首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using high-resolution MS-based proteomics in combination with multiple protease digestion, we profiled, with on average 90% sequence coverage, all 13 viral proteins present in an human adenovirus (HAdV) vector. This in-depth profile provided multiple peptide-based evidence on intrinsic protease activity affecting several HAdV proteins. Next, the generated peptide library was used to develop a targeted proteomics method using selected reaction monitoring (SRM) aimed at quantitative profiling of the stoichiometry of all 13 proteins present in the HAdV. We also used this method to probe the release of specific virus proteins initiated by thermal stimulation, mimicking the early stage of HAdV disassembly during entry into host cells. We confirmed the copy numbers of the most well characterized viral capsid components and established the copy numbers for proteins whose stoichiometry has so far not been accurately defined. We also found that heating HAdV induces the complete release of the penton base and fiber proteins as well as a substantial release of protein VIII and VI. For these latter proteins, maturational proteolysis by the adenoviral protease leads to the differential release of fragments with certain peptides being fully released and others largely retained in the AdV particles. This information is likely to be beneficial for the ongoing interpretation of high resolution cryoEM and x-ray electron density maps.  相似文献   

2.
CS-0777 is a selective sphingosine 1-phosphate (S1P) receptor 1 modulator with potential benefits in the treatment of autoimmune diseases, including multiple sclerosis. CS-0777 is a prodrug that requires phosphorylation to an active S1P analog, similar to the first-in-class S1P receptor modulator FTY720 (fingolimod). We sought to identify the kinase(s) involved in phosphorylation of CS-0777, anticipating sphingosine kinase (SPHK) 1 or 2 as likely candidates. Unlike kinase activity for FTY720, which is found predominantly in platelets, CS-0777 kinase activity was found mainly in red blood cells (RBCs). N,N-Dimethylsphingosine, an inhibitor of SPHK1 and -2, did not inhibit CS-0777 kinase activity. We purified CS-0777 kinase activity from human RBCs by more than 10,000-fold using ammonium sulfate precipitation and successive chromatography steps, and we identified fructosamine 3-kinase (FN3K) and fructosamine 3-kinase-related protein (FN3K-RP) by mass spectrometry. Incubation of human RBC lysates with 1-deoxy-1-morpholinofructose, a competitive inhibitor of FN3K, inhibited ~10% of the kinase activity, suggesting FN3K-RP is the principal kinase responsible for activation of CS-0777 in blood. Lysates from HEK293 cells overexpressing FN3K or FN3K-RP resulted in phosphorylation of CS-0777 and structurally related molecules but showed little kinase activity for FTY720 and no kinase activity for sphingosine. Substrate preference was highly correlated among FN3K, FN3K-RP, and rat RBC lysates. FN3K and FN3K-RP are known to phosphorylate sugar moieties on glycosylated proteins, but this is the first report that these enzymes can phosphorylate hydrophobic xenobiotics. Identification of the kinases responsible for CS-0777 activation will permit a better understanding of the pharmacokinetics and pharmacodynamics of this promising new drug.  相似文献   

3.
Voltage-gated sodium (Nav) channels initiate action potentials in brain neurons and are primary therapeutic targets for anti-epileptic drugs controlling neuronal hyperexcitability in epilepsy. The molecular mechanisms underlying abnormal Nav channel expression, localization, and function during development of epilepsy are poorly understood but can potentially result from altered posttranslational modifications (PTMs). For example, phosphorylation regulates Nav channel gating, and has been proposed to contribute to acquired insensitivity to anti-epileptic drugs exhibited by Nav channels in epileptic neurons. However, whether changes in specific brain Nav channel PTMs occur acutely in response to seizures has not been established. Here, we show changes in PTMs of the major brain Nav channel, Nav1.2, after acute kainate-induced seizures. Mass spectrometry-based proteomic analyses of Nav1.2 purified from the brains of control and seizure animals revealed a significant down-regulation of phosphorylation at nine sites, primarily located in the interdomain I-II linker, the region of Nav1.2 crucial for phosphorylation-dependent regulation of activity. Interestingly, Nav1.2 in the seizure samples contained methylated arginine (MeArg) at three sites. These MeArgs were adjacent to down-regulated sites of phosphorylation, and Nav1.2 methylation increased after seizure. Phosphorylation and MeArg were not found together on the same tryptic peptide, suggesting reciprocal regulation of these two PTMs. Coexpression of Nav1.2 with the primary brain arginine methyltransferase PRMT8 led to a surprising 3-fold increase in Nav1.2 current. Reciprocal regulation of phosphorylation and MeArg of Nav1.2 may underlie changes in neuronal Nav channel function in response to seizures and also contribute to physiological modulation of neuronal excitability.  相似文献   

4.
The ankyrin and SOCS (suppressor of cytokine signaling) box (ASB) family of proteins function as the substrate recognition subunit in a subset of Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligases. Despite counting 18 members in humans, the identity of the physiological targets of the Asb proteins remains largely unexplored. To increase our understanding of the function of ASB proteins, we conducted a family-wide SILAC (stable isotope labeling by amino acids in cell culture)-based protein/protein interaction analysis. This investigation led to the identification of novel as well as known ASB-associated proteins like Cullin 5 and Elongins B/C. We observed that several proteins can be bound by more than one Asb protein. The additional exploration of this phenomenon demonstrated that ASB-Cullin 5 complexes can oligomerize and provides evidence that Cullin 5 forms heterodimeric complexes with the Cullin 4a-DDB1 complex. We also demonstrated that ASB11 is a novel endoplasmic reticulum-associated ubiquitin ligase with the ability to interact and promote the ubiquitination of Ribophorin 1, an integral protein of the oligosaccharyltransferase (OST) glycosylation complex. Moreover, expression of ASB11 can increase Ribophorin 1 protein turnover in vivo. In summary, we provide a comprehensive protein/protein interaction data resource that can aid the biological and functional characterization of ASB ubiquitin ligases.  相似文献   

5.
During inflammatory processes the extracellular matrix (ECM) is extensively remodeled, and many of the constituent components are released as proteolytically cleaved fragments. These degradative processes are better documented for inflammatory joint diseases than tendinopathy even though the pathogenesis has many similarities. The aims of this study were to investigate the proteomic composition of injured tendons during early and late disease stages to identify disease-specific cleavage patterns of the ECM protein cartilage oligomeric matrix protein (COMP). In addition to characterizing fragments released in naturally occurring disease, we hypothesized that stimulation of tendon explants with proinflammatory mediators in vitro would induce fragments of COMP analogous to natural disease. Therefore, normal tendon explants were stimulated with IL-1β and prostaglandin E2, and their effects on the release of COMP and its cleavage patterns were characterized. Analyses of injured tendons identified an altered proteomic composition of the ECM at all stages post injury, showing protein fragments that were specific to disease stage. IL-1β enhanced the proteolytic cleavage and release of COMP from tendon explants, whereas PGE2 had no catabolic effect. Of the cleavage fragments identified in early stage tendon disease, two fragments were generated by an IL-1-mediated mechanism. These fragments provide a platform for the development of neo-epitope assays specific to injury stage for tendon disease.  相似文献   

6.
Campylobacter jejuni is the major worldwide cause of bacterial gastroenteritis. C. jejuni possesses an extensive repertoire of carbohydrate structures that decorate both protein and non-protein surface-exposed structures. An N-linked glycosylation system encoded by the pgl gene cluster mediates the synthesis of a rigidly conserved heptasaccharide that is attached to protein substrates or released as free oligosaccharide in the periplasm. Removal of N-glycosylation results in reduced virulence and impeded host cell attachment. Since the N-glycan is conserved, the N-glycosylation system is also an attractive option for glycoengineering recombinant vaccines in Escherichia coli. To determine whether non-canonical N-glycans are present in C. jejuni, we utilized high throughput glycoproteomics to characterize C. jejuni JHH1 and identified 93 glycosylation sites, including 34 not previously reported. Interrogation of these data allowed the identification of a phosphoethanolamine (pEtN)-modified variant of the N-glycan that was attached to multiple proteins. The pEtN moiety was attached to the terminal GalNAc of the canonical N-glycan. Deletion of the pEtN transferase eptC removed all evidence of the pEtN-glycan but did not globally influence protein reactivity to patient sera, whereas deletion of the pglB oligosaccharyltransferase significantly reduced reactivity. Transfer of eptC and the pgl gene cluster to E. coli confirmed the addition of the pEtN-glycan to a target C. jejuni protein. Significantly reduced, yet above background levels of pEtN-glycan were also observed in E. coli not expressing eptC, suggesting that endogenous E. coli pEtN transferases can mediate the addition of pEtN to N-glycans. The addition of pEtN must be considered in the context of glycoengineering and may alter C. jejuni glycan-mediated structure-function interactions.  相似文献   

7.
To enhance understanding of the metabolic indicators of type 2 diabetes mellitus (T2DM) disease pathogenesis and progression, the urinary metabolomes of well characterized rhesus macaques (normal or spontaneously and naturally diabetic) were examined. High-resolution ultra-performance liquid chromatography coupled with the accurate mass determination of time-of-flight mass spectrometry was used to analyze spot urine samples from normal (n = 10) and T2DM (n = 11) male monkeys. The machine-learning algorithm random forests classified urine samples as either from normal or T2DM monkeys. The metabolites important for developing the classifier were further examined for their biological significance. Random forests models had a misclassification error of less than 5%. Metabolites were identified based on accurate masses (<10 ppm) and confirmed by tandem mass spectrometry of authentic compounds. Urinary compounds significantly increased (p < 0.05) in the T2DM when compared with the normal group included glycine betaine (9-fold), citric acid (2.8-fold), kynurenic acid (1.8-fold), glucose (68-fold), and pipecolic acid (6.5-fold). When compared with the conventional definition of T2DM, the metabolites were also useful in defining the T2DM condition, and the urinary elevations in glycine betaine and pipecolic acid (as well as proline) indicated defective re-absorption in the kidney proximal tubules by SLC6A20, a Na(+)-dependent transporter. The mRNA levels of SLC6A20 were significantly reduced in the kidneys of monkeys with T2DM. These observations were validated in the db/db mouse model of T2DM. This study provides convincing evidence of the power of metabolomics for identifying functional changes at many levels in the omics pipeline.  相似文献   

8.
MALDI-imaging MS is a new molecular imaging technology for direct in situ analysis of thin tissue sections. Multiple analytes can be monitored simultaneously without prior knowledge of their identities and without the need for target-specific reagents such as antibodies. Imaging MS provides important insights into biological processes because the native distributions of molecules are minimally disturbed, and histological features remain intact throughout the analysis. A wide variety of molecules can be imaged, including proteins, peptides, lipids, drugs, and metabolites. Several specific examples are presented to highlight the utility of the technology.  相似文献   

9.
10.
Subcellular distribution of Calmodulin (CaM) in human immunodeficiency virus type-1 (HIV-1)-infected cells is distinct from that observed in uninfected cells. CaM has been shown to interact and co-localize with the HIV-1 Gag protein in infected cells. However, the precise molecular mechanism of this interaction is not known. Binding of Gag to CaM is dependent on calcium and is mediated by the N-terminal-myristoylated matrix (myr(+)MA) domain. We have recently shown that CaM binding induces a conformational change in the MA protein, triggering exposure of the myristate group. To unravel the molecular mechanism of CaM-MA interaction and to identify the minimal CaM binding domain of MA, we devised multiple approaches utilizing NMR, biochemical, and biophysical methods. Short peptides derived from the MA protein have been examined. Our data revealed that whereas peptides spanning residues 11-28 (MA-(11-28)) and 31-46 (MA-(31-46)) appear to bind preferentially to the C-terminal lobe of CaM, a peptide comprising residues 11-46 (MA-(11-46)) appears to engage both domains of CaM. Limited proteolysis data conducted on the MA-CaM complex yielded a MA peptide (residues 8-43) that is protected by CaM and resistant to proteolysis. MA-(8-43) binds to CaM with a very high affinity (dissociation constant = 25 nm) and in a manner that is similar to that observed for the full-length MA protein. The present findings provide new insights on how MA interacts with CaM that may ultimately help in identification of the functional role of CaM-Gag interactions in the HIV replication cycle.  相似文献   

11.
Prion diseases are characterized by accumulation of misfolded protein, gliosis, synaptic dysfunction, and ultimately neuronal loss. This sequence, mirroring key features of Alzheimer disease, is modeled well in ME7 prion disease. We used iTRAQTM/mass spectrometry to compare the hippocampal proteome in control and late-stage ME7 animals. The observed changes associated with reactive glia highlighted some specific proteins that dominate the proteome in late-stage disease. Four of the up-regulated proteins (GFAP, high affinity glutamate transporter (EAAT-2), apo-J (Clusterin), and peroxiredoxin-6) are selectively expressed in astrocytes, but astrocyte proliferation does not contribute to their up-regulation. The known functional role of these proteins suggests this response acts against protein misfolding, excitotoxicity, and neurotoxic reactive oxygen species. A recent convergence of genome-wide association studies and the peripheral measurement of circulating levels of acute phase proteins have focused attention on Clusterin as a modifier of late-stage Alzheimer disease and a biomarker for advanced neurodegeneration. Since ME7 animals allow independent measurement of acute phase proteins in the brain and circulation, we extended our investigation to address whether changes in the brain proteome are detectable in blood. We found no difference in the circulating levels of Clusterin in late-stage prion disease when animals will show behavioral decline, accumulation of misfolded protein, and dramatic synaptic and neuronal loss. This does not preclude an important role of Clusterin in late-stage disease, but it cautions against the assumption that brain levels provide a surrogate peripheral measure for the progression of brain degeneration.  相似文献   

12.
The lysine methyltransferase (KMT) SETMAR is implicated in the response to and repair of DNA damage, but its molecular function is not clear. SETMAR has been associated with dimethylation of histone H3 lysine 36 (H3K36) at sites of DNA damage. However, SETMAR does not methylate H3K36 in vitro. This and the observation that SETMAR is not active on nucleosomes suggest that H3K36 methylation is not a physiologically relevant activity. To identify potential non-histone substrates, we utilized a strategy on the basis of quantitative proteomic analysis of methylated lysine. Our approach identified lysine 130 of the mRNA splicing factor snRNP70 as a SETMAR substrate in vitro, and we show that the enzyme primarily generates monomethylation at this position. Furthermore, we show that SETMAR methylates snRNP70 Lys-130 in cells. Because snRNP70 is a key early regulator of 5′ splice site selection, our results suggest a model in which methylation of snRNP70 by SETMAR regulates constitutive and/or alternative splicing. In addition, the proteomic strategy described here is broadly applicable and is a promising route for large-scale mapping of KMT substrates.  相似文献   

13.
2-维凝胶电泳(2DE)具有高分辨率、高通量等特点,已被广泛地用于蛋白质组的研究.然而,2DE-MS在膜蛋白质组学研究方面却有其局限性,主要因为:膜蛋白具有低丰度、难溶、等电点时易沉淀、难酶解等特点.然而随着亚细胞分离技术和直接的生化方法富集等技术的发展,低丰度问题得到了极大的改善;增溶剂(尿素,硫脲),新的两性离子和非离子去垢剂,以及有机溶剂等的利用极大地改善了膜蛋白质组的溶解性能;同时,一些新的2DE技术的利用扩大了常规2DE的分离范围.在膜蛋白裂解方面,将酶解法与化学法(CNBr)相结合,另外先进的质谱技术的发展使得膜蛋白质组的研究在最近几年取得了较大的发展.现对2DE-MS途径中,膜的富集、膜蛋白的提取、分离、酶解、鉴定方面的进展进行综述.  相似文献   

14.
The tumor suppressor PTEN (phosphatase and tensin homologue) negatively regulates the PI3K pathway through its lipid phosphatase activity and is one of the most commonly lost tumor suppressors in human cancers. Though the tumor suppressive function involves the lipid phosphatase-dependent and -independent activities of PTEN, the mechanism leading to the phosphatase-independent function of PTEN is understood poorly. Some PTEN mutants have lipid phosphatase activity but fail to suppress cell growth. Here, we use a cancer-associated mutant, G20E, to gain insight into the phosphatase-independent function of PTEN by investigating protein-protein interactions using MS-based stable isotope labeling by amino acids in cell culture (SILAC). A strategy named parallel affinity purification (PAP) and SILAC has been developed to prioritize interactors and to compare the interactions between wild-type and G20E PTEN. Clustering of the prioritized interactors acquired by the PAP-SILAC approach shows three distinct clusters: 1) wild-type-specific interactors, 2) interactors unique to the G20E mutant, and 3) proteins common to wild-type and mutant. These interactors are involved mainly in cell migration and apoptosis pathways. We further demonstrate that the wild-type-specific interactor, NUDTL16L1, is required for the regulatory function of wild-type PTEN in cell migration. These findings contribute to a better understanding of the mechanisms of the phosphatase-dependent and -independent functions of PTEN.  相似文献   

15.
The mammalian target of rapamycin (mTOR) is an atypical serine/threonine kinase that responds to extracellular environment to regulate a number of cellular processes. These include cell growth, proliferation, and differentiation. Although both kinase-dependent and -independent functions of mTOR are known to be critical modulators of muscle cell differentiation and regeneration, the signaling mechanisms regulating mTOR activity during differentiation are still unclear. In this study we identify a novel mTOR interacting protein, the ubiquitin-specific protease USP9X, which acts as a negative regulator of mTOR activity and muscle differentiation. USP9X can co-immunoprecipitate mTOR with both Raptor and Rictor, components of mTOR complexes 1 and 2 (mTORC1 and -2), respectively, suggesting that it is present in both mTOR complexes. Knockdown of USP9X leads to increased mTORC1 activity in response to growth factor stimulation. Interestingly, upon initiation of differentiation of C2C12 mouse skeletal myoblasts, knockdown of USP9X increases mTORC2 activity. This increase in mTORC2 activity is accompanied by accelerated differentiation of myoblasts into myotubes. Taken together, our data describe the identification of the deubiquitinase USP9X as a novel mTORC1 and -2 binding partner that negatively regulates mTOR activity and skeletal muscle differentiation.  相似文献   

16.
eIF3a (eukaryotic translation initiation factor 3a), one of the core subunits of the eIF3 complex, has been implicated in regulating translation of different mRNAs and in tumorigenesis. A subcomplex consisting of eIF3a, eIF3b, eIF3g, and eIF3i (eIF3(a:b:i:g)) has also been identified. However, how eIF3a participates in translational regulation and in formation of the eIF3(a:b:i:g) subcomplex remain to be solved. In this study, we used the tandem affinity purification approach in combination with tandem MS/MS and identified the spectrin domain of eIF3a as the docking site for the formation of eIF3(a:b:i:g) subcomplex. Although eIF3b and eIF3i bind concurrently to the spectrin domain of eIF3a within ∼10–15 amino acids apart, eIF3g binds to eIF3a indirectly via binding to the carboxyl-terminal domain of eIF3b. The binding of eIF3b to the spectrin domain of eIF3a occurs in its RNA recognition motif domain where eIF3j also binds in a mutually exclusive manner. Together, we conclude that the spectrin domain of eIF3a is responsible for the formation of eIF3(a:b:i:g) subcomplex and, because of mutually exclusive nature of bindings of eIF3a and eIF3j to eIF3b, different subcomplexes of eIF3 likely exist and may perform noncanonical functions in translational regulation.  相似文献   

17.
The systematic characterization of the whole interactomes of different model organisms has revealed that the eukaryotic proteome is highly interconnected. Therefore, biological research is progressively shifting away from classical approaches that focus only on a few proteins toward whole protein interaction networks to describe the relationship of proteins in biological processes. In this minireview, we survey the most common methods for the systematic identification of protein interactions and exemplify different strategies for the generation of protein interaction networks. In particular, we will focus on the recent development of protein interaction networks derived from quantitative proteomics data sets.  相似文献   

18.
Myocardial ischemia and cardioprotection by ischemic pre-conditioning induce signal networks aimed at survival or cell death if the ischemic period is prolonged. These pathways are mediated by protein post-translational modifications that are hypothesized to cross-talk with and regulate each other. Phosphopeptides and lysine-acetylated peptides were quantified in isolated rat hearts subjected to ischemia or ischemic pre-conditioning, with and without splitomicin inhibition of lysine deacetylation. We show lysine acetylation (acetyl-Lys)-dependent activation of AMP-activated protein kinase, AKT, and PKA kinases during ischemia. Phosphorylation and acetyl-Lys sites mapped onto tertiary structures were proximal in >50% of proteins investigated, yet they were mutually exclusive in 50 ischemic pre-conditioning- and/or ischemia-associated peptides containing the KXXS basophilic protein kinase consensus motif. Modifications in this motif were modeled in the C terminus of muscle-type creatine kinase. Acetyl-Lys increased proximal dephosphorylation by 10-fold. Structural analysis of modified muscle-type creatine kinase peptide variants by two-dimensional NMR revealed stabilization via a lysine-phosphate salt bridge, which was disrupted by acetyl-Lys resulting in backbone flexibility and increased phosphatase accessibility.  相似文献   

19.
20.
MicroRNAs function as important regulators of gene expression and are commonly linked to development, differentiation, and diseases such as cancer. To better understand their roles in various biological processes, identification of genes targeted by microRNAs is necessary. Although prediction tools have significantly helped with this task, experimental approaches are ultimately required for extensive target search and validation. We employed two independent yet complementary high throughput approaches to map a large set of mRNAs regulated by miR-122, a liver-specific microRNA implicated in regulation of fatty acid and cholesterol metabolism, hepatitis C infection, and hepatocellular carcinoma. The combination of luciferase reporter-based screening and shotgun proteomics resulted in the identification of 260 proteins significantly down-regulated in response to miR-122 in at least one method, 113 of which contain predicted miR-122 target sites. These proteins are enriched for functions associated with the cell cycle, differentiation, proliferation, and apoptosis. Among these miR-122-sensitive proteins, we identified a large group with strong connections to liver metabolism, diseases, and hepatocellular carcinoma. Additional analyses, including examination of consensus binding motifs for both miR-122 and target sequences, provide further insight into miR-122 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号