytochrome P-450 in vivo. This change was succeeded by a spontaneous increase in the activity of haem oxygenase, an enzyme system that converts haem into bilirubin in vitro, measured in extracts from the cultured cells. This finding suggests that the rate of cytochrome P-450 breakdown may be controlled by factor(s) other than the activity of haem oxygenase. The decline in cytochrome P-450 and the subsequent increase in haem oxygenase activity was prevented by incubation of hepatocytes in medium containing an inhibitor of protein synthesis such as cycloheximide, puromycin, actinomycin D, or azaserine. The effect of cycloheximide appeared to be due to decreased breakdown of microsomal (14)C-labelled haem. By contrast, cycloheximide was without effect on the degradation of total protein, measured either in homogenates or in microsomal fractions prepared from the cultured cells. These results suggest that the conditions of cell culture stimulate selective degradation of cytochrome P-450 by a process that is inhibited by cycloheximide and hence may require protein synthesis. The findings in culture were verified in parallel studies of cytochrome P-450 degradation in vivo. After administration of bromobenzene, the degradation of the haem moiety of cytochrome P-450 was accelerated in vivo in a manner resembling that observed in cultured hepatocytes. Administration of cycloheximide to either bromobenzene-treated rats or to untreated rats decreased the degradation of the haem moiety of cytochrome P-450. However, the drug failed to affect degradation of haem not associated with cytochrome P-450, suggesting that cycloheximide is not a general inhibitor of haem oxidation in the liver. These findings confirm that the catabolism of hepatic cytochrome P-450 haem is controlled by similar cycloheximide-sensitive processes in the basal steady state in vivo, as stimulated by bromobenzene in vivo, or in hepatocytes under the conditions of cell culture. We conclude that the rate-limiting step in this process appears to require protein synthesis and precedes cleavage of the haem ring.  相似文献   

9.
The hepatic porphyrias are inborn errors of porphyrin and haem biosynthesis characterized biochemically by excessive excretion of delta-aminolaevulinate (ALA), porphobilinogen and other intermediates in haem synthesis. Clinical evidence has implicated iron in the pathogenesis of several types of genetically transmitted diseases. We investigated the role of iron in haem metabolism as well as its relationship to drug-mediated induction of ALA synthase and haem oxygenase in acute and chronic iron overload. Acute iron overload in rats resulted in a marked increase in hepatic haem oxygenase that was associated with a decrease in cytochrome P-450 and an increase in ALA synthase activity. Aminopyrine N-demethylase and aniline hydroxylase activities, which are dependent on the concentration of cytochrome P-450, were also decreased. In contrast, in chronic-iron-overloaded rats, there was an adaptive increase in haem oxygenase activity and an increase in ALA synthase that was associated with normal concentrations of microsomal haem and cytochrome P-450. The induction of ALA synthase in chronic iron overload was enhanced by phenobarbital and allylisopropylacetamide, in spite of the fact that these agents did not increase haem oxygenase activity. Small doses of Co2+ were potent inducers of the haem oxygenase in chronic-iron-overloaded, but not in control, animals. We conclude that increased hepatic cellular iron may predispose certain enzymes of haem synthesis to induction by exogenous agents and thereby affect drug-metabolizing enzyme activities.  相似文献   

10.
The potent porphyrogen allylisopropylacetamide and related compounds decrease hepatic concentrations of cytochrome P-450. This decrease occurs particularly in phenobarbital-induced cytochrome P-450 and is caused by suicidal breakdown of the haem of cytochrome P-450. Quantitative rocket immunoelectrophoresis showed that the protein moiety of the major phenobarbital-inducible form of hepatic cytochrome P-450 was not diminished up to 1 h, but was markedly decreased (to 43% of that of the phenobarbital-treated control) at 20 h after allylisopropylacetamide treatment. In contrast, the concentration of total cytochrome P-450, measured spectrophotometrically, decreased to 30-40% of the control at both 1 and 20 h after allylisopropylacetamide. Cytochrome P-450-dependent demethylations of ethylmorphine and benzphetamine decreased to a similar extent. When liver homogenates from rats treated with allylisopropylacetamide 1 h before being killed were incubated with haem, functional holocytochrome P-450 could be reconstituted from the apoprotein. Incubation with haem increased spectrophotometrically measurable cytochrome P-450 to 69%, ethylmorphine demethylase to 64% and benzphetamine demethylase to 93% of the activities in rats treated with phenobarbital alone. At 20 h after allylisopropylacetamide treatment, however, little or no reconstitution of cytochrome P-450 occurred after incubation with haem. When liver homogenates were incubated with cobalt and protoporphyrin, and microsomal proteins were then subjected to polyacrylamide-gel electrophoresis, cobalt-protoporphyrin was found specifically associated with proteins of Mr 50 000-53 000. When homogenates from rats given allylisopropylacetamide for 1 h or 20 h were compared, it was found that the extent of this association was higher in livers from the rats containing more apocytochrome P-450, suggesting that cobalt-protoporphyrin had associated with the apocytochrome. The data provide insight into the association of haem with the protein moiety of cytochrome P-450 and factors affecting breakdown of this protein.  相似文献   

11.
The responses of hepatic delta-aminolaevulinate synthase and microsomal haem oxygenase to inducers were examined in pregnant rats. 2-Allyl-2-isopropylacetamide-mediated induction of delta-aminolaevulinate synthase was greatly decreased during pregnancy and in the early post-partum period. Administration of allylisopropylacetamide to pseudopregnant rats induced delta-aminolaevulinate synthase normally. Treatment of pregnant rats with cortisol failed to restore the drug-mediated induction of delta-aminolaevulinate synthase. Microsomal cytochrome P-450 content and the activities of drug-metabolizing enzymes such as aniline hydroxylase and ethylmorphine. N-demethylase were significantly lowered during pregnancy. In contrast with the greatly impaired induction of delta-aminolaevulinate synthase, the induction of haem oxygenase in response to CoCl2 remained unaltered in pregnant rats. The normal perturbations of delta-aminolaevulinate synthase, consisting of an initial inhibition followed by a rebound increase in the enzyme activity associated with CoCL2 treatment, were observed during pregnancy. These findings indicate that hormones and metabolic factors associated with gestation exert significant but differential controls on the induction patterns of delta-aminolaevulinate synthase and haem oxygenase.  相似文献   

12.
Exposure of cultured chick-embryo hepatocytes to increasing concentrations of CoCl2 in the presence of allylisopropylacetamide results in formation of cobalt protoporphyrin, with a reciprocal decrease in haem and cytochrome P-450. Treatment of rats with CoCl2 (84 mumol/kg) and 5-aminolaevulinate (0.2 mmol/kg) also results in formation of cobalt protoporphyrin and a decrease in cytochrome P-450 in the liver. Hepatic microsomal fractions from rats treated with phenobarbital, CoCl2 and 5-aminolaevulinate were analysed by polyacrylamide gel electrophoresis. Cobalt protoporphyrin was associated mainly with proteins of 50000-53000 mol.wt. The results suggest that the formation of cobalt protoporphyrin occurred at the expense of the synthesis of haem, leading to a decrease in cytochrome P-450. Furthermore, the cobalt protoporphyrin that was formed may itself have been incorporated into apocytochrome P-450.  相似文献   

13.
Selenium and hepatic microsomal hemoproteins   总被引:3,自引:0,他引:3  
The microsomal share of liver homogenate 75Se after injection of a tracer dose of 75SeO32? was three times greater in rats fed a selenium-deficient diet than in rats fed a selenium-adequate diet. Basal levels of microsomal cytochromes P-450 and b5 were unaffected by selenium deficiency. However, induction of these cytochromes by phenobarbital was markedly inpaired in selenium-deficient rats, whereas liver weight increase and NADPH cytochrome c reductase induction were not impaired. These data indicate that selenium is essential for phenobarbital induction of microsomal hemoproteins.  相似文献   

14.
We have previously suggested that an inherent defect in hepatic haem utilization was responsible for the rapid stimulation of hepatic microsomal haem oxygenase activity observed in selenium-deficient rats given phenobarbital, a well known inducer of haem formation. To test this hypothesis, hepatic haem content was deliberately raised in selenium-deficient rats by administration of either tryptophan or allylisopropylacetamide, or by injecting haem itself. We now report that selenium-deficient rats are apparently relatively less efficient in utilizing hepatic haem than normal controls. The findings detailed in the present paper thus indicate that stimulation of hepatic microsomal haem oxygenase activity is indeed a manifestation of abnormal haem utilization in selenium deficiency. This suggests a novel role for selenium in hepatic haem metabolism.  相似文献   

15.
Endotoxin was administered to rats at a dose shown previously to stimulate hepatic haem oxygenase activity and to block induction of delta-aminolaevulinate synthase, apparently by causing redistribution of haem from cytochrome P-450 to a regulatory haem pool in the liver. Within 5h of the administration of endotoxin (at a time when the effect of the compound on cytochrome P-450 is maximal) the relative saturation of tryptophan pyrrolase with intrinsic haem rose, from a basal value of 50% to 90%, indicating that 'free' haem had become available. Concurrently, the activity of delta-aminolaevulinate synthase was decreased to 25% of its basal value. Haem oxygenase reached peak activity 13h after endotoxin administration. These findings provide new evidence for the existence of an 'unassigned' hepatic haem fraction, which exchanges with cytochrome P-450 haem and regulates these three enzyme functions.  相似文献   

16.
Mn2+ and Zn2+ exhibit a striking ability to block the induction by Sn2+ and Ni2+ of haem oxygenase (EC 1.14.99.3) in kidney. The blocking effects of Mn2+ and Zn2+ were found to be greatest on simultaneous administration, time-dependent when administered up to 8 h before the inducing metal ions, and ineffective when administered as little as 10 min after the inducing metal ions. The decreases in cytochrome P-450 and haem contents and the sequential changes in delta-aminolaevulinate synthase (EC 2.3.1.37) activity that occur concomitant with haem oxygenase induction were largely eliminated with simultaneous or prior treatment with Mn2+ or Zn2+, but not when Mn2+ or Zn2+ was administered after Sn2+ or Ni2+. Mn2+ and Zn2+ did not increase the catabolism of the enzyme in vivo. Zn2+ on simultaneous administration was also able substantially to block the induction of haem oxygenase by Co2+, Cd2+ and Ni2+ in liver. The Zn2+ blockade of Cd2+ induction was examined in detail, and prior or simultaneous administration of Zn2+ was found to be effective in blocking the induction of haem oxygenase and the concomitant decreases in cytochrome P-450 and haem contents, ethylmorphine demethylase activity and the sequential changes in delta-aminolaevulinate synthase activity. Zn2+ administration 10 min or more after Cd2+ was ineffective in preventing the occurrence of these perturbations in haem metabolism. These findings describe a new and striking biological property of Mn2+ and Zn2+, and indicate the existence of significant metal ion interactions in the control of haem metabolism.  相似文献   

17.
In rats treated with phenobarbital for 3 days and simultaneously fed a semisynthetic diet containing 1.0% orotic acid, the extent of the increases in liver microsomal phosphatidylcholine, phosphatidylethanolamine, total RNA, total protein, and cytochrome P-450 were significantly greater than they were in rats treated identically with phenobarbital but without dietary orotic acid. This is attributed primarily to the stimulation of hepatic phosphatidylcholine synthesis by dietary orotic acid. In the absence of phenobarbital, orotic acid was shown to cause some increase in liver smooth endoplasmic reticulum components, but not cytochrome P-450. Orotic acid also decreased the activity of microsomal phosphatidylethanolamine N-methyltransferase, which may have contributed to the increase in the microsomal content of phosphatidylethanolamine. The hypothesis is advanced that phospholipid availability is a limiting factor in the hepatic response to phenobarbital. When more phospholipid is available to provide the structural framework for biogenesis of endoplasmic reticulum, all of the hepatic actions of phenobarbital, including induction of cytochrome P-450, are amplified.  相似文献   

18.
Phenylhydrazine was found to be a potent inducer of microsomal haem oxygenase activity in rat liver and kidney, but not in spleen. The phenylhydrazine-mediated increase in haem oxygenase activity was time-dependent. Maximum activity was attained 12h after treatment in the liver, and 24h after treatment in the kidney. The increases in the activity of haem oxygenase in the liver and the kidney could be inhibited by cycloheximide. Furthermore, the increases could not be elicited by the treatment of microsomal preparations in vitro with phenylhydrazine. In consonance with the increased haem oxygenase activity, a marked increase (16-fold) was observed in the serum total bilirubin concentration in phenylhydrazine-treated rats. The mechanism of haem degradation promoted by phenylhydrazine in vivo appears to differ from that in vitro; only in the former case is bilirubin formed as the end-product of haem degradation. When rats were given zinc-protoporphyrin (40 mumol/kg) 12h before and after phenylhydrazine treatment, the phenylhydrazine-mediated increases in haem oxygenase activity in the liver and the kidney were effectively blocked. Treatment of rats in vivo with the metalloporphyrin also inhibited the activity of splenic haem oxygenase, and promoted a major decrease in the serum bilirubin levels. In phenylhydrazine-treated animals, the microsomal content of cytochrome P-450 was significantly decreased in the absence of a decrease in the microsomal haem concentration. The decrease in cytochrome P-450 content was accompanied by an increased absorption in the 420nm region of the reduced CO-difference spectrum, suggesting the conversion of the cytochrome to an inactive form. The marked depletion of cellular glutathione levels suggests that this conversion may be related to the action of active intermediates and free radicals formed in the course of the interaction of phenylhydrazine with the haem moiety of cytochrome P-450.  相似文献   

19.
Successive administrations of allylisopropylacetamide, a potent porphyrinogenic drug, increase liver weight, microsomal protein and phospholipid contents. There is an increase in the rate of microsomal protein synthesis in vivo and in vitro. The drug decreases microsomal ribonuclease activity and increases NADPH-cytochrome c reductase activity. Phenobarbital, which has been reported to exhibit all these changes mentioned, is a weaker inducer of delta-aminolaevulinate synthetase and increases the rate of haem synthesis only after a considerable time-lag in fed female rats, when compared with the effects observed with allylisopropylacetamide. Again, phenobarbital does not share the property of allylisopropylacetamide in causing an initial decrease in cytochrome P-450 content. Haematin does not counteract most of the biochemical effects caused by allylisopropylacetamide, although it is quite effective in the case of phenobarbital. Haematin does not inhibit the uptake of [2-(14)C]allylisopropylacetamide by any of the liver subcellular fractions.  相似文献   

20.
The major phenobarbital-inducible form of cytochrome P-450 (cytochrome P-450 PB) was purified to homogeneity from rat liver microsomes and rabbit antibodies prepared against the purified enzyme. Using these antibodies, an enzyme-linked immunosorbent assay (ELISA) was developed for the detection of cytochrome P-450 PB in microsomes which was sensitive at the nanogram level. The content of cytochrome P-450 PB was determined in hepatic microsomes from rats treated with various xenobiotics. Phenobarbital and Aroclor 1254 pretreatments resulted in several-fold increases in immunoreactive cytochrome P-450 PB over control levels. ELISA measurements of cytochrome P-450 PB were also carried out over a 48-h time course of phenobarbital induction in liver microsomes. Significant increases over control levels were seen at 16 h and beyond. Measurements of ELISA-detectable cytochrome P-450 PB were made in microsomes following the administration of CCl4 to phenobarbital-pretreated rats. Immunoreactive cytochrome P-450 PB was observed to decrease less rapidly than the spectrally detectable enzyme in the microsomal membranes. Inhibition of heme synthesis was carried out by the administration of 3-amino-1,2,4-triazole (AT) to rats. Concomitant pretreatment with phenobarbital and AT resulted in levels of ELISA-detectable cytochrome P-450 PB which were significantly increased over control levels, while spectrally detectable levels of total holoenzyme remained unchanged. These results support the idea that this cytochrome P-450 may exist, at least partly, in the microsomal membrane in an inactive or apoprotein form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号