首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《IRBM》2008,29(4):267-271
Ligaments are strong bands of connective tissue which display high resistance to tension, allowing joint stability. However, sudden twisting motion and excessive stretching are causes of sprains. Medical managements involve initial symptomatic treatment and secondary rehabilitation regimen, without beneficial effect regarding the mechanical properties of the tissue. In fact, ligaments never recover their initial resistance to load tension. In this article, we reviewed the macroscopic and biochemical characteristics of normal and injured ligaments, with a special emphasis on the role of cytokines and growth factors during the healing process, and on the beneficial effect of a moderate exercise on the scar formation. Indeed, recent data highlighted: (1) the role of both IL-1 beta and bFGF during the inflammatory state to promote fibroblast and endothelial cell migration into the wound; (2) VEGF helped capillary growth during the proliferative state; (3) whereas TGF beta expression resulted in the deposition of a disorganised fibrotic extracellular matrix. In contrast, mechanical stimulation during a moderate exercise inhibited TGF beta expression, improving the deposition of specific collagen network and the overall ligament healing process.  相似文献   

2.
We investigated the hypothesis that hindlimb unloading inhibits healing in fibrous connective tissue such as ligament. Male rats were assigned to 3- and 7-wk treatment groups with three subgroups each: sham control, ambulatory healing, and hindlimb-suspended healing. Ambulatory and suspended animals underwent surgical rupture of their medial collateral ligaments, whereas sham surgeries were performed on control animals. After 3 or 7 wk, mechanical and/or morphological properties were measured in ligament, muscle, and bone. During mechanical testing, most suspended ligaments failed in the scar region, indicating the greatest impairment was to ligament and not to bone-ligament insertion. Ligament testing revealed significant reductions in maximum force, ultimate stress, elastic modulus, and low-load properties in suspended animals. In addition, femoral mineral density, femoral strength, gastrocnemius mass, and tibialis anterior mass were significantly reduced. Microscopy revealed abnormal scar formation and cell distribution in suspended ligaments with extracellular matrix discontinuities and voids between misaligned, but well-formed, collagen fiber bundles. Hence, stress levels from ambulation appear unnecessary for formation of fiber bundles yet required for collagen to form structurally competent continuous fibers. Results support our hypothesis that hindlimb unloading impairs healing of fibrous connective tissue. In addition, this study provides compelling morphological evidence explaining the altered structure-function relationship in load-deprived healing connective tissue.  相似文献   

3.
4.
Ligament healing follows a series of complex coordinated events involving various cell types, cytokines, as well as other factors, producing a mechanically inferior tissue more scar-like than native tissue. Macrophages provide an ongoing source of cytokines to modulate inflammatory cell adhesion and migration as well as fibroblast proliferation. Studying interleukins inherent to ligament healing during peak macrophage activation and angiogenesis may elucidate inflammatory mediators involved in subsequent scar formation. Herein, we used a rat healing model assayed after surgical transection of their medial collateral ligaments (MCLs). On days 3 and 7 post-injury, ligaments were collected and used for microarray analysis. Of the 12 significantly modified interleukins, components of the interleukin-1 family were significantly up-regulated. We therefore examined the influence of interleukin-1 receptor antagonist (IL-1Ra) on MCL healing. Transected rat MCLs received PBS or IL-1Ra at the time of surgery. Inhibition of IL-1 activation decreased pro-inflammatory cytokines (IL-1α, IL-1β, IL-12, IL-2, and IFN-γ), myofibroblasts, and proliferating cells, as well as increased anti-inflammatory cytokines (IL-10), endothelial cells/blood vessel lumen, M2 macrophages, and granulation tissue size without compromising the mechanical properties. These results support the concept that IL-1Ra modulates MCL-localized granulation tissue components and cytokine production to create a transient environment that is less inflammatory. Overall, IL-1Ra may have therapeutic potential early in the healing cascade by stimulating the M2 macrophages and altering the granulation tissue components. However, the single dose of IL-1Ra used in this study was insufficient to maintain the more regenerative early response. Due to the transient influence on most of the healing components tested, IL-1Ra may have greater therapeutic potential with sustained delivery.  相似文献   

5.
Wound healing requires a complex series of reactions and interactions among cells and their mediators, resulting in an overlapping series of events including coagulation, inflammation, epithelialization, formation of granulation tissue, matrix and scar formation. Cytokines and chemokines promote inflammation, angiogenesis, facilitate the passage of leukocytes from circulation into the tissue, and contribute to the regulation of epithelialization. They integrate inflammatory events and reparative processes that are important for modulating wound healing. Thus both cytokines and chemokines are important targets for therapeutic intervention. The chemokine-mediated regulation of angiogenesis is highly sophisticated, fine tuned, and involves pro-angiogenic chemokines, including CXCL1-3, 5-8 and their receptors, CXCR1 and CXCR2. CXCL1 and CXCR2 are expressed in normal human epidermis and are further induced during the wound healing process of human burn wounds, especially during the inflammatory, epithelialization and angiogenic processes. Human skin explant studies also show CXCR2 is expressed in wounded keratinocytes and Th/1/Th2 cytokine modulation of CXCR2 expression correlates with proliferation of epidermal keratinocytes. Murine excision wound healing, chemical burn wounds and skin organ culture systems are valuable models for examining the role of inflammatory cytokines and chemokines in wound healing.  相似文献   

6.
Extracellular matrix proteins not only provide structural support, but also modulate cellular behavior by activating signaling pathways. Healing of myocardial infarcts is associated with dynamic changes in the composition of the extracellular matrix; these changes may play an important role in regulating cellular phenotype and gene expression. We examined the time course of extracellular matrix deposition in a canine and mouse model of reperfused infarction. In both models, myocardial infarction resulted in fragmentation and destruction of the cardiac extracellular matrix, extravasation of plasma proteins, such as fibrinogen and fibronectin, and formation of a fibrin-based provisional matrix providing the scaffold for the infiltration of granulation tissue cells. Lysis of the plasma-derived provisional matrix was followed by the formation of a cell-derived network of provisional matrix composed of cellular fibronectin, laminin, and hyaluronic acid and containing matricellular proteins, such as osteopontin and osteonectin/SPARC. Finally, collagen was deposited in the infarct, and the wound matured into a collagen-based scar with low cellular content. Although the canine and mouse infarcts exhibited a similar pattern of extracellular matrix deposition, deposition of the provisional matrix was more transient in the mouse infarct and was followed by earlier formation of a mature collagen-based scar after 7-14 days of reperfusion; at the same timepoint, the canine infarct was highly cellular and evolving. In addition, mature mouse infarcts showed limited collagen deposition and significant tissue loss leading to the formation of a thin scar. In contrast, dogs exhibited extensive collagen accumulation in the infarcted area. These species-specific differences in infarct wound healing should be taken into account when interpreting experimental infarction studies and when attempting to extrapolate the findings to the human pathological process.  相似文献   

7.
Vascular mural cells in healing canine myocardial infarcts.   总被引:4,自引:0,他引:4  
Angiogenesis is a critical process in healing of myocardial infarcts, leading to the formation of highly vascular granulation tissue. However, effective cardiac repair depends on mechanisms that inhibit the angiogenic process after a mature scar is formed, preventing inappropriate expansion of the fibrotic process. Using a canine model of reperfused myocardial infarction, we demonstrated that maturation of the infarct leads to the formation of neovessels, with a thick muscular coat, that demonstrate distinct morphological characteristics. Many of these "neoarterioles" lack a defined internal elastic lamina and demonstrate irregular deposits of extracellular matrix in the media. Vascular mural cells in healing infarcts undergo phenotypic changes, showing minimal expression of desmin during the proliferative phase (1 hr occlusion/7 days reperfusion) but in the mature scar (8 weeks reperfusion) acquire a phenotype similar to that of vascular smooth muscle cells in control areas. Non-muscle myosin heavy chains A and B are induced in infarct endothelial cells and myofibroblasts, respectively, but are not expressed in neovascular mural cells. Recruitment of a muscular coat and formation of neoarterioles in mature scars may inhibit endothelial cell proliferation and vascular sprouting, stabilizing the infarct vasculature.  相似文献   

8.
Historically, great efforts have been made to elucidate the biochemical pathways that direct the complex process of wound healing; however only recently has there been recognition of the importance that mechanical signals play in the process of tissue repair and scar formation. The body's physiologic response to injury involves a dynamic interplay between mechanical forces and biochemical cues which directs a cascade of signals leading ultimately to the formation of fibrotic scar. Fibroblasts are a highly mechanosensitive cell type and are also largely responsible for the generation of the fibrotic matrix during scar formation and are thus a critical player in the process of mechanotransduction during tissue repair. Mechanotransduction is initiated at the interface between the cell membrane and the extracellular matrix where mechanical signals are first translated into a biochemical response. Focal adhesions are dynamic multi-protein complexes through which the extracellular matrix links to the intracellular cytoskeleton. These focal adhesion complexes play an integral role in the propagation of this initial mechanical cue into an extensive network of biochemical signals leading to widespread downstream effects including the influx of inflammatory cells, stimulation of angiogenesis, keratinocyte migration, fibroblast proliferation and collagen synthesis. Increasing evidence has demonstrated the importance of the biomechanical milieu in healing wounds and suggests that an integrated approach to the discovery of targets to decrease scar formation may prove more clinically efficacious than previous purely biochemical strategies.  相似文献   

9.
Distribution of the extracellular matrix glycoprotein tenascin during wound healing in mouse skin was studied immunohistochemically. Within 24 hours after wounding, and preceding the formation of granulation tissue, tenascin appeared in the basement membranes beneath epidermis and hair follicles adjacent to the wound edges and in the wounded edges of cutaneous muscle layer. Granulation tissue began to form in the wound space at about 1-2 days and was immediately covered by epidermis. Tenascin first appeared in the periphery of the granulation tissue beneath healing epidermis and around the wounded edges of cutaneous muscle layer. Then the tenascin-positive area extended into the inner region of granulation tissue. At about 5-7 days, all of the granulation tissue was intensely stained with anti-tenascin serum. Tenascin immunoreactivity decreased as granulation tissue was replaced with reconstructed dermal tissue at 7-14 days. In most cases, tenascin staining persisted longest in the dermis beneath the healing epidermis and at the juncture of healing edges of cutaneous muscle layer. It disappeared at about 10-14 days after wounding. These findings suggest that tenascin may play an important role in the seaming of wounded tissues.  相似文献   

10.
Numerous studies have examined wound healing and tissue repair after a complete tissue rupture and reported provisional matrix and scar tissue formation in the injury gap. The initial phases of the repair are largely mediated by the coagulation response and a principally extrinsic inflammatory response followed by type III collagen deposition to form scar tissue that may be later remodeled. In this study, we examine subfailure (Grade II sprain) damage to collagenous matrices in which no gross tissue gap is present and a localized concentration of provisional matrix or scar tissue does not form. This results in extracellular matrix remodeling that relies heavily upon type I collagen, and associated proteoglycans, and less heavily on type III scar tissue collagen. For instance, following subfailure tissue damage, collagen I and III expression was suppressed after 1 day, but by day 7 expression of both genes was significantly increased over controls, with collagen I expression significantly larger than type III expression. Concurrent with increased collagen expression were significantly increased expression of the collagen fibrillogenesis supporting proteoglycans fibromodulin, lumican, decorin, the large aggregating proteoglycan versican, and proteases cathepsin K and L. Interestingly, this remodeling process appears intrinsic with little or no inflammation response as damaged tissues show no changes in macrophage or neutrophils levels following injury and expression of the inflammatory markers, tumor necrosis factor-alpha and tartrate-resistant acid phosphatase were unchanged. Hence, since inflammation plays a large role in wound healing by inducing cell migration and proliferation, and controlling extracellular matrix scar formation, its absence leaves fibroblasts to principally direct tissue remodeling. Therefore, following a Grade II subfailure injury to the collagen matrix, we conclude that tissue remodeling is fibroblast-mediated and occurs without scar tissue formation, but instead with type I collagen fibrillogenesis to repair the tissue. As such, this system provides unique insight into acute tissue damage and offers a potentially powerful model to examine fibroblast behavior.  相似文献   

11.
The hypothesis of the present work was that expression of matrix metalloproteinase-13 (MMP-13, collagenase-3) would be induced during conditions involving important matrix remodeling such as ligament maturation, scar healing and joint instability. Therefore, MMP-13 expression in the medial collateral ligament (MCL) during the variable situations of tissue maturation and healing was assessed. MMP-13 expression in three intra-articular connective tissues of the knee (i.e. articular cartilage, menisci and synovium) following the transection of the anterior cruciate ligament of the knee was evaluated at 3 and 8 weeks post-injury. MMP-13 mRNA (semi-quantitative RT-PCR) and protein (immunohistochemistry and Western blotting) were detected in all of the tissues studied. Significantly higher MCL mRNA levels for MMP-13 were detected during the early phases of tissue maturation (i.e. 29 days in utero and 2-month-old rabbits) compared to later phases (5- and 12-month-old rabbits). This pattern of expression was recapitulated following MCL injury, with very high levels of expression in scar tissue at 3 weeks post-injury and then a decline to levels not significantly different from control values by 14 weeks. Elevated mRNA levels correlated with increased protein levels for MMP-13 in both menisci and synovium following the transection of the anterior cruciate ligament and during medial collateral ligament healing. These results indicate that MMP-13 expression is regulated by a number of variables and that high levels of expression occur in situations when connective tissue remodeling is very active.  相似文献   

12.
Denervation degrades normal ligament properties and impairs ligament healing. This suggests that secreted neuromediators, such as neuropeptides, could be modulating cell metabolism in ligament and scar tissue. To test this hypothesis we investigated the effect of exogenous substance P (SP), neuropeptide Y (NPY) or calcitonin gene-related peptide (CGRP) on the mRNA levels for proteins associated with inflammation, angiogenesis, and matrix production in tissue-cultured specimens of normal and injured medial collateral ligament. SP and NPY induced increased mRNA levels for several inflammatory mediators in the 2-week post-injury specimens. All three neuropeptides induced decreases in mRNA levels for healing-associated growth factors and matrix molecules, including basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and collagen types I and III. The results indicate that neuropeptides strongly influence the metabolic activity of cells in healing ligament, particularly at early time points after injury.  相似文献   

13.
The causes of fibrosis, or the inappropriate wound healing, that follows chronic intestinal inflammation are not well defined and likely involve the contributions of multiple cellular mechanisms. As other articles in this series confirm, inflammatory cytokines clearly play a role in driving cell differentiation to the myofibroblast phenotype, promoting proliferation and extracellular matrix deposition that are characteristic of fibrotic tissue. However, controlling the balance of cytokines produced and process of myofibroblast differentiation appears to be more complex. This review considers ways in which hyaluronan, an extracellular matrix component that is remodeled during the progression of colitis, may provide indirect as well as direct cues that influence the balancing act of intestinal wound healing.  相似文献   

14.
Skin wound healing is a complex biological process that requires the regulation of different cell types, including immune cells, keratinocytes, fibroblasts, and endothelial cells. It consists of 5 stages: hemostasis, inflammation, granulation tissue formation, re-epithelialization, and wound remodeling. While inflammation is essential for successful wound healing, prolonged or excess inflammation can result in nonhealing chronic wounds. Lactoferrin, an iron-binding glycoprotein secreted from glandular epithelial cells into body fluids, promotes skin wound healing by enhancing the initial inflammatory phase. Lactoferrin also exhibits anti-inflammatory activity that neutralizes overabundant immune response. Accumulating evidence suggests that lactoferrin directly promotes both the formation of granulation tissue and re-epithelialization. Lactoferrin stimulates the proliferation and migration of fibroblasts and keratinocytes and enhances the synthesis of extracellular matrix components, such as collagen and hyaluronan. In an in vitro model of wound contraction, lactoferrin promoted fibroblast-mediated collagen gel contraction. These observations indicate that lactoferrin supports multiple biological processes involved in wound healing.  相似文献   

15.

Background  

During wound repair, fibroblasts orchestrate replacement of the provisional matrix formed during clotting with tenascin, cellular fibronectin and collagen III. These, in turn, are critical for migration of endothelial cells, keratinocytes and additional fibroblasts into the wound site. Fibroblasts are also important in the deposition of collagen I during scar formation. The CXC chemokine chicken Chemotactic and Angiogenic Factor (cCAF), is highly expressed by fibroblasts after wounding and during development of the granulation tissue, especially in areas where extracellular matrix (ECM) is abundant. We hypothesized that cCAF stimulates fibroblasts to produce these matrix molecules.  相似文献   

16.
Targeting connexin43 expression accelerates the rate of wound repair   总被引:6,自引:0,他引:6  
The repair of tissue damage is a key survival process in all organisms and involves the coordinated activation of several cell types. Cell-cell communication is clearly fundamental to this process, and a great deal is known about extracellular communication within the wound site via cytokines. Here we show that direct cell-cell communication through connexin 43 (Cx43) gap junction channels also plays a major role in the wound healing process. In two different wound healing models, incisional and excisional skin lesions, we show that a single topical application of Cx43 antisense gel brings about a transient downregulation of Cx43 protein levels, and this results in a dramatic increase in the rate of wound closure. Cx43 knockdown reduces inflammation, seen both macroscopically, as a reduction in swelling, redness, and wound gape, and microscopically, as a significant decrease in neutrophil numbers in the tissue around the wound. One long-term consequence of the improved rate of healing is a significant reduction in the extent of granulation tissue deposition and the subsequent formation of a smaller, less distorted, scar. This approach is likely to have widespread therapeutic applications in other injured tissues and opens up new avenues of research into improving the wound healing process.  相似文献   

17.
18.
The ratio of matrix metalloproteinases (MMPs) to the tissue inhibitors of metalloproteinases (TIMPs) in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt) demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM) remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice.  相似文献   

19.
Xenopus froglets can perfectly heal skin wounds without scarring. To explore whether this capacity is maintained as development proceeds, we examined the cellular responses during the repair of skin injury in 8‐ and 15‐month‐old Xenopus laevis. The morphology and sequence of healing phases (i.e., inflammation, new tissue formation, and remodeling) were independent of age, while the timing was delayed in older frogs. At the beginning of postinjury, wound re‐epithelialization occurred in form of a thin epithelium followed by a multilayered epidermis containing cells with apoptotic patterns and keratinocytes stained by anti‐inducible nitric oxide synthase (iNOS) antibody. The inflammatory response, early activated by recruitment of blood cells immunoreactive to anti‐tumor necrosis factor (TNF)‐α, iNOS, transforming growth factor (TGF)‐β1, and matrix metalloproteinase (MMP)‐9, persisted over time. The dermis repaired by a granulation tissue with extensive angiogenesis, inflammatory cells, fibroblasts, and anti‐α‐SMA positive myofibroblasts. As the healing progressed, wounded areas displayed vascular regression, decrease in cellularity, and rearrangement of provisional matrix. The epidermis restored to a prewound morphology while granulation tissue was replaced by a fibrous tissue in a scar‐like pattern. The quantitative PCR analysis demonstrated an up‐regulated expression of Xenopus suppressor of cytokine signaling 3 (XSOCS-3) and Xenopus transforming growth factor-β2 (XTGF-β2) soon after wounding and peak levels were detected when granulation tissue was well developed with a large number of inflammatory cells. The findings indicate that X. laevis skin wound healing occurred by a combination of regeneration (in epidermis) and repair (in dermis) and, in contrast to froglet scarless wound healing, the growth to a more mature adult stage is associated with a decrease in regenerative capacity with scar‐like tissue formation. J. Morphol. 274:956–964, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Early gestation mammalian fetuses possess the remarkable ability to heal cutaneous wounds in a scarless fashion. Over the past 20 years, scientists have been working to decipher the mechanisms underlying this phenomenon. Much of the research to date has focused on fetal correlates of adult wound healing that promote fibrosis and granulation tissue formation. It is important to remember, however, that wound repair consists of a balance between tissue synthesis, deposition, and degradation. Relatively little attention has been paid to this latter component of the fetal wound healing process.In this study, we examined the ontogeny of ten matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in nonwounded fetal rat skin and fibroblasts as a function of gestational age. We used a semiquantitative polymerase chain reaction protocol to analyze these important enzymes at time points that represent both the scarless and scar-forming periods of rat gestation. The enzymes evaluated were collagenase-1 (MMP-1), stromelysin-1 (MMP-3), gelatinase A (MMP-2), gelatinase B (MMP-9), membrane-type matrix metalloproteinases (MT-MMPs) 1, 2, and 3, and TIMPs 1, 2, and 3.Results demonstrated marked increases in gene expression for MMP-1, MMP-3 and MMP-9 that correlated with the onset of scar formation in nonwounded fetal skin. Similar results were noted in terms of MMP-9 gene expression in fetal fibroblasts. These results suggest that differences in the expression of these matrix metalloproteinases may have a role in the scarless wound healing phenotype observed early in fetal rat gestation. Furthermore, our data suggest that the differential expression of gelatinase B (MMP-9) may be mediated by the fetal fibroblasts themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号