首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP-binding proteinwith low PI) is a 29 kDa mitochondrial precursor protein,which is proteolytically processed in mitochondriainto a 23 kDa mature protein.It is released from the mitochondrial intermembrane space to cytosol after anapoptotic trigger.Smac/DIABLO acts as a dimer and it contributes to caspase activation by sequestering theinhibitor of apoptosis proteins (IAPs).In order to further investigate the mechanism of Smac/DIABLOaction,we used the mature form of Smac/DIABLO as a bait and screened proteins that interact with matureSmac/DIABLO in human liver cDNA library using the yeast two-hybrid system.Forty-two colonies wereobtained after 5.8x 10~6 colonies were screened by nutrition limitation and X-galactosidase assay.After DNAsequence analysis and homology retrieval,one of the candidate proteins was identified as TRAF domain ofthe TNF receptor associated factor 3 (TRAF3).The interaction site between TRAF3 and Smac/DIABLOwas identified by β-galactosidase test. The interaction between TRAF3 and Smac/DIABLO via TRAF domainwas identified in vivo by co-immunoprecipitation in HepG2 cells,and the direct interaction between TRAF3and Smac/DIABLO in vitro was identified by GST-pull down assay.Co-expression of TRAF3 and matureSmac/DIABLO in 293 cells could enhance the Smac/DIABLO-mediated apoptosis.These results suggestedthat TRAF3 interacted with Smac/DIABLO via TRAF domain,leading to an increased proapoptotic effectof Smac/DIABLO in cytoplasm.  相似文献   

2.
目的:观察大鼠供心不同时程低温保存后线粒体Smac/DIABLO蛋白表达的差异。方法:根据不同的低温保存时程,SD大鼠随机分5组(n=8)。采用Langendorff离体鼠心灌注法停搏大鼠心脏,检测心脏在4℃条件下celsior保存液中分别保存0、3、6、9、12h后,心肌细胞线粒体内超氧化物岐化酶(SOD)活性和丙二醛(MDA)含量的变化。并采用Westom blotting蛋白印迹分析法观察心肌细胞Smac/DIABLO蛋白表达情况,原位末端标记(TUNEL)染色法检测心肌细胞凋亡。结果:①随着低温保存时间的延长,心肌细胞线粒体内SOD活性随之降低,MDA含量随之升高,心肌细胞凋亡指数也逐渐增高。②随着低温保存时间的延长,Smac/DIABLO蛋白表达逐渐增多,至低温保存6h后最为显著,随后又逐渐减弱。结论:随着低温保存时间的延长,可能由于心肌细胞抗氧自由基的能力逐步减弱,致使诱导细胞凋亡的心肌线粒体Smac/DIABLO蛋白表达逐渐增强,心肌细胞凋亡逐渐增多。  相似文献   

3.
DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9   总被引:8,自引:0,他引:8  
MIHA is an inhibitor of apoptosis protein (IAP) that can inhibit cell death by direct interaction with caspases, the effector proteases of apoptosis. DIABLO is a mammalian protein that can bind to IAPs and antagonize their antiapoptotic effect, a function analogous to that of the proapoptotic Drosophila molecules, Grim, Reaper, and HID. Here, we show that after UV radiation, MIHA prevented apoptosis by inhibiting caspase 9 and caspase 3 activation. Unlike Bcl-2, MIHA functioned after release of cytochrome c and DIABLO from the mitochondria and was able to bind to both processed caspase 9 and processed caspase 3 to prevent feedback activation of their zymogen forms. Once released into the cytosol, DIABLO bound to MIHA and disrupted its association with processed caspase 9, thereby allowing caspase 9 to activate caspase 3, resulting in apoptosis.  相似文献   

4.
During apoptosis, a key event is the release of Smac/DIABLO (an inhibitor of XIAP) and cytochrome c (Cyt-c, an activator of caspase-9) from mitochondria to cytosol. It was not clear, however, whether the releasing mechanisms of these two proteins are the same. Using a combination of single living-cell analysis and immunostaining techniques, we investigated the dynamic process of Smac and Cyt-c release during UV-induced apoptosis in HeLa cells. We found that YFP-labeled Smac and GFP-labeled Cyt-c were released from mitochondria in the same time window, which coincided with the mitochondrial membrane potential depolarization. Furthermore, using immunostaining, we found that the endogenous Smac and Cyt-c were always released together within an individual cell. Finally, when cells were pre-treated with caspase inhibitor (z-VAD-fmk) to block caspase activation, the process of Smac release, like that of Cyt-c, was not affected. This was true for both YFP-labeled Smac and endogenous Smac. These results suggest that in HeLa cells, both Smac and Cyt-c are released from mitochondria during UV-induced apoptosis through the same permeability transition mechanism, which we believe is triggered by the aggregation of Bax in the outer mitochondrial membrane to form lipid-protein complex.  相似文献   

5.
Mitochondria play a pivotal role during stress-induced apoptosis as several proapoptotic proteins are released to the cytosol to activate caspases. Smac/DIABLO is one of the proapoptotic proteins released from the mitochondria and has been shown to inactivate IAPs. However, gene knockout studies in mice revealed a redundant role for Smac during development and cell death. By applying RNA interference-mediated loss of function approach, we demonstrate that Smac/DIABLO is required for the activation of effector but not initiator caspases during stress and receptor-mediated cell death in HeLa cells. Cells with reduced Smac resist apoptosis and retained clonogenicity. Our results suggest an obligatory role for Smac/DIABLO in these tumor cells during several pathways of apoptosis induction.  相似文献   

6.
The protein Survivin is selectively overexpressed in a variety of cancers, but not in normal tissues. It has been reported to be involved in cell survival and cell division. However, the molecular mechanisms involved in its function are not clear, although several binding partner proteins have been proposed to date. Here, we report the identification of a novel small molecule Survivin antagonist, which disrupts the Survivin-Smac/DIABLO interaction in cells. In order to identify Survivin-directed antagonists, we developed a high-throughput screening system based on AlphaScreen technology, which allows the identification of small molecules with the ability to inhibit the interaction of Survivin with Smac/DIABLO or INCENP in vitro. We screened chemical libraries, generated in-house, using this system and identified a 5-deazaflavin analog (compound 1) as a hit compound that selectively inhibited the interaction of Survivin with Smac/DIABLO but not INCENP. In cultured cells, compound 1 abrogated the formation of the complex between Survivin and Smac/DIABLO. In addition, this compound was able to sensitize cultured cells to doxorubicin-mediated DNA damage stress and synergistically enhance apoptotic cell death. Thus, the small-molecule inhibitor described here may serve as a proof-of-principle agent for discriminating between the multiple functions of Survivin.  相似文献   

7.
We have constructed Ad CMV-Smac, a recombinant adenovirus encoding Smac/DIABLO, the recently described second mitochondrial activator of caspases. Transfection of ovarian carcinoma cells with Ad CMV-Smac at multiplicities of infection of 3-60 pfu/cell leads to increasing apoptosis in a dose-dependent manner. Western blot analysis confirms that Smac-induced apoptosis proceeds via a pathway mediated primarily by caspase-9 that can be inhibited by zLEHD-fmk and overexpression of the X-linked inhibitor of apoptosis protein (XIAP). In contrast, there is no cleavage of either caspase-8 or caspase-12. Ad CMV-Smac appears to induce apoptosis independently of cytochrome c release from mitochondria and is not inhibited by overexpression of Bcl-2. Ad CMV-Smac can combine with other proapoptotic factors, such as cisplatin, paclitaxel, and procaspase-3, to produce greater levels of apoptosis in transfected cells.  相似文献   

8.
Smac/DIABLO在过氧化氢所致C2C12肌原细胞凋亡中的作用   总被引:2,自引:0,他引:2  
为探讨Smac/DIABLO在过氧化氢 (H2 O2 )所致C2 C12 肌原细胞凋亡中的作用 ,采用Hoechst 3 3 2 58染色 ,观察H2 O2 (0 5mmol/L)处理C2 C12 肌原细胞不同时间后 ,细胞核形态学改变并计算凋亡核百分率 ,DNA抽提及琼脂糖电泳观察凋亡特征性梯状带 ,利用细胞成分分离后蛋白质印迹分析H2 O2 是否导致Smac/DIABLO从线粒体释放 ,采用Caspase检测试剂盒及蛋白质印迹分析Caspase 3和Caspase 9的活化 ,转染Smac/DIABLO基因 ,观察Smac/DIABLO过表达对H2 O2 所致的C2 C12 肌原细胞凋亡的影响 .结果表明 :H2 O2 处理 1h后 ,Smac/DIABLO从C2 C12 肌原细胞线粒体释放入胞浆 ,2h更明显 ;H2 O2 处理 4h后 ,Caspase 3和Caspase 9活化 ,12h达高峰 ;H2 O2 处理 2 4h后 ,C2 C12 肌原细胞显示特征性的凋亡形态改变 ,凋亡核百分率明显升高 ,DNA电泳出现明显“梯状”条带 .与单纯过氧化氢损伤组相比 ,Smac/DIABLO高表达的C2 C12 肌原细胞经过氧化氢损伤组的Caspase 3和Caspase 9的活化、凋亡核百分率的升高、“梯状”条带的出现均更明显 .结果表明 ,H2 O2 可导致Smac/DIABLO从C2 C12 肌原细胞线粒体释放 ,促进Caspase 9和Caspase 3的活化而促进细胞凋亡的发生  相似文献   

9.
Apoptotic response of keratinocytes to UVB irradiation has physiological significance on photocarcinogenesis. Here, we show that the sustained release of Smac/DIABLO from mitochondria is an important event for the onset of apoptosis in keratinocytes exposed to UVB irradiation. In human keratinocyte HaCaT cells, UVB irradiation at 500 J/m2, but not at 150 J/m2, induces apoptosis. Significant activations of caspases-9 and -3, and slight activation of caspase-7 were observed only in 500 J/m2 UVB irradiated HaCaT cells. Correspondingly, the cleavage of PARP, a substrate of caspases-3 and -7, was detected in cells irradiated at 500 J/m2 UVB, but not at 150 J/m2. However, with both 150 and 500 J/m2 UVB irradiation, cytochrome c, an activator of caspase-9 via the formation of apoptosome, was released from mitochondria to the cytosol at the same extent. In contrast, significant amounts of Smac/DIABLO are released from mitochondria to the cytosol only with 500 J/m2 UVB irradiation, and that the level of XIAP is decreased. These results suggest that the extent of Smac/DIABLO efflux from mitochondria is a determinant whether a cell will undergo apoptosis or survival.  相似文献   

10.
Smac/DIABLO, a pro-apoptotic protein released from mitochondrial intermembrane space during apoptosis, promotes caspase activation by IAPs neutralization. The kinetics and molecular mechanism of Smac/DIABLO release from mitochondria has remained obscure. Homeostatic confocal microscopy, for the first time, showed the precise kinetics of Smac/DIABLO release from mitochondria during CPT-induced apoptosis in living MCF-7 cells. The time pattern of Smac/DIABLO escape from mitochondria comprised two phases: the initial phase of gradual protein release, followed by the second phase of plateau, appearing after 24 min of cell exposure to the drug. A similar pattern was observed during oxidative stress. The dynamics of Smac/DIABLO redistribution was confirmed by different methods: traditional confocal microscopy, immunoelectron microscopy and laser scanning cytometry. The inhibition of m-calpain prevented Smac/DIABLO release from mitochondria, which confirmed the involvement of Bax in the process. Acquired results indicate that CPT treatment triggers Bax-dependent release of Smac/DIABLO from mitochondria simultaneously with the efflux of cytochrome c.  相似文献   

11.
Resistance to apoptosis is afforded by inhibitor of apoptosis proteins (IAPs) which bind to and inhibit the caspases responsible for cleavage of substrates leading to apoptotic cell death. Smac (or DIABLO), a proapoptotic protein released from the mitochondrial intermembrane space into the cytosol, promotes apoptosis by binding to IAPs, thus reversing their inhibitory effects on caspases. We have developed a high-throughput fluorescence polarization assay utilizing a fluorescein-labeled peptide similar to the "IAP binding" domain of Smac N terminus complexed with the BIR3 domain of X-linked IAP (XIAP) to identify small-molecule mimics of the action of Smac. The IC(50)s of peptides and a tetrapeptidomimetic homologous to the N terminus of Smac demonstrated the specificity and utility of this assay. We have screened the National Cancer Institute "Training Set" of 230 compounds, with well-defined biological actions, and the "Diversity Set" of 2000 chemically diverse structures for compounds which significantly reduced fluorescence polarization. Highly fluorescing or fluorescence-quenching compounds (false positives) were distinguished from those which interfered with Smac peptide binding to the XIAP-BIR3 in a dose-dependent manner (true positives). This robust assay offers potential for high-throughput screening discovery of novel compounds simulating the action of Smac/DIABLO.  相似文献   

12.
Traditional methods of visualization and analysis based on fixed cell populations treated with the drug for a different time give the limited possibility of time-sequence analysis. In time-lapse microscopy where the whole cell is observed regardless to intracellular structure, precise localization of events and differentiation between colocalization and overlapping of the fluorescence is impossible. Furthermore prolonged experiments with living cells increased the influence of improper environmental conditions. Homeostatic confocal microscopy gives an exceptional insight into minute pattern of changes occurring in the same living cell maintained in stable conditions during whole experimental period. It is built on a confocal system equipped with the homeostatic chamber providing constant, monitored heating and moisturized, CO2-enriched atmosphere during long period observations. In the present study 2D/time and 4D homeostatic confocal microscopy were applied for analysis of minute pattern of changes occurring at the mitochondria. The release of Smac/DIABLO from mitochondria in tumor cells under the apoptogenic stimulus, consist of two phases: the first immediately after drug administration, and the major second one after 15 min. Furthermore the time-pattern of BAX translocation to the mitochondria and Smac/DIABLO release coincide, suggesting that the release of Smac/DIABLO is correlated with BAX translocation to the mitochondria.  相似文献   

13.
Smac/DIABLO在过氧化氢所致C2C12肌原细胞凋亡中的作用   总被引:4,自引:0,他引:4  
为探讨Smac/DIABLO在过氧化氢(H2O2)所致C2C12肌原细胞凋亡中的作用,采用Hoechst 33258染色,观察H2O2 (0.5 mmol/L)处理C2C12肌原细胞不同时间后,细胞核形态学改变并计算凋亡核百分率,DNA抽提及琼脂糖电泳观察凋亡特征性梯状带,利用细胞成分分离后蛋白质印迹分析H2O2是否导致Smac/DIABLO从线粒体释放,采用Caspase检测试剂盒及蛋白质印迹分析Caspase-3和Caspase-9的活化,转染Smac/DIABLO基因,观察Smac/DIABLO过表达对H2O2所致的C2C12肌原细胞凋亡的影响.结果表明:H2O2处理1 h后,Smac/DIABLO从C2C12肌原细胞线粒体释放入胞浆,2 h更明显;H2O2处理4 h后,Caspase-3和Caspase-9活化,12 h达高峰;H2O2处理24 h后,C2C12肌原细胞显示特征性的凋亡形态改变,凋亡核百分率明显升高,DNA电泳出现明显“梯状”条带.与单纯过氧化氢损伤组相比,Smac/DIABLO高表达的C2C12肌原细胞经过氧化氢损伤组的Caspase-3和Caspase-9的活化、凋亡核百分率的升高、“梯状”条带的出现均更明显.结果表明,H2O2可导致Smac/DIABLO从C2C12肌原细胞线粒体释放,促进Caspase-9和Caspase-3的活化而促进细胞凋亡的发生.  相似文献   

14.
Li TF  Luo YM  Lu CZ 《生理学报》2004,56(2):172-177
应用红藻氨酸(kainic acid,KA)诱导的大鼠边缘叶癫痫发作模型,检测第二个线粒体源的半胱天冬蛋白酶激活物,直接与凋亡抑制蛋白结合的低等电点蛋白(second mitochondrial activator of caspases/direct inhibitor of apoptosis protein-binding protein of low isoelectric point[PI],Smac/DIABLO)和X染色体连锁的凋亡抑制蛋白(X-chromosome-linked inhibitor of apoptosis protein,XIAP)在癫痫大鼠海马神经元表达。单侧杏仁核内注射KA诱导癫痫发作,1h后用安定终止发作,然后分别用TUNEL染色和cresyl violet染色观察海马神经元存活和凋亡的变化,用免疫荧光和Western blot检测海马Smac/DIABLO、XIAP和半胱天冬蛋白酶-9(caspase-9)的表达。结果表明,发作终止2h时KA注射同侧海马CA3区细胞浆内Smac/DIABLO蛋白表达增加,4h时caspase-9出现裂解片断,8h时出现TUNEL阳性细胞,24h时达高峰。脑室内注射caspase-9抑制剂z-LEHD-fluoromethyl ketone(z-LEHD-fmk)可减少TUNEL阳性细胞,增加存活神经元。发作后KA注射同侧海马CA3区神经元caspase-9免疫反应性增强,Smac/DIABLO和XIAP弥散于整个神经元内。对侧海马未检测到TUNEL阳性细胞及Smac/DIABLO和XIAP蛋白的上述变化。以上结果提示,癫痫发作可诱导Smac/DIABLO蛋白从线粒体向细胞浆的移位、XIAP亚细胞分布改变和caspase-9的激活,Smac/DIABLO、XIAP和caspase-9可能参与了癫痫神经元损伤的病理生理机制,caspase-9可能是潜在的治疗靶点。  相似文献   

15.
Redistribution of cytochrome c and Smac/DIABLO from mitochondria occurs during apoptosis, although the relative timing of their release is not well characterized. Double immunocytochemistry was utilized here to study quantitatively the patterns of release of cytochrome c and Smac/DIABLO from mitochondria in single cells. Human osteosarcoma cells and murine embryonic cortical neurons were analyzed during apoptosis induced by staurosporine. In osteosarcoma cells treated with staurosporine for 24 h, a substantial proportion of cells (36%) released cytochrome c from the mitochondria before Smac/DIABLO. In contrast, these proteins were released mostly concordantly in neurons; only a minority of cells (< or = 15%) released cytochrome c without Smac/DIABLO (or vice versa) from mitochondria. Patterns of release in either cell type were unaltered by addition of the caspase inhibitor, zVAD-fmk. The double immunocytochemistry procedure facilitated clear definition of the temporal release of cytochrome c and Smac/DIABLO from mitochondria in intact apoptotic cells, enabling us to demonstrate for the first time that their mutual redistribution during apoptosis varies between different cell types.  相似文献   

16.
The synthesis of novel N-heterocyclic carbene complexes derived from a tripeptide ligand (L), containing non-natural amino acid, thiazolylalanine is described here. The peptide ligand was reacted with suitable precursors to generate gold and mercury carbene complexes. The plausible structures of both complexes were predicted by spectroscopic data and DFT calculations. The binding energy data was also analyzed to predict their stability. The gold carbene complex (1A), showed activity against MCF7 breast cancer cell line due to mitochondrial triggered caspase-3 mediated programmed cell death. Its internalization inside cells could be observed due to autofluorescence. This study affords a methodology for successful generation of peptide carbene complexes for their therapeutic potential.  相似文献   

17.
Evasion of apoptosis, for example, by inhibitor of apoptosis (IAP) proteins, contributes to treatment resistance and poor outcome in acute myeloid leukemia (AML). Here we identify a novel synergistic interaction between the small-molecule second mitochondria-derived activator of caspases (Smac) mimetic BV6, which antagonizes X-linked IAP, cellular IAP (cIAP)1 and cIAP2, and the demethylating agents 5-azacytidine or 5-aza-2′-deoxycytidine (DAC) to induce cell death in AML cells, including apoptosis-resistant cells. Calculation of combination index (CI) confirms that this drug combination is highly synergistic (CI 0.02–0.4). In contrast, BV6 and DAC at equimolar concentrations do not cause synergistic toxicity against normal peripheral blood lymphocytes, pointing to some tumor cell selectivity. Molecular studies reveal that BV6 and DAC cooperate to trigger the activation of caspases, mitochondrial perturbations and DNA fragmentation, consistent with apoptotic cell death. However, the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to protect against BV6/DAC-induced cell death and even significantly increases the percentage of Annexin-V/propidium iodide double-positive cells. Importantly, BV6/DAC-induced cell death in the presence of zVAD.fmk is significantly reduced by pharmacological inhibition of key components of necroptosis signaling, that is, receptor-interacting protein (RIP) 1 using necrostatin-1 or mixed lineage kinase domain-like protein (MLKL) using necrosulfonamide. This indicates a switch from BV6/DAC-induced cell death from apoptosis to necroptosis upon caspase inhibition. Thus, BV6 cooperates with demethylating agents to induce cell death in AML cells and circumvents apoptosis resistance via a switch to necroptosis as an alternative mode of cell death. The identification of a novel synergism of BV6 and demethylating agents has important implications for the development of new treatment strategies for AML.  相似文献   

18.
Caspase-3在roscovitine诱发PC12细胞凋亡中发挥重要作用   总被引:6,自引:0,他引:6  
Gao JX  Zhou YQ  Zhang RH  Ma XL  Liu KJ 《生理学报》2005,57(6):755-760
我们已证实周期蛋白激酶(cyclin-dependent kinases)cdk2、cdc2和cdk5抑制剂roscovitine诱导PC12细胞凋亡。本实验应用caspase-3免疫细胞化学与hoechst 33342荧光化学双标、MTT比色法细胞活性测定和Western blot方法,研究了caspase-3在roscovitine所致PC12细胞凋亡中的作用。结果显示,roscovitine(50μmol/L)处理PC12细胞12h,细胞核染色质凝缩及核碎片形成,同时胞浆中出现caspase-3阳性标志,caspase-3阳性细胞占细胞总数的42%。非特异性caspases抑制剂Z-VAD-FMK(50μmol/L)和caspase-3特异性抑制剂Z-DEVD-FMK(100μmol/L)可部分降低roscovitine所致的细胞死亡,使细胞存活率分别由29.03%(roscovitine)增至58.06%(Z-VAD-FMK+roscovitine)和45.16%(Z-DEVD-FMK+roscovitine):用单克隆non-erythroid α-spectrin抗体检测roscovitine处理组细胞匀浆提取液,表明caspase-3裂解的特异性spectfin 120kDa蛋白产物较对照组显著增加。提示细胞凋亡成分caspases参与roscovitine所敛的细胞凋亡,其中caspase-3发挥重要作用。  相似文献   

19.
Overactivation of certain K(+) channels can mediate excessive K(+) efflux and intracellular K(+) depletion, which are early ionic events in apoptotic cascade. The present investigation examined a possible role of the KCNQ2/3 channel or M-channel (also named Kv7.2/7.3 channels) in the pro-apoptotic process. Whole-cell recordings detected much larger M-currents (212 ± 31 pA or 10.5 ± 1.5 pA/pF) in cultured hippocampal neurons than that in cultured cortical neurons (47 ± 21 pA or 2.4 ± 0.8 pA/pF). KCNQ2/3 channel openers N-ethylmaleimide (NEM) and flupirtine caused dose-dependent K(+) efflux, intracellular K(+) depletion, and cell death in hippocampal cultures, whereas little cell death was induced by NEM in cortical cultures. The NEM-induced cell death was antagonized by co-applied KCNQ channel inhibitor XE991 (10 μM), or by elevated extracellular K(+) concentration. Supporting a mediating role of KCNQ2/3 channels in apoptosis, expression of KCNQ2 or KCNQ2/3 channels in Chinese hamster ovary (CHO) cells initiated caspase-3 activation. Consistently, application of NEM (20 μM, 8 h) in hippocampal cultures similarly caused caspase-3 activation assessed by immunocytochemical staining and western blotting. NEM increased the expression of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), induced mitochondria membrane depolarization, cytochrome c release, formation of apoptosome complex, and apoptosis-inducing factor (AIF) translocation into nuclear. All these events were attenuated by blocking KCNQ2/3 channels. These findings provide novel evidence that KCNQ2/3 channels could be an important regulator in neuronal apoptosis.  相似文献   

20.
Mitochondrial intermembrane proteins in cell death   总被引:26,自引:0,他引:26  
Apoptosis is a form of programmed cell death important in the development and tissue homeostasis of multicellular organisms. Mitochondria have, next to their function in respiration, an important role in the apoptotic-signaling pathway. Malfunctioning at any level of the cell is eventually translated in the release of apoptogenic factors from the mitochondrial intermembrane space resulting in the organized demise of the cell. Some of these factors, such as AIF and endonuclease G, appear to be highly conserved during evolution. Other factors, like cytochrome c, have gained their apoptogenic function later during evolution. In this review, we focus on the role of cytochrome c, AIF, endonuclease G, Smac/DIABLO, Omi/HtrA2, Acyl-CoA-binding protein, and polypyrimidine tract-binding protein in the initiation and modulation of cell death in different model organisms. These mitochondrial factors may contribute to both caspase-dependent and caspase-independent processes in apoptotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号