首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A number of gram-negative bacteria have a quorum-sensing system and produce N-acyl-l-homoserine lactone (AHL) that they use them as a quorum-sensing signal molecule. Pantoea ananatis is reported as a common colonist of wheat heads at ripening and causes center rot of onion. In this study, we demonstrated that P. ananatis SK-1 produced two AHLs, N-hexanoyl-l-homoserine lactone (C6-HSL) and N-(3-oxohexanoyl)-l-homoserine lactone (3-oxo-C6-HSL). We cloned the AHL-synthase gene (eanI) and AHL-receptor gene (eanR) and revealed that the deduced amino acid sequence of EanI/EanR showed high identity to those of EsaI/EsaR from P. stewartii. EanR repressed the ean box sequence and the addition of AHLs resulted in derepression of ean box. Inactivation of the chromosomal eanI gene in SK-1 caused disruption of exopolysaccharide (EPS) biosynthesis, biofilm formation, and infection of onion leaves, which were recovered by adding exogenous 3-oxo-C6-HSL. These results demonstrated that the quorum-sensing system involved the biosynthesis of EPS, biofilm formation, and infection of onion leaves in P. ananatis SK-1.  相似文献   

2.
3.
Sphingosine kinases (SK) catalyze the phosphorylation of proapoptotic sphingosine to the prosurvival factor sphingosine 1-phosphate (S1P), thereby promoting oncogenic processes. Breast (MDA-MB-231), lung (NCI-H358), and colon (HCT 116) carcinoma cells were transduced with shRNA to downregulate SK-1 expression or treated with a pharmacologic SK-1 inhibitor. The effects of SK-1 targeting were investigated by measuring the level of intracellular sphingosine, the activity of protein kinase C (PKC) and cell cycle regulators, and the mitotic index. Functional assays included measurement of cell proliferation, colony formation, apoptosis, and cell cycle analysis. Downregulation of SK-1 or its pharmacologic inhibition increased intracellular sphingosine and decreased PKC activity as shown by reduced phosphorylation of PKC substrates. In MDA-MB-231 cells this effect was most pronounced and reduced cell proliferation and colony formation, which could be mimicked using exogenous sphingosine or the PKC inhibitor RO 31-8220. SK-1 downregulation in MDA-MB-231 cells increased the number of cells with 4N and 8N DNA content, and similar effects were observed upon treatment with sphingosine or inhibitors of SK-1 or PKC. Examination of cell cycle regulators unveiled decreased cdc2 activity and expression of Chk1, which may compromise spindle checkpoint function and cytokinesis. Indeed, SK-1 kd cells entered mitosis but failed to divide, and in the presence of taxol also failed to sustain mitotic arrest, resulting in further increased endoreduplication and apoptosis. Our findings delineate an intriguing link between SK-1, PKC and components of the cell cycle machinery, which underlines the significance of SK-1 as a target for cancer therapy.  相似文献   

4.
5.
Abstract Sphingosine kinases (SKs) are key enzymes regulating the production of sphingosine-1-phosphate (S1P), which determines important cell responses including cell growth and death. Here we show that renal mesangial cells isolated from wild-type, SK-1(-/-), and SK-2(-/-) mice show a differential response to apoptotic stimuli. Wild-type mesangial cells responded to staurosporine with increased DNA fragmentation and caspase-3 processing, which was enhanced in SK-1(-/-) cells. In contrast, SK-2(-/-) cells were highly resistant to staurosporine-induced apoptosis. Furthermore, the basal phosphorylation and activity of the anti-apoptotic protein kinase B (PKB) and of its substrate Bad were decreased in SK-1(-/-) but not in SK-2(-/-) cells. Upon staurosporine treatment, phosphorylation of PKB and Bad decreased in wild-type and SK-1(-/-) cells, but remained high in SK-2(-/-) cells. In addition, the anti-apoptotic Bcl-X(L) was significantly upregulated in SK-2(-/-) cells, which may further contribute to the protective state of these cells. In summary, our data show that SK-1 and SK-2 have opposite effects on the capacity of mesangial cells to resist apoptotic stimuli. This is due to differential modulation of the PKB/Bad pathway and of Bcl-X(L) expression. Thus, subtype-selective targeting of SKs will be critical when considering these enzymes as therapeutic targets for the treatment of inflammation or cancer.  相似文献   

6.
Bacteria that produce exopolysaccharides (EPS) and use methane as the only source of carbon were selected by studying a collection of methanotroph strains: Methylococcus capsulatus E 494, 874, and 3009; M. thermophilus 111p, 112p, and 119p; Methylobacter ucrainicus 159 and 161; M. luteus 57v and 12b; Methylobacter sp. 100; Methylomonas rubra 15 sh and SK-32; Methylosinus trichosporium OV3b, OV5b and 4e; M. sporium 5, 12, A20d, and 90v; and Methylocystis parvus OVVP. Mesophilic methanotroph strains with the ribulose monophosphate way of C1-compound assimilation synthesized EPS more actively than bacteria operating the serine cycle. The dynamics of EPS synthesis by methanotrophs during chemostat cultivation was studied.  相似文献   

7.
The Antarctic basidiomycetous yeast Mrakia blollopis SK-4 can quite uniquely ferment various sugars under low temperature conditions. When strain SK-4 fermented lignocellulosic biomass using the direct ethanol fermentation (DEF) technique, approximately 30% to 65% of the theoretical ethanol yield was obtained without and with the addition of the non-ionic surfactant Tween 80, respectively. Therefore, DEF from lignocellulosic biomass with M. blollopis SK-4 requires the addition of a non-ionic surfactant to improve fermentation efficiency. DEF with lipase converted Eucalyptus and Japanese cedar to 12.6 g/l, and 14.6 g/l ethanol, respectively. In the presence of 1% (v/v) Tween 80 and 5 U/g-dry substrate lipase, ethanol concentration increased about 1.4- to 2.4-fold compared to that without Tween 80 and lipase. We therefore consider that the combination of M. blollopis SK-4 and DEF with Tween 80 and lipase has good potential for ethanol fermentation in cold environments.  相似文献   

8.
9.
10.
Transforming growth factor-β (TGF-β) is central during the pathogenesis of pulmonary fibrosis, in which the plasminogen activator inhibitor-1 (PAI-1) also has an established role. TGF-β is also known to be the strongest inducer of PAI-1. To investigate the link between PAI-1 and TGF-β in fibrotic processes, we evaluated the effect of SK-216, a PAI-1-specific inhibitor, in TGF-β-dependent epithelial-mesenchymal transition (EMT) and fibroblast to myofibroblast differentiation. In human alveolar epithelial A549 cells, treatment with TGF-β induced EMT, whereas co-treatment with SK-216 attenuated the occurrence of EMT. The inhibition of TGF-β-induced EMT by SK-216 was also confirmed in the experiment using murine epithelial LA-4 cells. Blocking EMT by SK-216 inhibited TGF-β-induced endogenous production of PAI-1 and TGF-β in A549 cells as well. These effects of SK-216 were not likely mediated by suppressing either Smad or ERK pathways. Using human lung fibroblast MRC-5 cells, we demonstrated that SK-216 inhibited TGF-β-dependent differentiation of fibroblasts to myofibroblasts. We also observed this inhibition by SK-216 in human primary lung fibroblasts. Following these in vitro results, we tested oral administration of SK-216 into mice injected intratracheally with bleomycin. We found that SK-216 reduced the degree of bleomycin-induced pulmonary fibrosis in mice. Although the precise mechanisms underlying the link between TGF-β and PAI-1 regarding fibrotic process were not determined, PAI-1 seems to act as a potent downstream effector on the pro-fibrotic property of TGF-β. In addition, inhibition of PAI-1 activity by a PAI-1 inhibitor exerts an antifibrotic effect even in vivo. These data suggest that targeting PAI-1 as a downstream effector of TGF-β could be a promising therapeutic strategy for pulmonary fibrosis.  相似文献   

11.
Caulobacters are adherent prosthecate bacteria that are members of bacterial biofouling communities in many environments. Investigation of the cell surface carbohydrates produced by two strains of the freshwater Caulobacter crescentus, CB2A and CB15A, revealed a hitherto undetected extracellular polysaccharide (EPS) or capsule. Isolation and characterization of the EPS fractions showed that each strain produced a unique neutral EPS which could not be readily removed from the cell surface by washing. Monosaccharide analysis showed that the main CB2A EPS contained D-glucose, D-gulose, and D-fucose in a ratio of 3:1:1, whereas the CB15A EPS fraction contained D-galactose, D-glucose, D-mannose, and D-fucose in approximately equal amounts. Methylation analysis of the main CB2A EPS showed the presence of terminal glucose and gulose groups, 3-linked fucosyl, and two 3,4-linked glucosyl units, thus confirming the pentasaccharide repeating unit indicated by 1H nuclear magnetic resonance analysis. Similar studies of the CB15A EPS revealed a tetrasaccharide repeating unit consisting of terminal galactose, 4-linked fucosyl, 3-linked glucosyl, and 3,4-linked mannosyl residues. EPS was not detectable by thin-section electron microscopy techniques, including some methods designed to preserve or enhance capsules, nor was the EPS readily detected on the cell surface by scanning electron microscopy when conventional fixation techniques were used; however, a structure consistent with EPS was revealed when samples were prepared by cryofixation and freeze-substitution methods.  相似文献   

12.
目的利用抑制乳腺癌MDA-MB-231细胞中SK-1基因表达,结合依托泊苷对细胞增殖的影响,研究乳腺癌的治疗新方法。方法将依托泊苷分别处理野生型及SK-1敲除型MDA-MB-231细胞,^3H-TdR掺入法分析细胞增殖,Transwell法分析细胞迁移,Western印迹检测SK-1蛋白表达及细胞周期检验点相关信号因子的蛋白表达,RT-PCR检测细胞内SK-1的mRNA表达量。结果依托泊苷在较高剂量时,MDA-MB-231细胞存活率明显下降,但依托泊苷却呈浓度依赖性促进乳腺癌细胞SK-1 mRNA及蛋白水平表达,将SK-1敲除,细胞迁移率下降,而且可以增强G1期各抑癌基因的激活或高表达,使细胞周期阻滞。结论SK-1基因敲除有效增强肿瘤细胞对化疗药物的敏感性。  相似文献   

13.
Bacteria that produce exopolysaccharides (EPS) and use methane as the only source of carbon were selected by studying a collection of methanotroph strains: Methylococcus capsulatusE 494, 874, and 3009; M. thermophilus111p, 112p, and 119p; Methylobacter ucrainicus159 and 161; M. luteus57v and 12b; Methylobactersp. 100; Methylomonas rubra15 sh and SK-32; Methylosinus trichosporiumOV3b, OV5b, and 4e; M. sporium5,12, A20d, and 90v; and Methylocystis parvusOVVP. Mesophilic methanotroph strains with the ribulose monophosphate way of C1-compound assimilation synthesized EPS more actively than bacteria operating the serine cycle. The dynamics of EPS synthesis by methanotrophs during chemostat cultivation was studied.  相似文献   

14.
The exopolysaccharide (EPS) is an extracellular molecule that in Bradyrhizobium japonicum affects bacterial efficiency to nodulate soybean. Culture conditions such as N availability, type of C-source, or culture age can modify the amount and composition of EPS. To better understand the relationship among these conditions for EPS production, we analyzed their influence on EPS in B. japonicum USDA 110 and its derived mutant ΔP22. This mutant has a deletion including the 3′ region of exoP, exoT, and the 5′ region of exoB, and produces a shorter EPS devoid of galactose. The studies were carried out in minimal media with the N-source at starving or sufficient levels, and mannitol or malate as the only C-source. Under N-starvation there was a net EPS accumulation, the levels being similar in the wild type and the mutant with malate as the C-source. By contrast, the amount of EPS diminished in N-sufficient conditions, being poyhydroxybutyrate accumulated with culture age. Hexoses composition was the same in both N-situations, either with mannitol or malate as the only C-source, in contrast to previous observations made with different strains. This result suggests that the change in EPS composition in response to the environment is not general in B. japonicum. The wild type EPS composition was 1 glucose:0.5 galactose:0.5 galacturonic acid:0.17 mannose. In ΔP22 the EPS had no galactose but had galacturonic acid, thus indicating that it was not produced from oxidation of UDP-galactose. Infectivity was lower in ΔP22 than in USDA 110. When the mutant infectivity was compared between N-starved or N-sufficient cultures, the N-starved were not less infective, despite the fact that the amounts of altered EPS produced by this mutant under N-starvation were higher than in N-sufficiency. Since this altered EPS does not bind soybean lectin, the interaction of EPS with this protein was not involved in increasing ΔP22 infectivity under N-starvation.  相似文献   

15.
A bacterial trehalose phosphorylase (TPase; EC 2.4.1.64) was purified from the culture supernatant of Bacillus stearothermophilus SK-1 to apparent homogeneity, and some properties were investigated. Furthermore, a gene from SK-1 responsible for the TPase was cloned by Southern hybridization with a degenerate oligonucleotide probe synthesized on the basis of the N-terminal sequence of the purified enzyme. The Mr of the enzyme was estimated to be 150,000 by gel filtration and 83,000 by SDS-PAGE, so the enzyme is likely to be a homodimer. The enzyme had optimum activity at pH 7.0-8.0 or nearby and the optimum temperature was about 75 degrees C. The deduced amino acid sequence of the SK-1 TPase encodes a theoretical protein with a Mr of 87,950. Alignment of amino acid sequences with a maltose phosphorylase from Lactobacillus brevis the crystal structure and active site of which had been analyzed suggested that these two phosphorylases evolved from a common ancestor. The Escherichia coli cells harboring the plasmid containing the cloned TPase gene had about 100 times the activity of SK-1.  相似文献   

16.
The genetic similarity of different generations of Neocallimastix frontalis SK was examined by random amplified polymorphic DNA (RAPD) profiling and internal transcribed spacer 1 (ITS1) sequence analysis. N. frontalis SK was subcultured every 2-4 days, and SK-1, SK-3M, and SK-1Y represented N. frontalis SK cultures after one subculture, 50 subcultures, and 150 subcultures. The DNA polymorphisms of the different N. frontalis SK generations were compared by RAPD profiling. The RAPD results gave the same patterns for SK-1, SK-3M and SK-1Y using 12 selected random primers. The partial 18S rDNA, 5.8S rDNA, and ITS1 regions of different generations of N. frontalis SK were amplified and sequenced. The results of alignment and pairwise similarity indicated that the analyzed rRNA sequences of SK-1, SK-3M and SK-1Y were totally identical. This study thus demonstrated genetically identical DNA polymorphisms by RAPD profiling and an unvaried ITS1 region for N. frontalis SK when the strain is subcultured frequently. This suggests that this strain is homokaryotic and grows via an asexual life cycle in vitro.  相似文献   

17.
Obligately commensal interaction between a new gram-negative thermophile and a thermophilic Bacillus strain was investigated. From compost samples, a mixed culture showing tyrosine phenol-lyase activity was enriched at 60°C. The mixed culture consisted of a thermophilic gram-negative strain, SC-1, and a gram-positive spore-forming strain, SK-1. In mixed cultures, strain SC-1 started to grow only when strain SK-1 entered the stationary phase. Although strain SC-1 showed tyrosine phenol lyase activity, we could not isolate a colony with any nutrient medium. For the isolation and cultivation of strain SC-1, we added culture supernatant and cell extract of the mixed culture to the basal medium. The supernatant and cell extract of the mixed culture contained heat-stable and heat-labile factors, respectively, that are essential to the growth of strain SC-1. During pure cultures of strain SK-1, the heat-stable growth factors were released during the growth phase and the heat-labile growth factors were produced intracellularly at the early stationary phase. Strain SC-1 was gram-negative and microaerophilic, and grows optimally at 60°C. Based on these results, we propose a novel commensal interaction between a new gram-negative thermophile, strain SC-1, and Bacillus sp. strain SK-1. Received: November 18, 1999 / Accepted: December 2, 1999  相似文献   

18.
Karr DB  Liang RT  Reuhs BL  Emerich DW 《Planta》2000,211(2):218-226
 The exact mechanism(s) of infection and symbiotic development between rhizobia and legumes is not yet known, but changes in rhizobial exopolysaccharides (EPSs) affect both infection and nodule development of the legume host. Early events in the symbiotic process between Bradyrhizobium japonicum and soybean (Glycinemax [L.] Merr.) were studied using two mutants, defective in soybean lectin (SBL) binding, which had been generated from B. japonicum 2143 (USDA 3I-1b-143 derivative) by Tn5 mutagenesis. In addition to their SBL-binding deficiency, these mutants produced less EPS than the parental strain. The composition of EPS varied with the genotype and with the carbon source used for growth. When grown on arabinose, gluconate, or mannitol, the wild-type parental strain, B. japonicum 2143, produced EPS typical of DNA homology group I Bradyrhizobium, designated EPS I. When grown on malate, strain 2143 produced a different EPS composed only of galactose and its acetylated derivative and designated EPS II. Mutant 1252 produced EPS II when grown on arabinose or malate, but when grown on gluconate or mannitol, mutant 1252 produced a different EPS comprised of glucose, galactose, xylose and glucuronic acid (1:5:1:1) and designated EPS III. Mutant 1251, grown on any of these carbon sources, produced EPS III. The EPS of strain 2143 and mutant 1252 contained SBL-binding polysaccharide. The amount of the SBL-binding polysaccharide produced by mutant 1252 varied with the carbon source used for growth. The capsular polysaccharide (CPS) produced by strain 2143 during growth on arabinose, gluconate or mannitol, showed a high level of SBL binding, whereas CPS produced during growth of strain 2143 on malate showed a low level of SBL binding. However, the change in EPS composition and SBL binding of strain 2143 grown on malate did not affect the wild-type nodulation and nitrogen fixation phenotype of 2143. Mutant 1251, which produced EPS III, nodulated 2 d later than parental strain 2143, but formed effective, nitrogen-fixing tap root nodules. Mutant 1252, which produced either EPS II or III, however nodulated 5–6 d later and formed few and ineffective tap root nodules. Restoration of EPS I production in mutant 1252 correlated with restored SBL binding, but not with wild-type nodulation and nitrogen fixation. Received: 6 October 1999 / Accepted: 18 November 1999  相似文献   

19.
The effects of different carbohydrates or mixtures of carbohydrates as substrates on bacterial growth and exopolysaccharide (EPS) production were studied for the yoghurt starter culture Streptococcus thermophilus LY03. This strain produces two heteropolysaccharides with the same monomeric composition (galactose and glucose in the ratio 4:1) but with different molecular masses. Lactose and glucose were fermented by S. thermophilus LY03 only when they were used as sole energy and carbohydrate sources. Fructose was also fermented when it was applied in combination with lactose or glucose. Both the amount of EPS produced and the carbohydrate source consumption rates were clearly influenced by the type of energy and carbohydrate source used, while the EPS monomeric composition remained constant (galactose-glucose, 4:1) under all circumstances. A combination of lactose and glucose resulted in the largest amounts of EPS. Measurements of the activities of enzymes involved in EPS biosynthesis, and of those involved in sugar nucleotide biosynthesis and the Embden-Meyerhof-Parnas pathway, demonstrated that the levels of activity of alpha-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase are highly correlated with the amount of EPS produced. Furthermore, a weaker relationship or no relationship between the amounts of EPS and the enzymes involved in either the rhamnose nucleotide synthetic branch of the EPS biosynthesis or the pathway leading to glycolysis was observed for S. thermophilus LY03.  相似文献   

20.
The halotolerant, filamentous, heterocystous cyanobacterium Anabaena sp. ATCC 33047 released, during the stationary growth phase in batch culture and, at low dilution rate, in continuous culture, large amounts of an exopolysaccharide (EPS) to the culture medium. Different environmental, nutritional and physical parameters affected production and accumulation of the EPS. The presence of either a combined nitrogen source or NaCl at high concentration led to decreased EPS production, without affecting cell growth. In contrast, generation of the EPS was markedly enhanced in response to an increase in either air flow rate, temperature or irradiance. In continuous culture, accumulation of EPS in the medium increased in response to a decrease in the dilution rate, with maximal EPS productivity being reached at a dilution rate of 0.03 h−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号